Electronic Supplementary Information

Mechanochemical C–H Bond Activation: Rapid and Regioselective Double Cyclopalladation Monitored by *in situ* Raman Spectroscopy

Marina Juribašić, Krunoslav Užarević, Davor Gracin and Manda Ćurić*

Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia

Table of Contents

	Experimental details	S2
Figure S1, Table S1	IR spectroscopy	S3
Table S2	Crystallographic data, collection and structure refinement details	S4
Figure S2-S3	X-ray structure of monocyclopalladated complex 1A	S5
Figure S4-S5	X-ray structure of dicyclopalladated complex 1B	S7
Table S3	Selected bond lengths for 1A and 1B	S9
Scheme S1, Table S4	¹ H NMR assignation for 1 , 1A and 1B	S10
Figure S6	Raman and luminescence spectra of 1, 1A and 1B	S11
	Computational details	S12
Scheme S2, Table S5	Selected experimental and calculated bond lengths for 1, 1A and 1B	S16
	References	S17

EXPERIMENTAL DETAILS

General Methods. All chemicals were used as supplied. The ¹H NMR spectra were recorded at 25 °C in chloroform-*d* (CDCl₃) with spectrometers operating at 300 or 600 MHz. The atom numbering of azobenzenes used in the assignment of ¹H NMR resonances is given in Scheme S1. IR spectra were recorded in KBr pastilles and the selected data are collected in Table S1.

Crystal Structure Determination. Single crystals of **1A** and **1B** were grown from DMF and CH₂Cl₂/THF solutions, respectively. The X-ray measurements were performed on an Oxford Diffraction Xcalibur Nova R (microfocus Cu tube) and Oxford Xcalibur Sapphire3 (Mo tube) at room temperature, respectively. The program package CrysAlisPRO¹ was used for data reduction. The structures were solved using SHELXS97² and refined with SHELXL97.³ Molecular geometry calculations were performed by PLATON⁴ and molecular graphics were prepared using ORTEP-3⁵ and CCDC-Mercury.⁶ Crystallographic and refinement data for the structures reported in this paper are shown in Table S2. CCDC 1005635-1005636 contain the supplementary crystallographic data for this paper. They can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Raman Measurement of Mechanochemical Processes. For Raman collection, PD-LD LS2 laser source (784 nm) with optical fibber and Raman probe was coupled with Maya2000 Pro spectrometer (Oceanoptics). Probe was positioned straight under the transparent PMMA milling vessel. The vertical positioning of the Raman probe was adjusted using a precise movable stand such that the focus of the laser was 1-2 mm inside the vessel.

Synthesis:

All grinding experiments were performed at room temperature in a 14 mL PMMA jars using one 10 mm stainless steel grinding ball (4 g). A Retsch MM301 grinder mill operating at 30 Hz frequency was used for the synthesis. The complex **1A** was prepared by liquid-assisted grinding (4.5 h) of 123.61 mg of **1** and 121.28 mg of Pd(OAc)₂ in the presence of 25 μ L of acetic acid. The green powder was obtained in 78% yield after purification with small amounts of water and THF. The complex **1A** was also prepared in a 39% yield by the solvent-based reaction according to the previously reported procedure.⁷ The brown red powder of complex **1B** was obtained by the same mechanochemical procedure within 7.5 h in a 85% yield using 97.19 mg of **1A** and 97.57 mg of Pd(OAc)₂. The complexes **1A** and **1B** were also prepared by ion-and-liquid-assisted grinding reactions using 25 μ L of acetic acid and 16.58 mg (**1A**) or 18. 70 mg (**1B**) of sodium acetate. The yields of complexes were similar to those obtained by LAG reactions.

IR SPECTROSCOPY

Figure S1. IR spectra (in KBr) of Pd(OAc)₂, azobenzene ligand 1, 1A from the solution synthesis and LAG and ILAG reaction products 1A and 1B.

Table S1

Selected IR data (in cm⁻¹) for 1, Pd(OAc)₂ and cyclopalladated products 1A and 1B.

Pd(OAc) ₂	1	1A	1B
1605 s br	1601 s	1601 sh	1591 s
	1587 s	1581 s	1569 s
		1567 s	1558 s
1430 s br	-	1431 m br	1417 s br
		1420 m br	
-	1524 s	1508 m	1502 m
	1508 s		
-	1331 s br	1320 s	1314 s
	Pd(OAc) ₂ 1605 s br 1430 s br -	Pd(OAc)2 1 1605 s br 1601 s 1587 s 1587 s 1430 s br - - 1524 s 1508 s - - 1331 s br	Pd(OAc)2 1 1A 1605 s br 1601 s 1601 sh 1587 s 1581 s 1587 s 1430 s br - 1431 m br - 1524 s 1508 m 1508 s - 1331 s br

^{*a*} Not applicable to Pd(OAc)₂.

