Supporting Information

Palladium-Catalyzed Asymmetric Hydrogenation of 3-Phthalimido Substituted Quinolines

Xian-Feng Cai, Wen-Xue Huang, Zhang-Pei Chen and Yong-Gui Zhou*
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics
Chinese Academy of Sciences, Dalian 116023, P. R. China

Table of Contents

1. General... S2
2. Synthesis of 3-Nitroquinolines... 22
3. Synthesis of 3-Phthalimido Substituted Quinolines...S3
4. Asymmetric Hydrogenation of Substituted Quinolines.. 4
5. Copy of NMR and HPLC for Racemic and Chiral Compounds...................................S10

1. General:

Commercially available reagents were used without further purification. Solvents were treated prior to use according to the standard methods. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at room temperature in CDCl_{3} on 400 MHz instrument with tetramethylsilane (TMS) as internal standard. Enantiomeric excess was determined by HPLC analysis, using chiral column described below in detail. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh).

2. Synthesis of 3-Nitroquinolines

3-Nitroquinoline derivatives can be conveniently synthesized according to the known literature procedure. ${ }^{[1,2,3]}$ 2-butyl-3-nitroquinoline (7a), 2-methyl-3-nitroquinoline (7b), 2-ethyl-3nitroquinoline (7c), 2-propyl-3-nitroquinoline (7d), 2-isobutyl-3-nitroquinoline (7f), 2-isopentyl -3-nitroquinoline (7g), 2-hexyl-3-nitroquinoline (7h), 2-phenethyl-3-nitroquinoline (7i), 2-phenyl -3-nitroquinoline (7k), (E)-2-styryl-3-nitroquinoline (71), and (E)-2-(4-fluorostyryl)-3-nitroquinoline (71) are known compounds.

2.1. Synthesis of 3-Nitroquinoline 7e

Following a known literature report: ${ }^{2,3}$ A mixture of 2-chloro-3-nitroquinoline ($150 \mathrm{mg}, 0.72$ mmol), cyclopropylboronic acid ($74 \mathrm{mg}, 0.86 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(83 \mathrm{mg}, 0.07 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($297 \mathrm{mg}, 2.15 \mathrm{mmol}$) in 1,4-dioxane (6 mL) was stirred at reflux for 18 h , then cooled to rt, diluted with water $(15 \mathrm{~mL})$, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (hexane/EtOAc 30:1) to yield the product 7 e .

2-Cyclopropyl-3-nitroquinoline (7e): 83% yield, white solid, $\mathrm{mp} 104-106{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.90$ (hexane/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.61(1 \mathrm{H}, \mathrm{s}), 7.97(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.85$
 1.43-1.35 ($2 \mathrm{H}, \mathrm{m}$), 1.20-1.11 ($2 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=155.6$, 148.7, 144.5, 132.5, 132.3, 128.9, 128.6, 127.2, 124.7, 14.0, 11.4; HRMS Calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$215.0821, found 215.0822.

2.2. Synthesis of 3-Nitroquinoline $7 \mathbf{j}$

Following a known literature report: ${ }^{4}$ To a solution of 2-amino-5-fluorobenzaldehyde (790

[^0]$\mathrm{mg}, 5.68 \mathrm{mmol})$ in toluene (25 mL) was added (E)-1-nitrohex-1-ene $(880 \mathrm{mg}, 6.81 \mathrm{mmol})$. The resulting mixture was placed in an oil bath and heated at $45^{\circ} \mathrm{C}$ for 13.5 h , then 1,4-diaza-bicycle [2.2.2]octane (DABCO, $319 \mathrm{mg}, 2.84 \mathrm{mmol}$) was added, the mixture was stirred for another 12 h . After cooled to room temperature, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1.934 g , 8.52 mmol) was added and the solution was vigorously stirred for 0.5 h . After evaporation of the solvent, the residue was purified by flash chromatography on silica gel (hexane/EtOAc 20:1) to yield the product $\mathbf{7 j}$.

2-Butyl-6-fluoro-3-nitroquinoline (7j): 22\% yield, light brown oil, $\mathrm{R}_{\mathrm{f}}=0.70$ (hexane/ EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.63(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=9.3,5.2,1 \mathrm{H}), 7.66-7.58$
 $(\mathrm{m}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.2,2.8,1 \mathrm{H}), 3.27-3.19(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H})$, 1.54-1.42 (m, 2H), $0.98(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $161.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=251.2\right), 154.8\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=2.9\right), 145.8,144.5,132.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}\right.$ $=5.7), 131.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=9.2\right), 126.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=10.5\right), 122.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=25.9\right), 111.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=22.4\right)$, $35.8,30.9,22.7,13.8 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-111.0$; HRMS Calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$249.1039, found 249.1036.

3. Synthesis of 3-Phthalimido Substituted Quinolines

Quinolin-3-amines 2 can be conveniently synthesized according to the known literature procedure. ${ }^{[3]}$ 2-(2-Butylquinolin-3-yl)isoindoline-1,3-dione (2a), 2-(2-methylquinolin-3-yl)isoin-doline-1,3-dione (2b), 2-(2-ethylquinolin-3-yl)isoindoline-1,3-di-one (2c), 2-(2-propylquinolin-3-yl)isoindoline-1,3-dione (2d), 2-(2-isobutylquinolin-3-yl) isoindoline-1,3-dione (2f), 2-(2-isopent-yl-quinolin-3-yl)isoindoline-1,3-dione (2g), 2-(2-hexyl-quinolin-3-yl)isoindoline-1,3-dione (2h), 2-(2-phenethylquinolin-3-yl)isoindoline-1,3-dione (2i), 2-(2-phenylquinolin-3-yl)isoindoline-1,3dione ($\mathbf{2 k}$), and (E)-2-(2-styrylquinolin-3-yl)isoindoline-1,3-dione (2l) are known compounds.

Following a known literature report: ${ }^{3}$ To a solution of $7(0.60 \mathrm{mmol})$ in a mixed solvent of ethanol and $\mathrm{H}_{2} \mathrm{O}$ with a ratio of $4 / 1(5.0 \mathrm{~mL})$ was added iron powder ($134 \mathrm{mg}, 2.40 \mathrm{mmol}$) followed by $\mathrm{HCl}(0.1 \mathrm{M}, 0.30 \mathrm{~mL}, 0.03 \mathrm{mmol})$, and the resulting mixture was vigorously stirred at $85^{\circ} \mathrm{C}$ for $0.5-1.5 \mathrm{~h}$. When the reduction reaction was complete (determined by TLC), saturated $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$ was added and the mixture was filtered through celite. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed under reduced pressure and the crude product was pure enough for further reaction.

In a 25 mL round-bottom flask, the crude product and phthalic anhydride ($89 \mathrm{mg}, 0.60 \mathrm{mmol}$) were combined in acetic acid $(5.0 \mathrm{~mL})$. The resulting mixture was vigorously stirred at $120^{\circ} \mathrm{C}$ for 18 h . The solvent was removed under reduced pressure, the residue was resolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After filtration, the solvent was removed under reduced pressure and the crude product was purified by flash chromatography on silica gel (hexane/EtOAc 5:1) to yield the product.

