Electronic Supplementary Information

The ring opening reaction of 1, 3-dithiol-2-one systems is fully reversible

Ashta Chandra Ghosh, ${ }^{a}$ Jakob Klaus Reinhardt, ${ }^{a}$ Markus Karl Kindermann, ${ }^{a}$ Carola Schulzke* ${ }^{\boldsymbol{a}}$
${ }^{a}$ Institut fur Biochemie, Ernst-Moritz-Arndt-Universitat Greifswald, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany. Fax: +49 3834 864377;
Tel: +49 3834 864321; E-mail: carola.schulzke@uni-greifswald.de

Table of Contents

1. General experimental details
2. Synthesis and characterization data of compounds $\mathbf{1 , 2 , 2}$ and $\mathbf{3}$
3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of compounds 1, 2, 2' and $\mathbf{3}$ ($\mathbf{S 1}$ to $\mathbf{S 7}$)
4. Infrared spectra of compounds 2, 2' and $\mathbf{3}$ ($\mathbf{S 8}$ to $\mathbf{S 1 0}$)
5. UV-Vis spectra of compounds $\mathbf{2 , 3}$ and $\mathbf{2}^{\prime}$
6. DFT calculation for proposed mechanism
7. References

Experimental Section

Materials and methods: All materials were purchased from Sigma Aldrich and abcr and were used without further purification. NMR measurements were recorded on a Bruker Avance II-300 MHz instrument. All samples were dissolved in deuterated solvents and Chemical shifts (δ) are given in parts per million (ppm) using solvent signals as the reference ($\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}: \delta=7.24 \mathrm{ppm}$; ${ }^{13} \mathrm{C}: \delta=77.0 \mathrm{ppm}$) related to external tetramethylsilane ($\delta=0 \mathrm{ppm}$). Coupling constants (J) are reported in Hertz (Hz) and splitting patterns are designated as s (singulet), d (doublet), t (triplet), q (quadruplet), quint (quintuplet), spt (septet). m (multiplet), dd (doublet of doublet). High resolution mass spectrometry (HRMS) analyses were carried out on a Water-Micromass Q-TOF hybrid mass spectrometer equipped with an orthogonal electrospray source (z-sprey) by Muhammad Zubair at Trinity College in Dublin. This was operated in an electrospray positive ion mode (ESI ${ }^{+}$) or electrospray negative ion mode (ESI $)$. All infrared spectra were recorded (4000-400 cm^{-1}) on a Perkin-Elmer Fourier-Transform Infrared (FTIR) spectrophotometer as KBr pellets. Elemental analyses (C, H, N and S) were carried out with an Elementar vario micro elemental analyzer. UV-Vis measurements were carried out on a Shimadzu 3600 instrument with the concentration of $5 \times 10^{-5} \mathrm{M}$ and $2 \times 10^{-3} \mathrm{M}$ in MeOH as solvent for the ligand and KOH respectively.

