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Experimental Section 

Materials and methods: All materials were purchased from Sigma Aldrich and abcr and were 

used without further purification. NMR measurements were recorded on a Bruker Avance II-300 

MHz instrument. All samples were dissolved in deuterated solvents and Chemical shifts (δ) are 

given in parts per million (ppm) using solvent signals as the reference (CDCl3 
1H: δ = 7.24 ppm; 

13C: δ = 77.0 ppm) related to external tetramethylsilane (δ = 0 ppm). Coupling constants (J) are 

reported in Hertz (Hz) and splitting patterns are designated as s (singulet), d (doublet), t (triplet), 

q (quadruplet), quint (quintuplet), spt (septet). m (multiplet), dd (doublet of doublet). High 

resolution mass spectrometry (HRMS) analyses were carried out on a Water-Micromass Q-TOF 

hybrid mass spectrometer equipped with an orthogonal electrospray source (z-sprey) by 

Muhammad Zubair at Trinity College in Dublin. This was operated in an electrospray positive 

ion mode (ESI+) or electrospray negative ion mode (ESI-). All infrared spectra were recorded 

(4000–400 cm-1) on a Perkin-Elmer Fourier-Transform Infrared (FTIR) spectrophotometer as 

KBr pellets. Elemental analyses (C, H, N and S) were carried out with an Elementar  vario micro 

elemental analyzer. UV-Vis measurements were carried out on a Shimadzu 3600 instrument with 

the concentration of 5x10-5 M and 2x10-3 M in MeOH as solvent for the ligand and KOH 

respectively. 

 

Synthesis of for O-isopropyl S-3-oxobutan-2-yl dithiocarbonate (1)1: O-isopropylxanthate 

(3,48 g, 20 mmol) dissolved in 100 mL dry acetone was slowly added to a solution of 3-

bromobutane-2-one (2 mL, 2,88 g, 19,1 mmol) in 40 mL dry acetone. The mixture was stirred for 

1 h at r.t. and then solvent was removed in vacuum. The residue was dissolved in water and was 

extracted two times with Et2O. The organic phases were combined, dried over Na2SO4 and the 

solvent was evaporated on a rotary evaporator at 40°C yielding a yellow liquid consisting of O-

isopropyl S-3-oxobutan-2-yl carbonodithioate. Yield: 3.86g (94%). 1H NMR (300 MHz, CDCl3) 

δ (ppm) = 1,4 (d, J=6,2 Hz, 6H), 1,47 (d, J=7,2 Hz, 3H), 2,31 (s, 3H), 4,38 (q, J=7,2 Hz, 1H), 

5,73 (spt, J=6,2 Hz, 1H). 

Synthesis of 4, 5-dimethyl-1,3-dithiol-2-ones (2)2: Compound 1 (3.86 g, 18.7 mmol) was 

slowly added to a soln of concd H2SO4 (100 mL) that had been pre-cooled in an ice–salt bath. 

The resulting soln was stirred for 30 min, the ice–salt bath was removed, and the solution was 

stirred for a further 90 min. This soln was cooled in an ice bath and slowly poured into ice-cooled 



H2O (400 mL). After stirring for 15 min, the solution was extracted with CH2Cl2 (3 × 50 mL), 

dried over Na2SO4 and concentrated on a rotary evaporator to produce crude, dark red oil that is 

purified by short-path vacuum distillation at 65-70 °C and 0,56 mbar pressure to afford 2.32 g 

(85%) of 4, 5-dimethyl-1,3-dithiol-2-ones as very pale yellow oil. The freshly prepared pale 

yellow oil was dissolved in warm hexane followed be cooling at -20 °C to get  white colored 

single crystal and the structure was confirmed by single crystal X-ray crystallography according 

to literature2b. 1H NMR (300 MHz, CDCl3) δ (ppm) = 2.15 (s, 4H). 13C NMR (300 MHz, CDCl3) 

δ (ppm): 13.60, 122.71, 191.91 ppm. IR (KBr): 3447, 3245, 2945, 2911, 2847, 1754, 1657, 1602, 

1446, 1391, 1187, 1098, 948, 883, 753 cm–1. EI-MS: m/z 146.7. Elemental analysis for C5H6OS2: 

C, 41.07; H, 4.14; S, 43.86. Found: C, 40.46; H, 4.03; S, 44.41.  

Synthesis of 2, 3-dimethyl-1,4 dithiolate (3): 0.0584 g (0.4 mmol) of 4, 5-dimethyl-1,3-dithiol-

2-ones and 0.056 g (2.5 equ., 1 mmol) of potassium hydroxide was taken in a Schlenk flask under 

nitrogen atmosphere. 3 mL deuterated methanol was added to the flask and the mixture was 

stirred for 2h. The solution was turned to light yellow color indicating the deprotection of the 

ring. Then 1 mL of the above solution was taken for NMR measurement. 1H NMR (300 MHz, 

CDCl3) δ (ppm): 2.17(s, 4H).13C NMR (300 MHz, CDCl3) δ (ppm): 161.3, 158.0, 132.9, 124.3 

and 13.6. IR (KBr): 3404, 3228, 2965, 2922, 2866, 1649, 1463, 1375, 1310, 1191, 1085, 913, 833 

cm–1.  