2-(2-Cyclopropylquinolin-3-yl)isoindoline-1,3-dione (2e): 73\% yield, white solid, mp 199$201{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.35$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.05-7.96(\mathrm{~m}, 4 \mathrm{H}), 7.82$
$(\mathrm{dd}, J=5.3,3.1,2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.4,1 \mathrm{H}), 2.06-1.97(\mathrm{~m}$,

$1 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $167.6,160.4,148.2,136.0,134.8,132.1,130.5,129.0,127.8,126.6,126.2$, 125.2, 124.2, 13.9, 10.2; HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$315.1134, found 315.1141 .

2-(2-Butyl-6-fluoroquinolin-3-yl)isoindoline-1,3-dione (2j): 70\% yield, white solid, mp $204-206^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.55$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.11$ (dd, $J=9.2,5.2$,
 $1 \mathrm{H}), 8.00(\mathrm{dt}, J=6.9,3.5,2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=5.2,3.1,2 \mathrm{H})$, $7.52(\mathrm{td}, J=8.9,2.8,1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.6,2.6,1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 2 \mathrm{H})$, 1.76 (dt, $J=15.4,7.6,2 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.3,160.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=248.3\right), 159.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=2.9\right), 145.1,135.9(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{FC}}=5.4\right), 134.7,131.9,131.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=9.2\right), 127.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=10.3\right), 125.7,124.1,120.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}\right.$ $=25.8), 110.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=22.1\right), 34.3,30.4,22.6,13.8 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-113.5$; HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$349.1352, found 349.1371.
(E)-2-(2-(4-Fluorostyryl)quinolin-3-yl)isoindoline-1,3-dione (2m): 64\% yield, light yellow solid, $\mathrm{mp} 269-271^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc $5: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.17(\mathrm{~d}, J=$
 $8.5,1 \mathrm{H}), 8.10-7.99$ (m, 4H), 7.87 (dd, $J=5.3,3.1,2 \mathrm{H}), 7.79$ (dd, $J=$ $17.1,8.1,2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5,1 \mathrm{H}), 7.48$ (dd, $J=8.4,5.6,2 \mathrm{H}), 6.99$ (dd, $J=11.9,6.5,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=167.5,163.2$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{FC}}=248.8\right), 152.9,148.3,136.8,135.7,135.0,133.0,132.9$, $132.0,131.0,129.5,129.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=8.3\right), 127.9,127.4,127.0,124.3,121.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=2.1\right), 115.8$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{FC}}=21.7\right) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-112.3$; HRMS Calculated for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{FN}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$395.1196, found 395.1187.

4. Asymmetric Hydrogenation of Substituted Quinolines

$\operatorname{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol})$ and $\mathbf{L 3}(4.7 \mathrm{mg}, 0.006 \mathrm{mmol})$ were placed in a dried Schlenk tube under nitrogen atmosphere, and degassed anhydrous acetone was added. The mixture was stirred at room temperature for 1 h , then, the solvent was removed under vacuum to give the catalyst. In a glovebox, quinolines $(0.10 \mathrm{mmol})$ and TFA $(6.8 \mathrm{mg}, 4.4 \mu \mathrm{~L}, 0.06 \mathrm{mmol})$ were stirred in $1.0 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 1 min . Subsequently, the above catalyst together with 3 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added to the reaction mixture. The hydrogenation was performed at $70{ }^{\circ} \mathrm{C}$ (or 80 $\left.{ }^{\circ} \mathrm{C}\right)$ under $\mathrm{H}_{2}(1000 \mathrm{psi})$ in a stainless steel autoclave for 18 h . After carefully releasing the hydrogen, saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to the resulting mixture. After stirring for 10 min , the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification was performed by flash chromatography on silica gel (hexane/EtOAc 10:1) to give the product.

2-((2S,3S)-2-Butylquinolin-3-yl)isoindoline-1,3-dione (3a): known compound, ${ }^{[3]} 91 \%$ yield, 90% ee, light yellow oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-149.2\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\right.$ lit. ${ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=+181.6\left(c 0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
 for 93% ee $(2 R, 3 R)], \mathrm{R}_{\mathrm{f}}=0.60$ (hexane/EtOAc $\left.5: 1\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=15.1,7.4$, $2 \mathrm{H}), 6.68(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}$,
$1 \mathrm{H}), 3.93(\mathrm{dd}, J=16.6,9.6,1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=16.6,6.2,1 \mathrm{H}), 1.60(\mathrm{dt}, J=13.0$, $6.8,1 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=13.5,6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=168.8,143.3,134.0,131.8,129.0,127.0,123.2,120.0,117.6,114.5,54.4,50.4,30.3$, 28.6, 27.2, 22.7, 14.1; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=$ $70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 12.2 min and 14.2 min (major).

2-((2S,3S)-2-Methylquinolin-3-yl)isoindoline-1,3-dione (3b): known compound, ${ }^{[3]} 86 \%$ yield, 81% ee, light yellow solid, $\mathrm{mp} 165-167{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=-159.2\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{[3]}\right.$: $[\alpha]^{20}{ }_{\mathrm{D}}=$
 $+170.2\left(c 0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 81% ee $\left.(2 R, 3 R)\right], \mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}$, $J=8.6,2 \mathrm{H}), 6.69(\mathrm{td}, J=7.5,0.9,1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.83-4.76(\mathrm{~m}$, $1 \mathrm{H}), 3.91(\mathrm{dd}, J=16.6,9.2,1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=16.6,6.4,1 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.6,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=168.8,143.4,134.0,131.8,128.9,127.0$, 123.2, 119.9, 117.8, 114.5, 50.4, 49.8, 26.8, 17.9; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 21.7 min and 27.9 min (major).

2-((2S,3S)-2-Ethylquinolin-3-yl)isoindoline-1,3-dione (3c): known compound, ${ }^{[3]} 93 \%$ yield, 85% ee, light yellow solid, $\mathrm{mp} 162-164{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=-182.8\left(c \quad 0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\right.$ lit. ${ }^{[3]}$: $[\alpha]^{20}{ }_{\mathrm{D}}=$
 $+197.7\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 90% ee $\left.(2 R, 3 R)\right], \mathrm{R}_{\mathrm{f}}=0.45$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (dd, $J=15.4,7.5,2 \mathrm{H}), 6.68(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.88-4.81(\mathrm{~m}$, $1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=16.5,9.8,1 \mathrm{H}), 3.36(\mathrm{dt}, J=9.7,3.7,1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.5,6.2$, $1 \mathrm{H}), 1.67-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.8,143.2,134.0$, $131.8,129.0,127.0,123.2,120.0,117.6,114.5,56.0,50.3,27.1,23.5,10.7$; HPLC: Chiracel ODH column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 13.8 min and 20.5 min (major).