Synthesis of for O-isopropyl S-3-oxobutan-2-yl dithiocarbonate (1) ${ }^{\mathbf{1}}$: O-isopropylxanthate ($3,48 \mathrm{~g}, 20 \mathrm{mmol}$) dissolved in 100 mL dry acetone was slowly added to a solution of 3-bromobutane-2-one ($2 \mathrm{~mL}, 2,88 \mathrm{~g}, 19,1 \mathrm{mmol}$) in 40 mL dry acetone. The mixture was stirred for 1 h at r.t. and then solvent was removed in vacuum. The residue was dissolved in water and was extracted two times with $\mathrm{Et}_{2} \mathrm{O}$. The organic phases were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated on a rotary evaporator at $40^{\circ} \mathrm{C}$ yielding a yellow liquid consisting of O isopropyl S-3-oxobutan-2-yl carbonodithioate. Yield: $3.86 \mathrm{~g}(94 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=1,4(\mathrm{~d}, \mathrm{~J}=6,2 \mathrm{~Hz}, 6 \mathrm{H}), 1,47(\mathrm{~d}, \mathrm{~J}=7,2 \mathrm{~Hz}, 3 \mathrm{H}), 2,31(\mathrm{~s}, 3 \mathrm{H}), 4,38(\mathrm{q}, \mathrm{J}=7,2 \mathrm{~Hz}, 1 \mathrm{H})$, 5,73 (spt, J=6,2 Hz, 1H).
Synthesis of 4, 5-dimethyl-1,3-dithiol-2-ones (2) ${ }^{\mathbf{2}}$: Compound $\mathbf{1}(3.86 \mathrm{~g}, 18.7 \mathrm{mmol})$ was slowly added to a soln of concd $\mathrm{H}_{2} \mathrm{SO}_{4}(100 \mathrm{~mL})$ that had been pre-cooled in an ice-salt bath. The resulting soln was stirred for 30 min , the ice-salt bath was removed, and the solution was stirred for a further 90 min . This soln was cooled in an ice bath and slowly poured into ice-cooled
$\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$. After stirring for 15 min , the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated on a rotary evaporator to produce crude, dark red oil that is purified by short-path vacuum distillation at $65-70{ }^{\circ} \mathrm{C}$ and 0,56 mbar pressure to afford 2.32 g (85%) of 4, 5-dimethyl-1,3-dithiol-2-ones as very pale yellow oil. The freshly prepared pale yellow oil was dissolved in warm hexane followed be cooling at $-20^{\circ} \mathrm{C}$ to get white colored single crystal and the structure was confirmed by single crystal X-ray crystallography according to literature ${ }^{2 \mathrm{~b}} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=2.15(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 13.60,122.71,191.91 \mathrm{ppm}$. IR (KBr): 3447, 3245, 2945, 2911, 2847, 1754, 1657, 1602, 1446, 1391, 1187, 1098, 948, 883, $753 \mathrm{~cm}^{-1}$. EI-MS: m / z 146.7. Elemental analysis for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{OS}_{2}$: C, 41.07; H, 4.14; S, 43.86. Found: C, 40.46; H, 4.03; S, 44.41.
Synthesis of 2, 3-dimethyl-1,4 dithiolate (3): $0.0584 \mathrm{~g}(0.4 \mathrm{mmol})$ of 4, 5-dimethyl-1,3-dithiol-2-ones and 0.056 g (2.5 equ., 1 mmol) of potassium hydroxide was taken in a Schlenk flask under nitrogen atmosphere. 3 mL deuterated methanol was added to the flask and the mixture was stirred for 2 h . The solution was turned to light yellow color indicating the deprotection of the ring. Then 1 mL of the above solution was taken for NMR measurement. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta(\mathrm{ppm}): 2.17(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 161.3,158.0,132.9,124.3$ and 13.6. IR (KBr): 3404, 3228, 2965, 2922, 2866, 1649, 1463, 1375, 1310, 1191, 1085, 913, 833 cm^{-1}.

Synthesis of 4, 5-dimethyl-1,3-dithiol-2-ones ($\mathbf{2}^{\prime}$): To the remaining 2 mL solution potassium dithiolate salt (3) conc. $\mathrm{HCl}(56 \mu \mathrm{~L}, 2.5$ equ., 1 mmol) was added and the mixture was stirred for another 1 h . Then the mixture was filtered to remove the white precipitate of KCl and the filtrate was concentrated and submitted for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 2.15(\mathrm{~s}$, 4 H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 192.1,122.8$ and 13.7. IR (KBr): 3440, 3255, 2978, $2915,2856,1750,1653,1603,1438,1369,1191,1097,885,750 \mathrm{~cm}^{-1}$.

Figure S1. ${ }^{1}$ H NMR spectra of O-isopropyl S-3-oxobutan-2-yl dithiocarbonate (1).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of 4, 5-dimethyl-1,3-dithiol-2-ones (2).

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectra of 4, 5-dimethyl-1, 3-dithiol-2-ones (2).

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectra of 2, 3-dimethyl-1, 4 dithiolate (3).

$$
\overbrace{S K}^{S K}
$$

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectra of 2, 3-dimethyl-1, 4 dithiolate (3).

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of 4, 5-dimethyl-1,3-dithiol-2-ones (2').

Figure S7. ${ }^{13}$ C NMR spectra of 4, 5-dimethyl-1,3-dithiol-2-ones (2').

Figure S8. IR spectrum of $\mathbf{2}$ recorded in KBr Pellets.

Figure S9. IR spectrum of $\mathbf{3}$ recorded in KBr Pellets.

Figure S10. IR spectrum of 2' recorded in KBr Pellets.

Figure S11. Absorbance spectra of 4, 5-dimethyl-1,3-dithiol-2-ones (2) (black); 2, 3-dimethyl-1, 4 dithiolate (3) (red) and 4, 5-dimethyl-1,3-dithiol-2-ones (2') (blue) in $\mathrm{CH}_{3} \mathrm{OH}$ as solvent.