X-RAY CRYSTALLOGRAPHY

Table S2

Crystallographic data, collection and structure refinement details for $2(1A) \cdot 3DMF$ and $1B \cdot 2THF$.

Complex	2(1A)·3DMF	1B·2THF
Empirical formula	$C_{73}H_{85}N_{19}O_{19}Pd_4$	$C_{44}H_{52}N_8O_{14}Pd_4\\$
Formula wt. / g mol ⁻¹	1958.20	1342.54
Crystal dimensions / mm	0.15 x 0.12 x 0.10	0.15 x 0.12 x 0.10
Color	Green	Purple
Solvent used for crystallization	DMF	CH ₂ Cl ₂ /THF
Space group	Сс	$P2_{1}/c$
<i>a</i> / Å	34.5770(4)	7.9571(3)
b / Å	16.50703(16)	23.6001(8)
<i>c</i> / Å	14.29901(15)	13.0293(5)
α / °	90	90
$\beta / °$	97.1631(10)	92.124(4)
γ / °	90	90
Ζ	4	2
<i>V</i> / Å ³	8097.66(15)	2445.07(16)
$D_{\rm calc}$ / g cm ⁻³	1.606	1.824
Diffractometer type	Oxford Xcalibur Nova	Oxford Xcalibur Sapphire3
Radiation	CuK _α	MoK _α
μ/mm^{-1}	7.730	1.521
Absorption correction	Multi-scans	-
T_{\min}, T_{\max}	0.462, 1.000	-
Θ range / °	2.97–75.87	4.30–27.00
Range of h, k, l	$43 \ge h \ge -43$	$10 \ge h \ge -8$
	$20 \ge k \ge -18$	$32 \ge k \ge -22$
	$16 \ge l \ge -17$	$16 \ge l \ge -12$
Reflections collected	20631	10294
Independent reflections	10405	3909
Observed reflections $(I \ge 2\sigma)$	10557	5247
R _{int}	0.0225	0.0283
R (F)	0.0274	0.0490
$R_w(F^2)$	0.0828	0.1222
Goodness of fit	1.102	1.101
No. of parameters	1055	316
<i>F</i> (000)	1264.0	1336.0
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e}{ m \AA}^{-3})$	0.501, -0.602	0.845, -0.558

Crystallographic data, collection and structure refinement details for $2(1A) \cdot 3DMF$ and $1B \cdot 2THF$ are listed in Table S2, whereas the most important bond lengths are given in Table S3.

In general, both structures are *anti* isomers and confirm the mono- or dicyclopalladation of 4'-(*N*,*N*-dimethylamino)-4-nitroazobenzene (1). Each palladium atom is bonded in a slightly distorted square-planar geometry to four atoms: a carbon atom of the phenyl ring and the azo-nitrogen atom of the azobenzene ligand, and two oxygen atoms of two bridging acetate ligands mutually in *cis* position. The Pd–O bonds *trans* to carbon atoms are significantly longer than those *trans* to azo-nitrogen atoms in accordance with the higher *trans* influence of the aryl carbon as compared to the azo-nitrogen (Table S3).

Complex 1A crystalizes from a DMF solution in a polar space group *Cc*. Two molecules of monocyclopalladated complex 1A with opposite helicity and three DMF molecules are found in the asymmetric unit (Figure S2). The molecular structure corresponds to a dinuclear acetato-bridged complex in an *anti* open-book arrangement with nitro and dimethylamino groups lying one above the other. Distances between metal centers, d(Pd1a, Pd2a) = 2.8923(4) Å and d(Pd1b, Pd2b) = 2.8824(4) Å, are nonbonding and similar to the values reported for related complexes.⁸

Figure S2. Molecular structure of 2(1A)·3DMF. Hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at 30 % probability.