2-((2S,3S)-2-Propylquinolin-3-yl)isoindoline-1,3-dione (3d): known compound, ${ }^{[3]} 97 \%$ yield, 87% ee, light yellow solid, mp $154-156{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=-186.8\left(c 0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\right.$ lit. ${ }^{[3]}$: $[\alpha]^{20}{ }_{\mathrm{D}}=$
 $+204.3\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 92% ee $\left.(2 R, 3 R)\right], \mathrm{R}_{\mathrm{f}}=0.45$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.88-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (dd, $J=14.3,7.3,2 \mathrm{H}), 6.69(\mathrm{dd}, J=10.7,4.0,1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.86-$ $4.79(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=16.6,9.7,1 \mathrm{H}), 3.47(\mathrm{dt}, J=10.0,3.2,1 \mathrm{H}), 3.04(\mathrm{dd}, J=$ $16.6,6.2,1 \mathrm{H}), 1.65-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=7.1,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=168.8,143.2,134.0,131.8,129.0,127.0,123.2,120.0,117.6,114.5,54.1,50.4,32.6$, 27.2, 19.5, 14.0; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 12.6 min and 16.6 min (major).

2-((2S,3S)-2-Cyclopropylquinolin-3-yl)isoindoline-1,3-dione (3e): 72\% yield, 80% ee, yellow solid, mp $152-154{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=-197.6\left(c 0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.45$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.96$ $(\mathrm{m}, 2 \mathrm{H}), 6.67(\mathrm{t}, J=7.3,1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.93-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.17$ (dd, $J=16.3,10.5,1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=16.3,5.9,1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $9.3,4.1,1 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.54-0.40(\mathrm{~m}, 2 \mathrm{H}), 0.21-0.11(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{dq}, J=9.8,4.7,1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=166.5,141.0,131.7,129.5,126.6,124.8,120.9,117.5,115.2$, 111.8, 56.8, 47.9, 24.8, 10.9, 1.0, -0.0; HRMS Calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$319.1447, found 319.1453; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$,
flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 18.9 min and 28.8 min (major).
2-((2S,3S)-2-Isobutylquinolin-3-yl)isoindoline-1,3-dione (3f): known compound, ${ }^{[3]} 94 \%$ yield, 90% ee, light yellow oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-178.7\left(c \quad 0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=+203.2(c 0.66\right.$,
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) for 94% ee $(2 R, 3 R)$], $\mathrm{R}_{\mathrm{f}}=0.65$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.87-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=14.1$, $7.1,2 \mathrm{H}), 6.69(\mathrm{td}, J=7.4,0.9,1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.8,1 \mathrm{H}), 4.85-4.76(\mathrm{~m}, 1 \mathrm{H})$, $3.97(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=16.7,9.1,1 \mathrm{H}), 3.58(\mathrm{dt}, J=10.3,3.3,1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.7,6.3,1 \mathrm{H})$, $1.79-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.6,3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.8,143.4,134.0,131.8,128.9,127.0,123.3,120.1$, $117.7,114.5,52.1,50.5,39.5,27.4,24.6,23.9,21.5$; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30$ ${ }^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 10.2 min and 17.4 min (major).

2-((2S,3S)-2-Isopentylquinolin-3-yl)isoindoline-1,3-dione (3g): known compound, ${ }^{[3]} 91 \%$ yield, 90% ee, yellow oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-184.2\left(c 0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=+176.8\left(c 0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$
 for 88% ee $(2 R, 3 R)], \mathrm{R}_{\mathrm{f}}=0.65$ (hexane/EtOAc $\left.5: 1\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.86-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=15.5,7.5$, $2 \mathrm{H}), 6.68(\mathrm{t}, J=7.4,1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~s}$, $1 \mathrm{H}), 3.90(\mathrm{dd}, J=16.6,9.4,1 \mathrm{H}), 3.42(\mathrm{dt}, J=9.4,3.6,1 \mathrm{H}), 3.04(\mathrm{dd}, J=16.6,6.2,1 \mathrm{H}), 1.63-1.43$ $(\mathrm{m}, 3 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{dd}, J=8.8,6.7,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=168.8,143.3,134.0,131.8,128.9,127.0,123.2,120.1,117.6,114.5,54.8,50.4,35.7$, 28.6, 28.1, 27.4, 22.8, 22.4; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=$ $70 / 30$, flow $=0.6 \mathrm{~mL} / \mathrm{min}$, retention time 13.2 min and 14.6 min (major).

2-((2S,3S)-2-Hexylquinolin-3-yl)isoindoline-1,3-dione (3h): known compound, ${ }^{[3]}$ 86\% yield, 90% ee, yellow oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-169.5\left(c 0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=+180.4\left(c 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$
 for 92% ee $(2 R, 3 R)$], $\mathrm{R}_{\mathrm{f}}=0.70$ (hexane/EtOAc $5: 1$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.82(\mathrm{dt}, J=7.0,3.5,2 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.01$ (dd, $J=15.0,7.4,2 \mathrm{H}), 6.68(\mathrm{td}, J=7.4,0.8,1 \mathrm{H}), 6.57$ (d, $J=7.9,1 \mathrm{H})$, 4.86-4.79 (m, 1H), 4.03 (s, 1H), $3.92(\mathrm{dd}, J=16.6,9.6,1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=16.6$, $6.2,1 \mathrm{H}), 1.59(\mathrm{dd}, J=18.7,9.4,1 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{dd}, J=14.3,9.4,7 \mathrm{H}), 0.83(\mathrm{t}, J=$ $6.8,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.8,143.3,134.0,131.8,129.0,127.0,123.2,120.0$, $117.6,114.5,54.4,50.4,31.8,30.6,29.2,27.2,26.4,22.6,14.0$; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 11.3 min and 12.5 \min (major).

2-((2S,3S)-2-Phenethylquinolin-3-yl)isoindoline-1,3-dione (3i): known compound, ${ }^{[3]} 95 \%$ yield, 90% ee, yellow oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-147.2\left(c 0.72, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=+156.0\left(c 0.76, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right.$
 for 93% ee $(2 R, 3 R)$], $\mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc $\left.5: 1\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.85-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.2,2 \mathrm{H}), 7.12$ (dd, $J=8.9,7.9,3 \mathrm{H}), 7.00(\mathrm{dd}, J=13.1,7.1,2 \mathrm{H}), 6.68(\mathrm{t}, J=7.0,1 \mathrm{H}), 6.48$ (d, $J=7.9,1 \mathrm{H}), 4.85-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=16.4,9.9,2 \mathrm{H}), 3.49(\mathrm{dt}, J=9.1,3.4,1 \mathrm{H}), 3.03$ $(\mathrm{dd}, J=16.6,6.2,1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.79(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.8,143.0,141.4,134.0,131.8,129.0,128.5,128.4,127.1,126.0,123.3$, 120.0, $117.8,114.7,54.1,50.5,32.9,32.0,27.2$; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 20.7 min and 56.5 min (major).