DFT calculation for the proposed mechanism: For a better understanding of the proposed mechanism of ring opening-closing reversibility in 1,3-dithiol-2-one systems, we carried out ab initio calculations.
The calculations were done with the B3LYP/6-311+G** basis set to properly treat the sulfur dorbitals. The geometries of reactants and products after complete addition of base have been optimized and the full optimization was verified with a frequency calculation. Since we were concerned with the understanding of the mechanism only, no additional $\mathrm{H}_{2} \mathrm{O}$ molecules were included in the calculations and no solvation models (eg, Tomasi's Polarized Continuum Model $(\mathrm{PCM})^{3}$ are considered since experimental studies were partly carried out in different solvents.
An attempt was made to elucidate whether it is a concerted mechanism or a multi-step process taking place. The search for a transition state (TS) that belongs to a concerted mechanism (simultaneous addition of two OH^{-}ions to the 4,5-dimethyl-1,3-dithiol-2-one and formation of 1,3-dithio-dianion plus free carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$, or the reversible attachment of $\mathrm{H}_{2} \mathrm{CO}_{3}$ to the 2,3-dimethyl-1,4-dithiobut-2-en-dianion with simultaneous elimination of two OH^{-}ions and formation of a 4,5-dimethyl-1,3-dithiol-2-one in the back reaction) gives no meaningful result. Therefore, a step-wise mechanism was adopted as an alternative (as discussed for the normal ketal formation in dithiols ${ }^{4}$).

We find a stable intermediate (described as 2,3-dimethyl-1,4-dithio-1-carboxylate anion, Figure S12), in which a carboxyl group is present. The sulfur atom, at which the carboxylate group is not attached, has a high negative charge (Mulliken charge: -1.117) and is able to form a bond to the carboxylate carbon (cyclization).

Figure S12. 2,3-dimethyl-1,4-dithio-1-carboxylate anion reaction intermediate.
The transition states of the reaction could be determined with the QST2 routine ${ }^{5}$ of the program in both directions: from the 2,3-dimethyl-1,4-dithio-1-carboxylate anion to the reactant (1,3-dithiol-2-one) as well as to the products (dithioanion and $\mathrm{H}_{2} \mathrm{CO}_{3}$). Transition states TS 1 and TS 2 (Figure S13) were confirmed by exactly one negative frequency each.

Figure S13. Proposed mechanism by DFT calculations (level of theory: B3LYP//6-311+G**) for the reformation of the 1,3 -dithiol-2-ones ring.

For the energy profile of the reaction, the zero-point corrected free energies of the reactants involved were determined and compared ($\Delta \mathrm{G}^{298}: 298 \mathrm{~K}, 1 \mathrm{~atm}$, etc.). A rational energy profile is
obtained if one takes into account that the strongly basic solutions are back-titrated with acid to neutrality.

Figure S14. Calculated energy levels for proposed mechanism (level of theory: B3LYP//6$\left.311+G^{* *}\right)$

In course of the addition of carbonic acid to the basic solution of the dianion an OH^{-}ion is eliminated. This forms during further addition of acid $\left(\mathrm{H}^{+}\right)$water - i.e. an exceptionally stable molecule. Since an H^{+}ion is difficult to depict in ab initio calculation (no electron, only one proton) $\mathrm{H}_{3} \mathrm{O}^{+}$was used instead $\left(\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}->2 \mathrm{H}_{2} \mathrm{O}\right)$. The same consideration applies to the formation of 1,3-dithiol-2-ones from the dithiocarboxylate anion. The titration of a solution containing $\mathrm{H}_{2} \mathrm{CO}_{3}$ and the dianion with acid leads to 1,3-dithiol-2-one and four water molecules and an energy gain of $1950.55 \mathrm{KJ} / \mathrm{mol}$.

Overall, one can assume that corresponding to our ab initio calculations at first the carbonic acid is bound to the sulfur atom of the dianion with the loss of an OH^{-}anion (and subsequent formation of $\mathrm{H}_{2} \mathrm{O}$). During the approach of the second negatively charged sulfur anion to the electropositive carboxylate carbon atom a further bond is formed (ring closure to the five membered ring), with elimination of the second OH^{-}ion (and the formation of additional $\mathrm{H}_{2} \mathrm{O}$).