Symmetrically equivalent molecules of **1A** form chains along [010] direction through C– H···O–N interactions that connect dimethylamino groups with nitro groups of the neighbouring molecule. Symmetrically non-equivalent chains of **1A** are connected along the [100] direction by numerous C–H···O–N interactions of phenyl or dimethylamino groups with nitro groups on the "hydrophobic" side, and by C–H···O interactions of DMF methyl groups with nitro and phenyl C–H groups with DMF carbonyl oxygens (Figure S3). Two DMF molecules, through atoms O1 and O2, are connected to two symmetrically nonequivalent **1A** molecules, whereas the third DMF molecule with significantly larger displacement ellipsoids is only loosly bound by C–H···O3(DMF) interactions to methyl groups of two other DMF molecules (Figures S2 and S3). Furthermore, chains of symmetrically equivalent **1A** molecules are connected along the [001] direction by $\pi \cdots \pi$ interactions between phenyl and cyclopalladated rings.

Figure S3. Packing of $2(1A) \cdot 3DMF$. View on the packing along a) [001] and b) [010] direction; c) Details of DMF layer interactions with the acetate side of two symmetrically non-equivalent rows of 1A viwed along [001] direction. Coloring is by symmetry equivalence. Symmetry operators are: i [-1/2+x, -1/2-y, -1/2+z], ii [-1/2+x, 1/2-y, -1/2+z], iii [x, -1+y, z], iv [x, -y, -1/2+z] and v [x, 1+y, z].

Complex **1B** was crystallized from CH₂Cl₂/THF as a THF disolvate (Figure S4). The molecular structure corresponds to a centrosymmetric tetranuclear acetato-bridged complex. It is a unique *anti* dimer (nitro and dimethylamino groups are on the same side of the molecule) with two dicyclopalladated azobenzene moieties forced by four *cis*-bonded acetate ligands to lie exactly above one another giving the molecule a center of symmetry.

Figure S4. Molecular structure of 1B. THF molecules are omitted for clarity. Displacement ellipsoids are drawn at 30 % probability. Hydrogen atoms are drawn as circles of arbitrary radii. Symmetry operator i [-x, 1-y, 1-z].

Centrosymmetric molecules of **1B** pack in infinite chains (Figure S5) in which two dicyclopalladated molecules are connected by $Pd2\cdots Pd2^{i}$ interactions (sym. op. *i* [1-*x*, 1-*y*, 1-*z*]) with the distances between the metal centers: d(Pd1, Pd2) = 2.8730(6) Å and $d(Pd2, Pd2^{i}) = 3.1625(6)$ Å, *i.e.* shorter than a sum of two van der Waals radii of palladium atoms, indicating the interaction between the palladium atoms in two neighbouring molecules. These interactions form rows of dicyclopalladated molecules. Rows are connected by numerous weak C–H…O interactions of methyl and acetate groups. THF molecules are weakly bound in the crystal structure as they are not engaged in any interaction.

Figure S5. a) Packing of **1B**·2THF; b) view on the packing along the [100] direction. Interactions Pd2…Pd2^{*i*} are drawn as black stippled lines. THF molecules are drawn using the ball-and-stick style. Distances between the palladium atoms are d(Pd1, Pd2) = 2.8730(6) Å and d(Pd2, Pd2^{*i*}) = 3.1627(6) Å. Symmetry operator *i* [1-*x*, 1-*y*, 1-*z*].

Table S3

Selected bonds (Å) for $2(1A) \cdot 3DMF$ and $1B \cdot 2THF$. Sym. op. *i* [1-*x*, 1-*y*, 1-*z*] and *ii* [-*x*, 1-*y*, 1-*z*] for $1B \cdot 2THF$.

Bond	2(1A)·3DMF	Bond	2(1A)·3DMF
Pd1a–Pd2a	2.8923(4)	Pd1b–Pd2b	2.8824(4)
Pd1a–C2a	1.964(5)	Pd1b–C2b	1.960(5)
Pd1a–N2a	2.031(4)	Pd1b–N2b	2.039(4)
Pd1a–O5a	2.145(5)	Pd1b-O5b	2.158(4)
Pd1a–O7a	2.055(4)	Pd1b–O7b	2.045(4)
Pd2a–C16a	1.955(5)	Pd2b–C16b	1.961(5)
Pd2a–N6a	2.036(5)	Pd2b–N6b	2.041(5)
Pd2a–O6a	2.046(4)	Pd2b-O6b	2.052(4)
Pd2a–O8a	2.161(4)	Pd2b–O8b	2.155(4)
N1a–N2a	1.307(6)	N1b–N2b	1.305(6)
N1a–C1a	1.353(7)	N1b–C1b	1.344(7)
N2a–C7a	1.418(6)	N2b–C7b	1.420(7)
N3a–C4a	1.356(7)	N3b–C4b	1.353(7)
N4a–C10a	1.488(7)	N4b-C10b	1.459(7)
N5a–N6a	1.313(7)	N5b–N6b	1.312(6)
N5a–C15a	1.345(7)	N5b-C15b	1.355(7)
N6a–C21a	1.426(7)	N6b–C21b	1.424(7)
N7a–C18a	1.363(7)	N7b–C18b	1.344(7)
N8a–C24a	1.462(7)	N8b-C24b	1.476(9)