2-((2S,3S)-2-Butyl-6-fluoroquinolin-3-yl)isoindoline-1,3-dione (3j): 97\% yield, 79\% ee, yellow oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-114.0\left(c 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.45$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta=7.88-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{dd}, J=15.0,6.3$, $2 \mathrm{H}), 6.51(\mathrm{dd}, J=8.4,4.8,1 \mathrm{H}), 4.80(\mathrm{td}, J=7.9,3.5,1 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H})$, $3.76(\mathrm{dd}, J=17.1,8.1,1 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=17.1,6.7$, $1 \mathrm{H}), 1.58-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $168.8,156.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=235.5\right), 139.8,134.0,131.8,123.3,121.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.1\right), 115.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=\right.$ 7.7), $115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=22.2\right), 113.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=22.5\right), 54.8,49.8,30.3,28.6,28.0,22.6,14.0 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=-127.3$; HRMS Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 353.1665$, found 353.1656; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 9.9 min and 14.1 min (major).

2-((2S,3S)-2-Phenylquinolin-3-yl)isoindoline-1,3-dione (3k): known compound, ${ }^{[3]} 83 \%$ yield, 14% ee, light yellow solid, $\mathrm{mp} 254-256^{\circ} \mathrm{C},[\alpha]^{20} \mathrm{D}=-39.3\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{lit} .{ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=\right.$
 $+135.4\left(c 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for 40% ee $\left.(2 R, 3 R)\right], \mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.26-$ $7.01(\mathrm{~m}, 7 \mathrm{H}), 6.72(\mathrm{t}, J=7.1,1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.97(\mathrm{dt}, J=10.4,5.1$, $1 \mathrm{H}), 4.75(\mathrm{~d}, J=4.6,1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=16.3,10.7,1 \mathrm{H}), 3.03(\mathrm{dd}$, $J=16.3,5.4,1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=168.1,143.5,141.1,133.9,131.6,129.0$, 128.3, 127.9, 127.4, 127.3, 123.1, 119.4, 117.5, 113.4, 57.7, 51.1, 26.6; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 18.7 min and 32.8 min (major).

2-((2S,3S)-2-Phenethylquinolin-3-yl)isoindoline-1,3-dione (3i, the hydrogenation product is the same as hydrogenation of (E)-2-(2-phenethylquinolin-3-yl)isoindoline-1,3-dione (2i) due to
 hydrogenation of $\mathrm{C}=\mathrm{C}$ double bond of side chain of substrate $\mathbf{2 l}$): known compound, ${ }^{[3]} 99 \%$ yield, 90% ee, yellow oil, $\mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc 5:1).
HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 20.7 min and 55.9 min (major).

2-((2S,3S)-2-(4-fluorophenethyl)-1,2,3,4-tetrahydroquinolin-3-yl)isoindoline-1,3-dione

(3m): 86% yield, 88% ee, light yellow oil, $[\alpha]^{20}{ }_{D}=-132.2\left(c \quad 0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}=0.60$
 (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.81(\mathrm{dt}, J=7.0$, $3.5,2 \mathrm{H}), 7.76-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{t}, J=8.7,2 \mathrm{H})$, $6.69(\mathrm{t}, J=7.2,1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.85-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}$, $J=16.5,10.0,2 \mathrm{H}), 3.48(\mathrm{dt}, J=7.2,3.3,1 \mathrm{H}), 3.02(\mathrm{dd}, J=16.6,6.1$, $1 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.72(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $168.8,161.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{FC}}=243.8\right), 142.9,137.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{FC}}=3.2\right), 134.1,131.8,129.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{FC}}=7.8\right)$, $129.0,127.1,123.3,112.0,117.9,115.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{FC}}=21.1\right), 114.7,54.0,50.4,32.2,32.0,27.1 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) $\delta=-117.4$; HRMS Calculated for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$401.1665, found 401.1664; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 21.0 min (major) and 41.2 min
(cis)-Propyl 2-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (8a): 52\% yield, 35\% ee, known compound, ${ }^{[5]}$ colorless oil, $[\alpha]^{20}{ }_{\mathrm{D}}=-13.3\left(c 0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, $\left[\mathrm{lit} .{ }^{[5]}:[\alpha]^{20}{ }_{\mathrm{D}}=+23.4(c 1.0\right.$,

[^1]CHCl_{3}) for 85% ee $\left.(2 R, 3 R)\right], \mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc $10: 1$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$
 $6.99(\mathrm{dd}, J=14.6,7.5,2 \mathrm{H}), 6.64(\mathrm{dd}, J=10.7,4.1,1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9,1 \mathrm{H})$, 4.14-4.02 (m, 2H), 3.98-3.82 (m, 2H), 3.12-3.00 (m, 1H), 3.00-2.87 (m, 2H), 1.72-1.60(m, 2H), $1.14(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=173.0,142.9,129.5,127.0,119.1,117.4,114.6,66.2,47.4,42.3,25.5,22.0$, 17.9, 10.4; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=70 / 30$, flow $=$ $0.7 \mathrm{~mL} / \mathrm{min}$, retention time 7.6 min (major) and 8.2 min .
(trans)-Propyl 2-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (8b): 39\% yield, 0\% ee, colorless oil, $\mathrm{R}_{\mathrm{f}}=0.60$ (hexane/EtOAc 10:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.98(\mathrm{t}, J=7.4$,
 $2 \mathrm{H}), 6.62(\mathrm{dd}, J=10.7,4.1,1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.7,1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 2 \mathrm{H})$, $3.68(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{dq}, J=9.3,6.2,1 \mathrm{H}), 3.05(\mathrm{dd}, J=16.0,11.4,1 \mathrm{H}), 2.91$ $(\mathrm{dd}, J=16.0,4.9,1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=5.8$, $3 \mathrm{H}), 0.96$ (t, $J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=174.4,143.6,129.1,127.1,119.5$, $117.3,113.8,66.2,49.1,45.8,30.6,22.0,20.6,10.4$; HRMS Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 234.1494, found 234.1497 .
N-((cis)-2-butyl-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfonamide (9a): 11\% yield, 51% ee, known compound, ${ }^{[3]}$ white solid, mp $164-165{ }^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=+11.3\left(c 0.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$,

[lit. ${ }^{[3]}:[\alpha]^{20}{ }_{\mathrm{D}}=-46.5\left(c 0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ for $>99 \%$ ee $\left.(2 S, 3 S)\right], \mathrm{R}_{\mathrm{f}}=0.55$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.72(\mathrm{~d}, J=8.2,2 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.1,2 \mathrm{H}), 6.98(\mathrm{t}, J=7.5,1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.63(\mathrm{t}, J=$ $7.3,1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.9,1 \mathrm{H}), 4.87(\mathrm{~d}, J=9.2,1 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=$ $6.5,1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.6,3.9,1 \mathrm{H}), 2.57(\mathrm{dd}, J=16.6,2.1,1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 2 \mathrm{H})$, 1.23-1.05 (m, 4H), $0.84(\mathrm{t}, J=6.9,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.5,143.2,138.8$, $130.5,129.6,127.3,127.0,118.5,117.8,114.2,54.8,48.4,34.3,31.7,27.7,22.6,21.5,13.9$; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=80 / 20$, flow $=0.9 \mathrm{~mL} / \mathrm{min}$, retention time 11.6 min and 13.2 min (major).
N-((trans)-2-butyl-1,2,3,4-tetrahydroquinolin-3-yl)-4-methylbenzenesulfonamide (9b): 22% yield, 9% ee, known compound, ${ }^{[3]}$ colorless oil, $\mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.72(\mathrm{~d}, J=8.3,2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.1,2 \mathrm{H}), 6.98(\mathrm{t}, J$ $=7.3,1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.4,1 \mathrm{H}), 6.61(\mathrm{td}, J=7.4,0.8,1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.3,1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{td}, J=8.0,3.6,1 \mathrm{H}), 3.06-2.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=16.7,4.5,1 \mathrm{H}), 2.53-2.39(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=7.0,3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.3,142.0,138.6,130.3,129.7,127.5,126.9,117.7,116.5$, $114.3,55.0,49.0,33.8,29.7,27.7,22.4,21.5,13.9$; HPLC: Chirapak AD-H column, $254 \mathrm{~nm}, 30$ ${ }^{\circ} \mathrm{C}, n$-hexane $/ i$-propanol $=75 / 25$, flow $=0.8 \mathrm{~mL} / \mathrm{min}$, retention time 10.5 min (major) and 12.3 min.