Computational Methods. Gaussian09 suite of program (RevB.01) ${ }^{6}$ has been used to carry out all the quantum chemistry calculations presented here. B3LYP/6-311+G(p,d) ${ }^{7,8}$ has been found to be a suitable method and basis set for a variety of reactions. Optimizations were carried out for the model systems in the gas phase (Convergence criteria as build in: Maximum Force $<$ 0.000450 , RMS Force <0.000300, Maximum Displacement <0.001800, RMS Displacement $<$ 0.001200). In addition, normal mode vibrational frequency analyses have been performed to verify the nature of all the stationary points as either the stable minima have all positive vibrational frequencies and that the transition states have only one imaginary frequency and to compute free energies. Transition states (TS) have been located using the QST2 ${ }^{5}$ routines as implemented in the Gaussian09 program.

Geometries:

Cartesian coordinate of OH^{-}

8	0	-0.925723	0.298141	-0.896196
1	0	-1.012563	0.869888	-0.122255
Low frequency: $3754.8805\left(\mathrm{~cm}^{* *}\right.$-1)				
$\Delta \mathrm{G}^{298} \mathrm{HF}=-75.835032$ Hartree				
$\Delta \mathrm{G}^{298} \mathrm{HF}$				

Cartesian coordinate of $\mathbf{H}_{2} \mathrm{O}$ Free Energy in water

8	0	0.064717	0.000000	0.112093
1	0	-0.303912	0.000000	1.000735
1	0	1.018618	0.000000	0.237172

$\Delta \mathrm{G}^{298} \mathrm{HF}=-76.454823$ Hartree
Low frequencies: $1602.87153816 .94513922 .2034\left(\mathrm{~cm}^{* *}\right.$-1)

Cartesian coordinate of $\mathrm{H}_{3} \mathbf{O}^{+}$Free Energy in water

$8 \quad 0 \quad 0.000000 \quad 0.000000 \quad 0.450023$
$1 \quad 0 \quad 0.000000 \quad 0.000000 \quad 1.425463$
$1 \quad 0 \quad 0.8447730 .000000-0.037758$
$1 \quad 0 \quad-0.844773 \quad 0.000000-0.037758$
$\Delta \mathrm{G}^{298} \mathrm{HF}=-76.715101$ Hartree
Low frequencies: $37.85871617 .48691617 .5669\left(\mathrm{~cm}^{* *}-1\right)$

Cartesian coordinate of 1,3-Dimethyl-1,3-dithio-2-one

$\begin{array}{lllll}6 & 0 & -0.961166 & 0.673317 & 0.000019\end{array}$
$6 \quad 0 \quad-0.961503-0.673140-0.000172$
$6 \quad 0 \quad-2.152553 \quad 1.590516-0.000027$
$6 \quad 0 \quad-2.152939-1.590370-0.000030$
$\begin{array}{llllll}6 & 0 & 1.632219 & -0.000061 & -0.000069\end{array}$

8	0	2.830403	-0.000404	-0.000176
16	0	0.615897	1.483635	0.000076
16	0	0.615521	-1.483604	0.000137
1	0	-2.148323	2.238856	-0.881651
1	0	-3.086875	-1.029960	0.000721
1	0	-2.149926	2.236907	0.883109
1	0	-3.086528	1.030272	-0.001379
1	0	-2.148726	-2.238178	0.881942
1	0	-2.149891	-2.236731	-0.883072
$\Delta \mathrm{G}^{298} \mathrm{HF}=-1065.816229$	Hartree			

Low frequencies: $89.2998107 .2949110 .8486\left(\mathrm{~cm}^{* *}\right.$-1)
Cartesian coordinate of 1,3-Dimethyl-1,3-dithio-dianion

6	0	-0.074801	2.524279	-0.803641
6	0	1.193222	2.646027	-0.293262
6	0	-0.880642	3.809402	-1.024321
6	0	1.695814	4.055739	0.038392
16	0	-0.956877	1.040047	-1.249183
16	0	2.386686	1.363750	0.038463
1	0	-1.186456	4.284773	-0.073299
1	0	0.985763	4.631347	0.657506
1	0	-1.789388	3.574175	-1.578838
1	0	-0.321945	4.577087	-1.587604
1	0	1.879238	4.663273	-0.868108
1	0	2.639132	3.983447	0.580501

$\Delta \mathrm{G}^{298} \mathrm{HF}=-952.395941$ Hartree
Low frequencies: $52.3314127 .8723133 .0210\left(\mathrm{~cm}^{* *}-1\right)$