Bond	1B·2THF
Pd1–Pd2	2.8730(6)
$Pd2-Pd2^i$	3.1627(6)
Pd1–C2	1.947(5)
Pd1–N2	2.026(4)
Pd1–O1a	2.129(4)
Pd1–O3a	2.069(4)
Pd2–C8 ⁱⁱ	1.950(5)
Pd2–N1 ^{<i>ii</i>}	2.041(4)
Pd2–O2a	2.144(4)
Pd2–O4a	2.040(4)
N1-N2	1.311(6)
N1-C1	1.347(6)
N2C7	1.406(6)
N3-C4	1.358(7)
N4C10	1.470(11)

NMR SPECTROSCOPY

Scheme S1. Atom numbering of 1 and its complexes 1A and 1B used for ¹H NMR assignation.

Table S4

¹H NMR data (δ / ppm, J/ Hz, CDCl₃) for ligand **1** and its complexes **1A** and **1B**.

	1		1A		1B
H-2,6	7.91 d (<i>J</i> =9.2)	Н-3	5.61 d (<i>J</i> =2.4)	Н-3	5.98 d (<i>J</i> =2.6)
Н-3,5	6.76 d (<i>J</i> =9.2)	H-5	6.36 dd (<i>J</i> =9.0, 2.5)	Н-5	6.03 dd (<i>J</i> =9.4, 2.5)
H-8,12	8.32 d (<i>J</i> =9.1)	Н-6	7.55 (<i>J</i> =9.0)	Н-6	7.61 d (<i>J</i> =8.9)
H - 9,11	7.92 d (<i>J</i> =9.1)	H-8,12	7.49 d (<i>J</i> =9.0)	Н-9	7.47 s
		H-9,11	7.92 d (<i>J</i> =9.0)	H-11	7.48 dd (<i>J</i> ~10.0)
				H-12	7.73 d (<i>J</i> ~9.6)

RAMAN MONITORING

Figure S6. Raman spectra of 1, 1A and 1B with shown luminescence bands. Excitation wavelength (λ_{exc}) was 784 nm.

COMPUTATIONAL DETAILS

Full geometry optimizations and vibrational calculations were performed using the B3LYP⁹(ultrafine) method as implemented in Gaussian09 program.¹⁰ The standard 6-311G** basis set was used for C, H, N and O atoms, whereas Pd atoms were modeled by the Stuttgart–Dresden (SDD) pseudopotential and the accompanying SDD basis set.¹¹

Optimized geometries

Ligand $1 - C_s$ symmetry

Center	Atomic	Atomic	 Coor	(And	ustroms)
Number	Number	Туре	X	Ŷ	Z
1	6	0	-2.807697	2.892860	0.000000
2	6	0	-1.328932	0.966136	0.00000
3	6	0	-2.456319	0.122788	0.00000
4	6	0	-1.535970	2.353234	0.00000
5	6	0	-3.948612	2.052560	0.00000
6	6	0	-3.729823	0.646783	0.00000
7	6	0	1.752951	-2.498152	0.00000
8	6	0	1.529369	-1.114400	0.00000
9	6	0	3.043433	-3.006443	0.00000
10	6	0	2.625454	-0.233724	0.00000
11	6	0	4.110842	-2.113940	0.00000
12	6	0	3.916227	-0.731983	0.00000
13	1	0	-2.920073	3.967509	0.00000
14	1	0	-2.301571	-0.948088	0.00000
15	1	0	0.892907	-3.156043	0.00000
16	1	0	-0.665240	2.998420	0.00000
17	1	0	-4.571442	-0.031606	0.00000
18	1	0	3.239147	-4.069328	0.00000
19	1	0	2.437563	0.830869	0.00000
20	1	0	4.777525	-0.078588	0.00000
21	7	0	0.174457	-0.714084	0.00000
22	7	0	-0.001707	0.536102	0.00000
23	7	0	-5.217866	2.571788	0.00000
24	6	0	-5.420715	4.013075	0.00000
25	1	0	-4.983036	4.484344	0.887638
26	1	0	-4.983036	4.484344	-0.887638
27	1	0	-6.488443	4.223039	0.00000
28	6	0	-6.377056	1.690875	0.00000
29	1	0	-6.399544	1.048494	-0.887755
30	1	0	-6.399544	1.048494	0.887755
31	1	0	-7.282378	2.294665	0.00000
32	7	0	5.486444	-2.643317	0.00000
33	8	0	6.407564	-1.835280	0.00000
34	8	0	5.628684	-3.860308	0.00000