Methyl 2-methyl-1,2,3,4-tetrahydroquinoline-6-carboxylate (10): known compound (CAS: 1389882-44-3), 48% yield, 27% ee, white solid, $\mathrm{mp} 68-70^{\circ} \mathrm{C},[\alpha]^{20}{ }_{\mathrm{D}}=-34.2\left(c 0.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{R}_{\mathrm{f}}$
 $=0.55$ (hexane/EtOAc 5:1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.61(\mathrm{~m}$, $2 \mathrm{H}), 6.39(\mathrm{~d}, J=8.8,1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H})$, 2.87-2.70 (m, 2H), 1.99-1.90 (m, 1H), 1.63-1.51 (m, 1H), $1.23(\mathrm{~d}, J=6.3$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=167.5,148.7,131.1,129.1,119.7,117.7,112.6,51.4,47.2$,
29.5, 26.3, 22.4; HPLC: Chiracel OD-H column, $254 \mathrm{~nm}, 30^{\circ} \mathrm{C}$, n-hexane $/ i$-propanol $=85 / 15$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$, retention time 12.3 min and 15.0 min (major).
5. Copy of NMR and HPLC for racemic and chiral compounds

```
# \
```



```
ANONO
```


1H NMR FC-4-87A in CDCl3

13C NMR FC-4-87 in CDCl3
$/ / \mathrm{Yzc} / \mathrm{g}$ 新 NMR 2014/2841/fid

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-36 in CDCl3 // Yzc/G/新 NMR 2013/1236/fid

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1		,	1	,	1	1		1	1	1	1	1	1		1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

19F NMR FC-6-36 in CDCl3 //Yzc/G/新 NMR 2013/1237/fid

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
\qquad

,		,	,	1	,	,	,	,	,	1	,	I		,			1	I	1			1
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

NNNNi - jiviniog

1 H NMR FC-4-99B in CDCl 3

13C NMR FC-4-99B in CDCl 3

			1	,				,	,	,	,	,	1	1	1	1	1	1	I	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

```
MNNGOM
```


1H NMR FC－6－40 in CDCl3 ／／Yzc／g／新 NMR 2013／1274／fid

13C NMR FC-6-40 in CDCl3 //Yzc/g/新 NMR 2013/1276/fid

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

L0	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$	100	90	80	70	60	50	40	30	20	10

19F NMR FC-6-40 in CDCl3 //Yzc/g/新 NMR 2013/1275/fid

2j
${ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1H NMR FC-5-46 in CDCl3
$/ / \mathrm{Yzc} / \mathrm{g} /$ 新 NMR 2013/1263/fid

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

By\%
 $\stackrel{\oplus}{\top}$

13C NMR FC-5-46 in CDCl3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

													8							
L0	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	100	90	80	70	60	50	40	30	20	10

FNMR-2013-FC-5-46 in CDCl3

1H NMR FC-6-19B in CDCl 3
G:/新 NMR 2013/956/fid

32
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR FC-6-19B in CDCl3

3a
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

			,	,	,			,	1	,	,	,	,	,	I	I	1	1	,	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-21A in CDCl 3

3b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR FC-6-21A in CDCl 3

3b
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	,	,	1	I	,	,		1	1	,		1	1	,	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1 H NMR FC- $6-21 \mathrm{H}$ in CDCl 3

$\begin{array}{ll}8 & 8 \\ 8 \\ 1 & 0 \\ 1 & 1\end{array}$

13C NMR FC-6-21H in CDCl3

3c
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | $($ |
| :--- |

人 N下NNNNNNNNNNN N～N工促

1H NMR FC－6－21G in CDCl3

~

13C NMR FC-6-21G in CDCl 3

	1	1	1	1	1	1	1	T	+	1	1	-	T	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC－6－25G in CDCl3

S31

13C NMR FC-6-25G in CDCl 3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

			,	,	,	,	,	1	,	,	-	,	1	,	1	1	,	1	1	,	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1 H NMR FC-6-25F in CDCl 3

$\begin{aligned} & \bar{\infty} \\ & \stackrel{y}{\dot{\circ}} \\ & \stackrel{1}{i} \end{aligned}$	$\begin{gathered} \stackrel{M}{c} \\ \stackrel{y}{4} \\ \underset{\mid}{2} \end{gathered}$	

13C NMR FC-6-25F in CDCl3

$3 f$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	T	1	T	T	I	,	,	,	1	1	,	1	1	1	1	1	1	1	1
L0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-25E in CDCl3

3 g
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C NMR FC-6-25E in CDCI3

	1	T	1	1	1	I	+	1	1			1	1	1	1	1	1	1	1	
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1 H NMR FC-6-21C in CDCl 3

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

13C NMR FC-6-21C in CDCl3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		1	1	1					1	1			1	1	1	1		1	1	10
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC－6－21I in CDCl 3


```
& N
```

8 㝵

13C NMR FC-6-21I in CDCl^{2}

3i
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	T	1	T	T	I	,	,	,	1	1	,	1	1	1	1	1	1	1	1
L0	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC－6－44A in CDCl 3 G：／新 NMR 2014／1845／fid

3j

M

13C NMR FC-6-44A in CDCl 3 G:/新 NMR 2014/1847/fid

3j
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

19F NMR FC-6-44A in CDCl 3 G:/新 NMR 2014/1846/fid

3j
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Nons

1H NMR FC-6-21D in CDCl3


```
N
```

$\begin{array}{ll}8 & 8 \\ 1 & 1\end{array}$ M

13C NMR FC-6-21D in CDCl 3

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	T	1	1	1	I	+	1	1	1		1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-30A in CDCl3

13C NMR FC-6-30A in CDCl3

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

19F NMR FC-6-30A in CDCl3

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

rinis in inis

1H NMR FC-6-25D2 in CDCl3

13C NMR FC-6-25D2 in CDCI3

8a
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

隹隹

1H NMR FC-6-25D1 in CDCl3

S51

13C NMR FC-6-25D1 in CDCI3

8b
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	1	1	1	1	1	+	1	1	1	1	,	1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

```
\%N
```