Synthesis of 4, 5-dimethyl-1,3-dithiol-2-ones (2'): To the remaining 2mL solution potassium 

dithiolate salt (3) conc. HCl (56 μL, 2.5 equ., 1mmol ) was added and the mixture was stirred for 

another 1h. Then the mixture was filtered to remove the white precipitate of KCl and the filtrate 

was concentrated and submitted for 1H, 13C NMR. 1H NMR (300 MHz, CDCl3) δ (ppm): 2.15(s, 

4H).13C NMR (300 MHz, CDCl3) δ (ppm): 192.1, 122.8 and 13.7. IR (KBr): 3440, 3255, 2978, 

2915, 2856, 1750, 1653, 1603, 1438, 1369, 1191, 1097, 885, 750 cm–1. 
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Figure S1. 1H NMR spectra of O-isopropyl S-3-oxobutan-2-yl dithiocarbonate (1). 
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Figure S2. 1H NMR spectra of 4, 5-dimethyl-1,3-dithiol-2-ones (2). 
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Figure S3. 13C NMR spectra of 4, 5-dimethyl-1, 3-dithiol-2-ones (2). 
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Figure S4. 1H NMR spectra of 2, 3-dimethyl-1, 4 dithiolate (3). 
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Figure S5. 13C NMR spectra of 2, 3-dimethyl-1, 4 dithiolate (3). 
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Figure S6. 1H NMR spectra of 4, 5-dimethyl-1,3-dithiol-2-ones (2'). 
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Computational Methods. Gaussian09 suite of program (RevB.01)6  has been used to carry out 

all the quantum chemistry calculations presented here. B3LYP/6-311+G(p,d)7,8 has been found to 

be a suitable method and basis set for a variety of reactions. Optimizations were carried out for 

the model systems in the gas phase (Convergence criteria as build in: Maximum Force < 

0.000450, RMS Force < 0.000300, Maximum Displacement < 0.001800, RMS Displacement < 

0.001200). In addition, normal mode vibrational frequency analyses have been performed to 

verify the nature of all the stationary points as either the stable minima have all positive 

vibrational frequencies and that the transition states have only one imaginary frequency and to 

compute free energies. Transition states (TS) have been located using the QST25 routines as 

implemented in the Gaussian09 program. 

 

Geometries: 

Cartesian coordinate of OH- 
8           0       -0.925723    0.298141   -0.896196 
1           0       -1.012563    0.869888   -0.122255 
Low frequency:   3754.8805 (cm**-1) 

G298 HF= -75.835032 Hartree 

G298 HF= -75.966874 Hartree (Polarizable Continuum Model (PCM), Solvent: Water) 

Cartesian coordinate of H2O Free Energy in water 
8           0        0.064717    0.000000    0.112093 
1           0       -0.303912    0.000000    1.000735 
1           0        1.018618    0.000000    0.237172 
G298 HF= -76.454823 Hartree 
Low frequencies:   1602.8715 3816.9451 3922.2034 (cm**-1) 
 
Cartesian coordinate of H3O+ Free Energy in water 
8           0        0.000000    0.000000    0.450023 
1           0        0.000000    0.000000    1.425463 
1           0        0.844773    0.000000   -0.037758 
1           0       -0.844773    0.000000   -0.037758 
G298 HF= -76.715101 Hartree 
Low frequencies:   37.8587 1617.4869 1617.5669 (cm**-1) 
 
Cartesian coordinate of 1,3-Dimethyl-1,3-dithio-2-one 
6           0       -0.961166    0.673317    0.000019 
6           0       -0.961503   -0.673140   -0.000172 
6           0       -2.152553    1.590516   -0.000027 
6           0       -2.152939   -1.590370   -0.000030 
6           0        1.632219   -0.000061   -0.000069 



8           0        2.830403   -0.000404   -0.000176 
16         0        0.615897    1.483635    0.000076 
16         0        0.615521   -1.483604    0.000137 
1           0       -2.148323    2.238856   -0.881651 
1           0       -3.086875   -1.029960    0.000721 
1           0       -2.149926    2.236907    0.883109 
1           0       -3.086528    1.030272   -0.001379 
1           0       -2.148726   -2.238178    0.881942 
1           0       -2.149891   -2.236731   -0.883072 
G298 HF=-1065.816229 Hartree 
Low frequencies:   89.2998  107.2949  110.8486  (cm**-1) 
 
Cartesian coordinate of 1,3-Dimethyl-1,3-dithio-dianion 
6           0       -0.074801    2.524279   -0.803641 
6           0        1.193222    2.646027   -0.293262 
6           0       -0.880642    3.809402   -1.024321 
6           0        1.695814    4.055739    0.038392 
16         0       -0.956877    1.040047   -1.249183 
16         0        2.386686    1.363750    0.038463 
1           0       -1.186456    4.284773   -0.073299 
1           0        0.985763    4.631347    0.657506 
1           0       -1.789388    3.574175   -1.578838 
1           0       -0.321945    4.577087   -1.587604 
1           0        1.879238    4.663273   -0.868108 
1           0        2.639132    3.983447    0.580501 
G298 HF= -952.395941 Hartree 
Low frequencies:   52.3314  127.8723  133.0210  (cm**-1) 
 
 
Cartesian coordinate of TS1 



















G298 HF= -1141.654829 Hartree 
Low frequencies:   -120.6505  61.5176  78.0551 (cm**-1) 
 

Cartesian coordinate of TS2 


















G298 HF= -1217.457209 Hartree 
Low frequencies:   -52.4654   53.0381  66.3518 (cm**-1) 
 

Cartesian coordinate of Intermediate
















G298 HF= -1141.718353 Hartree 



Low frequencies:   31.8321   59.1539   78.5666 (cm**-1) 
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