HF=-911.4633943

ZeroPoint=0.2651932

Thermal=0.2831887

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
		туре	A	I I	ے
1	46	0	-0.437020	1.119465	-1.505703
2	46	0	0.437017	1.119707	1.505528
3	8	0	-1.668000	2.677720	-0.881763
4	8	0	1.667990	2.677869	0.881335
5	8	0	1.232094	2.511170	-1.328348
6	8	0	-1.232111	2.511369	1.327947
7	7	0	0.518465	-0.616812	-2.141177
8	7	0	-0.518459	-0.616464	2.141289
9	6	0	-2.515918	-2.375282	-2.496674
10	1	0	-2.179245	-3.357410	-2.808007
11	7	0	-0.236879	-1.635566	-2.367242
12	6	0	2.398154	-2.153997	-1.805215
1.3	1	0	1.698145	-2.950968	-1.599304
14	-	0	-3 853483	-2 106497	-2 347557
15	1	0	-4 574246	-2 887193	-2 540182
16	7	0	0 236885	-1 635178	2 367524
17	6	0	1 905099	-0 879901	-2 136560
18	0 7	0	-5 619236	-0 5/1963	-1 787337
10	6	0	-3 311679	0.200637	-1 696436
20	1	0	-3.615422	1 100033	-1 301308
20	I 6	0	-2 398140	-2 153696	1 805527
21	1	0	-2.390140 -1.600120	-2.155090	1 500722
22		0	-1.090120	-2.950090	1 102715
23	0	0	-0.070007	0.794034	-1.403/43
24	1	0	-7.136840	0.805595	-1.3/94/4
25	1	0	-5./3058/	1.54/244	-2.121005
26		0	-5.709256	1.069229	-0.408329
27	6	0	-2./9/506	0.163415	2.419921
28	l	0	-2.409277	1.13/492	2.6/9896
29	6	0	2.797509	0.163033	-2.419923
30	Ţ	0	2.409277	1.13/0/4	-2.680030
31	8	0	6.454964	-2.611/06	-1.382975
32	6	0	2.515926	-2.374868	2.497079
33	1	0	2.179256	-3.356945	2.808575
34	6	0	-1.970726	-0.068232	-1.830172
35	7	0	5.619240	-0.541662	1.787423
36	6	0	4.163537	-0.048388	-2.324201
37	1	0	4.870276	0.743712	-2.527797
38	6	0	4.293002	-0.807573	1.942155
39	6	0	3.853491	-2.106106	2.347912
40	1	0	4.574256	-2.886769	2.540663
41	8	0	6.806028	-0.522223	-1.848706
42	6	0	-1.555647	-1.372701	-2.241216
43	6	0	1.785129	3.037213	-0.330891
44	6	0	-6.621861	-1.587956	-1.983770
45	1	0	-7.607481	-1.169744	-1.794758
46	1	0	-6.474569	-2.417719	-1.286332
47	1	0	-6.602546	-1.973602	-3.008340
48	6	0	4.631574	-1.302915	-1.939363
49	6	0	3.760764	-2.365941	-1.702656
50	1	0	4.160810	-3.327119	-1.413030
51	6	0	-1.905092	-0.879554	2.136702
52	6	0	-4.292998	-0.807897	-1.942017
53	6	0	-3.760749	-2.365660	1.702993
54	1	0	-4.160791	-3.326877	1.413495
55	6	0	3.311681	0.200919	1.696409