1H NMR FC-6-44C1 inCDCl3 G:/新 NMR 2014/2082/fid

9a
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

\int

			さ	$\stackrel{8}{8}$	$\begin{aligned} & \mathscr{M R \&} \\ & \text { MiN } \end{aligned}$	む̀ g

13C NMR FC－6－44C1 inCDCI3 G：／新 NMR 2014／2083／fid

9a
${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

	1	T	1	1	1	I	＋	1	1	1		1	1	1	1	1	1	1	1	1
10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

1H NMR FC-6-44C2 in CDCl3
//Yzc/g/新 NMR 2013/1359/fid

13C NMR FC-6-44C2 in CDCl 3 //Yzc/g/新 NMR 2013/1360/fid

9b
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1H NMR FC-6-44D in CDCl3 G:/新 NMR 2014/1850/fid

S57

13C NMR FC-6-44D in CDCl3 G:/新 NMR 2014/1851/fid

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10	200	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10
								130	12	f1		90	8	70	60	50	40	30	20	10

Data File C: FC -2\YzNOO2874.D
Sample Name:
Acq. Instrument: Instrument 1 Location: Vial 1

$\begin{aligned} & \text { Sorted By } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Sicmal }}{ } \quad 1.000$
$\xrightarrow{\text { Dilution: }}$ Use Multiplier \& Dilution Factor with ISTDs
Si gnal 1: VWD 1 A , Wavelength= 254 mm

cis-(\pm)-3a

Totals :
$3290.53223 \quad 152.07918$
*** End of Report ***

Data File C: \backslash FC-4 PDYYZ005160.D
Sample Name: FC-6-19B


```
Acq. Instrument
An
In iection Date
```



```
Analvsis Method: (MODified after loading)
Last changed \(\quad 3 / 19 / 2014\) 1:42:02 PM by
```

Sample Info : $\quad \begin{aligned} & \text { (modified after } 10 \text { ading }) \\ & 0 \mathrm{H}, \mathrm{H} / \mathrm{H}-\mathrm{PrOH}=70 / 300.7 \mathrm{~mL} / \mathrm{min}, 30 \circ \mathrm{C}, 254 \mathrm{~nm}\end{aligned}$

Data File C: \backslash FC-4 PD\YZOO5185.D Sample Name: FC-6-21A

Acc.
Acq. Inerator
Instrument ZHOU

Last chanced : $\begin{gathered}11 / 6 / 2013 \\ \text { (modified after } 7: 52: 30 \mathrm{AM} \text { by } \\ \text { zHoud } \\ \text { (ming) }\end{gathered}$

Sorted By	:	Sicmal			
Multiplier:			1.0000		NPhth
Dilution: ${ }^{\text {a }}$: ${ }^{\text {d,0000 }}$					
Use Multiplier \& D	ilution	Factor with	ISTD 3		
Sigmal 1: vid 1 A, Wavelength 254 nim					
Peak RetTime Type \# 「min1	Width $\lceil\min 7$	${\underset{\text { mat }}{\text { Area }}}_{\mathrm{t}_{3}}^{\text {A. }}$	$\underset{\text { Imeight }}{\text { Het }}$	$\underset{\underset{\sim}{\text { Area }}}{ }$	cis-(-)-3b
	0.5722	${ }^{346.06189}$	9. 30622	9.4320	
27.860 EB	0.6514	3322.97461	79.15966	90.5680	
Totals :		3669.03650	88.46588		

Data File C: $\backslash \mathrm{FC}-22 \mathrm{YZZO}$
Sample Name: FC-5-4B

Area Percent Repor
$\begin{array}{lccc}\text { Sorted By } & : & \begin{array}{c}\text { Sicmal } \\ \text { Hultiplier: }\end{array} & \\ \vdots & 1.0000 \\ & & \\ & & & \end{array}$
Dilution:
Jse Multiplier \& Dilution Factor with ISTDS
i gmal 1: VWD 1 A , Wavelength $=254 \mathrm{mim}$

Totals :
$5057.06616 \quad 200.15109$
$=================$
$\pi \star *$
π End of Report $\pi * *$

Data File C: FC .-4 PDVYzoos277.D
Sample Name: FC-6-21H

Cc. Instrument : Thstruent

Location: Vial 1

Last chanced : 11116 (indin $11: 40: 55 \mathrm{AM}$ by zHou

Last changed : $\begin{gathered}\text { 3/19/2014 2:03:59 Mu by } \\ \text { (modified after loadin }\end{gathered}$

Data File C: $\backslash \mathrm{FC}-2 \backslash$ YzNoo2973.D
Sample Name:


```
Acq. Instrument: Instrument 1 
Mcq. Method \C:\CHEM32\\\\ETHODS\DEF LC.
Last chanced : : %/11/2013 (m,31:54 PH bV wH
Analvsis Method, (#modified after loading)
last changed : 10/9/2013 10:19:15 PM by 
Sample Info : : (modified after 10ading)
```


| Sorted By | | |
| :--- | :--- | :--- | :--- |
| Hultiplier: | $:$ | Siomal |
| $:$ | 1.0000 | |

i gmal 1: VWD 1 A , Wavelength $=254 \mathrm{~nm}$

Totals : $\quad 2027.02417 \quad 83.82618$

Data File C: $\backslash \mathrm{FC}-4$ PD\Yzoos276.D
Sample Name:
FC-6-21G

Instrument

Last changed : $\begin{gathered}11 / 16 / 2013 \\ \text { (Modified after } 11: 40: 55 \text { AM by } \\ \text { loading) } \\ \text { HHOU }\end{gathered}$

Last changed : $\begin{gathered}\text { 3/19/2014 1:56:09 Mu by } \\ \text { (modified after loadi }\end{gathered}$

sigmal 1: vinl a, Wentant

cis-(-)-3d

Totals :
$3222.74753 \quad 126.73229$

Data File C: \backslash FC-4 PD PDZzoo4509.D
Sample Name: FC-5-4D

Sorted By
Siomal
liplier: $\quad \vdots \quad 1.0000$
Use Multiplier \& Dilution Factor with ISTDs
i gmal 1: VWD 1 A , Wavelength=254 min
$\begin{array}{ccccc}\text { Peak RetTime Type } & \text { Width } & \text { Area } & \text { Height } & \text { Area }\end{array}$

cis- $(\pm)-3 \mathrm{e}$

Totals :
$1094.04553 \quad 30.32744$

Data File C: FC .-4 PDIYzoos280.D
Sample Name: $\mathrm{FC}-6-25 \mathrm{G}$

Instrument :

Last changed $\quad \begin{gathered}3 / 19 / 2014 ~ 2: 25: 16 \text { PM by } \\ \text { (modified after 10adin }\end{gathered}$

Data File C: $\backslash \mathrm{FC}-2 \backslash$ YzNOO2996.D
Sample Name:

i gmal 1: YTD 1 A , Wavelength $=254 \mathrm{nil}$

cis- \pm) $-\mathbf{3 f}$

Totals : $\quad 7842.00952 \quad 374.58884$

Data File C: FC .- PD PYzoos278.D
Sample Name: $\mathrm{FC}-6-25 \mathrm{~F}$

cq. Instrument
Iniection Date : $11 / 16 / 2013$ 1:12:40 pM
Location: Vial 1

Sample Info : (modified after 10 ading) $0 \mathrm{H} / \mathrm{H} / \mathrm{i}-\mathrm{PrOH}=70 / 30,0.70 \mathrm{~mL} / \mathrm{min}, 30$ oc, 254 nm