Cartesian coordinate of TS1

6	0	0.959289	0.672947	-0.427511
6	0	0.959079	-0.672328	-0.428205
6	0	2.123752	-1.548217	-0.067653
6	0	2.124263	1.548231	-0.066512
16	0	-0.612248	-1.473669	-0.473099
16	0	-0.611893	1.474695	-0.471209
6	0	-1.583472	0.000292	-0.084790
8	0	-2.771349	0.000365	0.106005
8	0	0.044652	-0.002769	2.194155
1	0	3.077675	1.072958	-0.307390
1	0	2.081259	1.728262	1.014172
1	0	2.088378	2.510988	-0.586565
1	0	3.077334	-1.073879	-0.309740
1	0	2.086609	-2.511301	-0.586982
1	0	2.081365	-1.727444	1.013210
1	0	-0.590265	-0.002302	2.918962

$\Delta \mathrm{G}^{298} \mathrm{HF}=-1141.654829$ Hartree
Low frequencies: -120.6505 $61.517678 .0551\left(\mathrm{~cm}^{* *}-1\right)$

Cartesian coordinate of TS2

6	0	0.849950	0.872021	-0.295281
6	0	1.816855	-0.076516	-0.141231
6	0	1.068644	2.361874	-0.109171
6	0	3.266501	0.321433	0.129878
6	0	-1.539568	0.075859	0.861767
16	0	-0.866619	0.493609	-0.811272
16	0	1.576525	-1.829093	-0.158605
1	0	0.374465	2.748494	0.647534
1	0	3.498362	0.237860	1.200020
1	0	0.849172	2.917938	-1.032034
1	0	2.083535	2.622602	0.209504
1	0	3.514444	1.337814	-0.195754
1	0	3.925363	-0.379281	-0.389207
8	0	-3.546153	-0.554169	-1.212159
1	0	-3.085913	-1.314205	-1.589772
8	0	-2.205366	0.824132	1.529704
8	0	-1.108080	-1.100445	1.339230
1	0	-0.415433	-1.487663	0.737771

$\Delta G^{298} H F=-1217.457209$ Hartree
Low frequencies: -52.4654 $53.038166 .3518\left(\mathrm{~cm}^{* *}-1\right)$

Cartesian coordinate of Intermediate

6	0	-0.412628	0.668489	-0.669002
6	0	-0.878972	1.603989	0.218533
6	0	-1.250781	-0.185740	-1.588948
6	0	-2.396009	1.746259	0.361916
6	0	1.718614	-1.122993	-0.692152
16	0	1.349344	0.581081	-0.948720
16	0	0.076584	2.689944	1.182871
1	0	-1.048983	-1.253891	-1.448978
1	0	-2.883000	0.784475	0.562726
1	0	-1.052218	0.047113	-2.645453
1	0	-2.316483	-0.026228	-1.415776
1	0	-2.845044	2.160586	-0.550069
1	0	-2.613429	2.424916	1.184465
8	0	3.036717	-1.359982	-1.026629
1	0	3.177502	-2.295372	-0.823612
8	0	1.009030	-2.020700	-0.294548
$\Delta \mathrm{G}^{298}$	$\mathrm{HF}=-1141.718353$	Hartree		

Notes and references

1. N. Crivillers, N. Oxtoby, M. Mas-Torrent, J. Veciana and C. Rovira, Synthesis, 2007, 2007, 1621-1623.
2. (a) P. Chandrasekaran and J. P. Donahue, Org. Synth., 2009, 86, 333-343; (b) P. Chandrasekaran, K. Arumugam, U. Jayarathne, L. M. Pérez, J. T. Mague and J. P. Donahue, Inorg. Chem., 2009, 48, 2103-2113.
3. (a) Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032-3041.(b) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J.Chem. Phys. Lett. 1996, 255, 327-335. (c) Barone, V.; Cossi, M.; Tomasi, J. J.Comput.Chem. 1998, 19, 404-417. (d) Tomasi, J.; Mennucci, B.; and Cammi, R.; (2005). Chem. Rev. 105(8): 2999-3094.
4. Lowry, T.H.; Richardson K.S. , Mechanismen und Theorie in der Organischen Chemie, Verlag Chemie, 1980, 451.
5. (a) C. Peng and H. B. Schlegel, Israel J. of Chem., 33, 449 (1993). (b) C. Peng, P. Y. Ayala, H. B. Schlegel and M. J. Frisch, J. Comp. Chem., 17, 49 (1996).
6. Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
7. McLean AD, Chandler GS (1980) J Chem Phys 72:5639-5648.
8. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650-654.