位
Sultiplier: \quad Siomal 1.000
Dilution:
Use Multiplier $\& ~ D i l u t i o n ~ F a c t o r ~ w i t h ~$
\vdots
Si gmal 1: VWD 1 A , Wavelength $=254 \mathrm{~nm}$

Totals : $\quad 5328.40131 \quad 189.05365$

** End of Report ***

Data File C: $:$ FC-2\YzNo03132.D
Smple Name:

$\begin{aligned} & \text { Sorted By } \\ & \text { Hultiplier: }\end{aligned} \quad: \quad \stackrel{\text { Siomal }}{:} \quad 1.0000$
$\begin{array}{lcc}\text { Multiplier: } & \vdots & 1.0000 \\ \text { Dilution: } \\ \text { Dine Multiplier } & \text { \& Dilution Factor with ISTD }\end{array}$
ignal 1: VID 1 A , Wavelength $=254 \mathrm{~nm}$

cis- $(\pm)-3 \mathrm{~g}$

Totals :
$6301.89966 \quad 252.52998$

Acq. Instrument ;
Acq. Instrument
Iniection Date Instrument 1 $11 / 11 / 20131: 07: 27 \mathrm{PM}$
Location: Vial 1

Last chanqed : $\begin{gathered}11 / 11 / 2013 \\ \text { (imodified after } 1: 01: 42 \text { PM by } \\ \text { loading) } \\ \text { ZHO }\end{gathered}$

Last changed : $3 / 19 / 20142: 21: 21 \mathrm{PM}$ by
Sample Info : (modified after 10 ading) $0.0 \mathrm{HL} / \mathrm{Hin}, 30$ oc, 254 nil


```
Acq. Instrument: Instrument 1
Mcq. Method \ c: \HEM32\\\\METHODS\DEF LC.
Last chanced : : %/30/2013 5:57:42 pM bv,
```



```
last changed : 10/9/2013 10:24:50 FM by 
Sample Info : : (modififed after (10ading)
```


路
Sultiplier: $\quad \stackrel{\text { Sicmal }}{1.0000}$
$\underset{\text { ilution: }}{\vdots} \begin{array}{r}1.0000 \\ \text { Ise Multiplier }\end{array}$ \& Dilution Factor with 1 ISTD
igmal 1: VID 1 A , Wavelength $=254 \mathrm{~nm}$

cis- \pm)-3h
$\begin{array}{ccccc}\text { Peak RetTime Type } & \text { Width } & \text { Area } & \begin{array}{c}\text { Height } \\ \text { Imind }\end{array} & \text { Area }\end{array}$
Totals : $\quad 1240.30695 \quad 60.42602$

Data File C: FC -4 PD\Yzoos219.D
Sample Name: FC-6-21C

Acq. Instrument : Instrument 17 ,
$\begin{array}{l:l}\text { Iniection Date } \\ \text { Acq. Method } & 11 / 10 / 2013 \\ \text { C: } 3: 17: 46 \mathrm{HPCHW} \\ \end{array}$

Analvsis Method :(Modified after loading)

Sample $\mathrm{Info}: \quad \begin{gathered}\text { (modified after } 10 \text { ading) } \\ 0 \mathrm{OD}-\mathrm{H}, \mathrm{H} / \mathrm{i}-\mathrm{PrOH}=70 / 30,0.70 \mathrm{~mL} / \mathrm{min}, 30\end{gathered}$

Data File C: $\backslash \mathrm{FC}-2 \backslash$ YzNo
Sample Name: $\mathrm{FC}-5-31 \mathrm{D}$

```
Lac. Instrument:Tnstrument 1 Location:Vial 1
Mcq. Instrument: Instrument 1
Last changed : %/1/2013 8:32:15 AM bv YZ 
M,
last changed : 10/9/2013 10:26:48 MMF by 
Sample Info : : (modififed after (10ading)
```


Acc.
Acq.
Anerator
Instrument
$: y y y y y y y y$
Cc. Instrument :

Iniection Date : $11 / 10 / 2013$ 7:28:50 AM

Last changed : | (inodified after loading) |
| :---: |
| (11/10/2013 $7: 51: 31 \mathrm{AM}$ by 2 H |

Last changed : $3 / 19 / 20142: 11: 40 \mathrm{pm}$ by

cis-(-)-3i

Totals : $\quad 7272.18805 \quad 68.40762$

$\begin{array}{ll}\text { Acc. } \\ \text { Acq. } \\ \text { Acqerator } \\ \text { Instrument } & \text { ZHOU } \\ \text { Instron }\end{array}$
(Vation

st changed $\quad \begin{gathered}\text { : } \\ \text { (modified after (} \\ \text { (10ading) }\end{gathered}$

$===$
Sorted By

igmal 1: vid 1 A , Wavelength $=254 \mathrm{~nm}$

cis- $(\pm)-3 \mathrm{j}$

$$
2921.67175 \quad 157.43539
$$

Data File C: $\backslash \mathrm{FC}-4$ PD\Yzoos354.D
Sample Name:
FC-6-44A

1 -
Iniection Date : $12 / 7 / 2013$ 12:41:56 PM

Last chanqed : $12 / 7 / 2013$ 10: $49: 03 \mathrm{AM}$ by 2 H

Last changed $\quad: \begin{gathered}3 / 19 / 2014 \\ \text { (modified after } 2: 47: 56 \text { PM by } \\ \text { (} 10 \text { adina }\end{gathered}$

Data File C: $:$ FC-2\YzN002989.D
Smple Name: FC-5-5F

$\begin{aligned} & \text { Sorted By } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Sicmal }}{:} \quad 1.0000$

ignal 1: VID 1 A , Wevel

$==================$
$\pi \pi$
π End of Report π

Data File C: \backslash FC-4 PDTYZ005330.D
Sample Name: FC-6-21D
$====================$
Acc.
Operator
AHOU
Cq. Instrument : Instrument
$\begin{aligned} & \text { cq. Instrument } \\ & \text { nijection Date }\end{aligned}: \begin{array}{ll}\text { Instrument } 1 \\ & 11 / 26 / 2013\end{array}$
Location : Vial 1

	:				
Multiplier:		:	1.0000		
Dilution:			1.0000		
Use Multiplier \& D	ilution	Factor with	IstDs		
Sigmal 1: VID 1 A , Wavelengthe254 nim ${ }^{\text {mim }}$					
Peak RetTime Type	width ${ }^{[\min 1}$	${ }_{\text {madT }}^{\text {Area }}$	$\underset{\text { Height }}{\substack{\text { Height } \\ \hline}}$	Area	cis-(-)-3k
		2613.06055	77.03931		
232.762 EB	0.9669	3463.76855	55.16659	56.9996	
Totals:		6076.82910	132.20589		


```
Laq. Instrument:Tnstrument 1 Location: Vial 1
Acq. Instrument: Instrument 1 
```



```
Last changed : %/1/2013 8:32:15 AM bv YZ 
M,
last changed : 10/9/2013 10:26:48 MMF by 
Sample Info : : (modififed after (10ading)
```


Area Percent Report

Si gmal 1: VWD 1 A , Wavelength $=254 \mathrm{~nm}$

Data File C: FC .-4 PDIYzoos227.D
Sample Name: $\mathrm{FC}-6-25 \mathrm{~B}$

(inodified after loading)

Data File C: \backslash FC-4 PDVYZ005287.D
Sample Name: FC-6-30E

$\begin{aligned} & \text { Sorted By } \\ & \text { Hultiplier: }\end{aligned} \quad: \quad \stackrel{\text { Simal }}{ } \quad 1.0000$

igmal 1: VID 1 A , Wavelength=254 nim

cis- $(\pm)-3 \mathrm{~m}$

$$
5818.57690 \quad 112.21551
$$

$=================$
$\star \pi *$ End of Report $\approx \pi$

Instrument ;

Sample Info : (modified after loading) $\quad 0 \mathrm{D}-\mathrm{H}, \mathrm{H} / \mathrm{i}-\mathrm{ProH}=70 / 30,0.70 \mathrm{~mL} / \mathrm{min}, 30$ oc, 254 mm

Data File C: $\backslash \mathrm{FC}-4$ PDVYZO05289.D
Sample Name: FC-6-30D2

$=================1$
Area Percent Report

Data File C: FC .-4 PDYYzoos223.D
Sample Name: $\mathrm{FC}-6-25 \mathrm{D} 2$

Acq. Instrument $:$ Instrument 1
In iection Date
I1/11//2013 $10: 50: 34 \mathrm{Am}$
Location: Vial 1

Last chanced : | $11 / 11 / 2013$ 9:56:12 AM by zHO |
| :--- |
| (modified after loading) |

Last changed : $3 / 19 / 20142: 41: 02 \mathrm{Mm} \mathrm{by}$

Data File C: $\backslash \mathrm{FC}-4$ PDVYZ005291.D
Sample Name: FC-6-25D1

Data File C: FC .-4 PDYYzoos292.D
Sample Name: $\mathrm{FC}-6-25 \mathrm{Dl}$

1 年

Location : Vial 1

Last changed : $3 / 19 / 20142: 42: 41 \mathrm{PM}$ bY


```
Acq. Instroment: Instrument 1, Location: Vial 
Mcq. Instrument: Instrument 1
Acq. Method \ C:\HPCHEMM \\SETHODS\SW. M
Last changed :% %/19/2012 12:48:57 MM by zX
Mn_(vis Hethod,
last changed : 10/9/2013 10:02:48 FM bY
```


Sorted By		
Hultiplier:	$:$	Sicmal
1.0000		

Mu1tiplier: $\quad \vdots$
Dilution:
Dse Multiplier $\&$ Dilution Factor with 1.0000
ISTD
igmal 1: VWD 1 A , Wavelength $=254 \mathrm{nim}$

cis- \pm)-9a

Totals : 7284.55908 $\quad 434.70078$

Data File C: FC -4 PD\Yzoos357.D
Sample Name: FC-6-44C1

Acq. Instrument Thent 1 Tion

Last changed : 3/19/2014 2:59:08 PM by

Data File C:\FC-3 CPAYZzooz493.D
Sample Name: $\mathrm{FC}-2-76 \mathrm{E} 2$

```
Mcq. Operator : : zx 
Mcqection Date : 6/19/2012 9:47:14 MM
4, Method : C:\HPCHEM\\MIETHOD S\SLIM
Last changed : 6/19/2012 9:44:21 AM bV ZX
M,
last changed \ 3/18/2014 3:00:15 MM bY
Sample Info : (\begin{array}{c}{\mathrm{ (modified after loading)}}\\{\textrm{AD}=\textrm{H},\textrm{H}/\textrm{i}-\textrm{PrOH}=75/25,0.8 mL/min, 30 oC, 254 nm}\end{array})
```


$\begin{array}{llll}\text { Sorted By } \\ \text { Hultiplier: }\end{array} \quad: \quad \stackrel{\text { Sicmal }}{ } \quad 1.0000$
\vdots
\vdots
Multiplier:
Dilution:
Jse Multiplier $\&$ Dilution Factor with 1.0000
ISTD
i gmal 1: VWD 1 A , Wavelength= 254 nim

Totals : $\quad 1701.23431 \quad 101.7158$

Data File C: FC -4 PD\Yzoos358.D
Sample Name: $\mathrm{FC}-6-44 \mathrm{Cz}$

Acq. Instrument Instument 1 Vatian

Last changed : 3/19/2014 3:00:28 PM by
Sample Info : (modified after loading) $\begin{aligned} & \mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{i}-\mathrm{PrOH}=75 / 25,0.8 \mathrm{~mL} / \mathrm{min}, 300 \mathrm{C}, 254 \mathrm{~mm}\end{aligned}$

Data File C: \backslash FC-4 PD PDZ005355.D
Sample Name: FC-6-44E

$\begin{aligned} & \text { Sorted By } \\ & \text { Multiplier: }\end{aligned} \quad: \quad \stackrel{\text { Sigmal }}{:} \quad 1.0000$
$\begin{array}{lcc}\text { Multiplier: } & \vdots & 1.0000 \\ \text { Dilution: } \\ \text { Dise Multiplier } & \text { \& Dilution Factor with ISTD }\end{array}$
Sigmal 1: vid 1 A , wavelength=254 mil

$(\pm)-10$

> Totals :
> $521.50705 \quad 31.4669$

Data File C: FC -4 PD\Yzoos356.D
Sample Name: $\mathrm{FC}-6-44 \mathrm{D}$

Location : Vial 1

Last chanqed : $\begin{gathered}12 / 7 / 201312: 58: 33 \text { PM by } \\ \text { (modified after } \\ \text { loading) }\end{gathered}$

Last changed $\quad: \begin{gathered}3 / 19 / 2014 \\ \text { (modified after } 2: 52: 34 \mathrm{pu} \text { by } \\ \text { (oading }\end{gathered}$

[^0]: 1 G. A. Molander and C.-S. Yun, Tetrahedron 2002, 58, 1465.
 2 X.-F. Cai, M.-W. Chen, Z.-S. Ye, R.-N. Guo, L. Shi, Y. Li and Y.-G. Zhou, Chem. Asian J. 2013, 8, 1381.
 3 X.-F. Cai, R.-N. Guo, M.-W. Chen, L. Shi and Y.-G. Zhou, Chem. Eur. J. 2014, DOI:10.1002/chem. 201402592.
 4 M.-C. Yan, Z. Tu, C. Lin, S. Ko, J. Hsu and C.-F. Yao, J. Org. Chem. 2004, 69, 1565.

[^1]: 5 Z.-P. Chen, Z.-S. Ye, M.-W. Chen, Y.-G. Zhou, Synthesis 2013, 45, 3239.