Monocyclopalladated complex 1A - no symmetry constraints

	56	1	0	3.615420	1.191165	1.391202
	57	6	0	-4.631563	-1.302605	1.939557
	58	6	0	1.970729	-0.067930	1.830195
	59	6	0	-1.785149	3.037251	0.330407
	60	6	0	1.555654	-1.372331	2.241457
	61	6	0	6.070007	0.794287	1.403591
	62	1	0	7.156840	0.805824	1.379305
	63	1	0	5.730595	1.547604	2.120722
	64	1	0	5.709246	1.069287	0.408129
	65	6	0	-4.163532	-0.048024	2.324225
	66	1	0	-4.870275	0.744101	2.527711
	67	6	0	2.694343	4.224136	-0.593028
	68	1	0	3.447420	3.950176	-1.335134
	69	1	0	3.174864	4.563808	0.322556
	70	1	0	2.100533	5.035830	-1.019669
	71	6	0	6.621866	-1.587624	1.984019
	72	1	0	7.607487	-1.169439	1.794952
	73	1	0	6.474578	-2.417494	1.286705
	74	1	0	6.602545	-1.973116	3.008646
	75	6	0	-2.694395	4.224190	0.592359
	76	1	0	-2.100658	5.035894	1.019078
	77	1	0	-3.447595	3.950248	1.334349
	78	1	0	-3.174776	4.563828	-0.323311
	79	8	0	-6.454949	-2.611481	1.383355
	80	7	0	-6.067112	-1.494107	1.716472
	81	8	0	-6.806019	-0.521932	1.848783
	82	7	0	6.067123	-1.494380	-1.716254
11:=-	2534.81/4189					

HF=-2534.8174189 ZeroPoint=0.6162013 Thermal=0.6662483

Dicyclopalladated complex 1B – C_i symmetry

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	8	0	-3.186748	-3.018293	1.066785
2	8	0	-3.017064	-3.086381	-1.191629
3	6	0	-3.557108	-3.379057	-0.086863
4	6	0	-4.808130	-4.230820	-0.165944
5	1	0	-4.664581	-5.029651	-0.893844
6	1	0	-5.635786	-3.608661	-0.518130
7	1	0	-5.057238	-4.641535	0.810634
8	7	0	-0.283298	0.668689	1.882131
9	7	0	0.062143	-0.595802	1.924073
10	6	0	-1.626857	0.887569	1.870181
11	7	0	-5.771526	1.374735	1.797682
12	6	0	2.265852	0.340188	1.900599
13	6	0	-2.475329	-0.256879	1.774204
14	6	0	1.436048	-0.799158	2.017645
15	6	0	-3.837682	-0.092386	1.771514
16	1	0	-4.463554	-0.966056	1.669806
17	6	0	-2.188671	2.180336	1.971404
18	1	0	-1.538019	3.041376	2.041394
19	6	0	1.973486	-2.077341	2.233664
20	1	0	1.315301	-2.928589	2.336112
21	6	0	3.639375	0.173824	1.952576

22	1	0	4.309048	1.014547	1.850117
23	6	0	-4 423265	1 207738	1 846403
20	G	0	2 550067	2 225055	1 050100
24	0	0	-3.550967	2.335055	1.956125
25	1	0	-3.96021/	3.331813	2.028257
26	6	0	3.349264	-2.234370	2.267129
27	1	0	3.801705	-3.206185	2.401280
28	7	0	5.614371	-1.297797	2.012211
29	6	0	4 161982	-1 112403	2 104298
30	6	0	-6 353768	2 711602	1 670020
21	1	0	-0.555700	2.711092	1 (77(0)
31	1	0	-/.43/443	2.622094	1.677693
32	Ţ	0	-6.051824	3.198950	0./46926
33	1	0	-6.067692	3.343537	2.524639
34	8	0	6.320158	-0.297793	1.892128
35	6	0	-6.667055	0.230110	1.628538
36	1	0	-7.687295	0.553883	1.824594
37	1	0	-6 422711	-0 559932	2 340118
20	1	0	-6 622466	-0 171060	0 600075
20	1	0	-0.022400	-0.1/1009	0.009075
39	8	0	6.053414	-2.4455/4	2.026373
40	46	0	-1.275743	-1.993225	-1.517609
41	46	0	-1.470046	-1.923858	1.514323
42	8	0	-0.369799	-3.764760	1.210432
43	8	0	-0.199537	-3.812808	-1.038631
44	6	0	-0.042565	-4.303313	0.115601
45	6	0	0 644854	-5 654273	0 197013
16	1	0	0.011001	-6 106027	1 002010
40	1	0	0.31/0/0	-0.190037	1.003010
4 /	L	0	1./24341	-5.4913//	0.277100
48	1	0	0.453985	-6.235427	-0.704510
49	8	0	3.186748	3.018293	-1.066785
50	8	0	3.017064	3.086381	1.191629
51	6	0	3.557108	3.379057	0.086863
52	6	0	4.808130	4.230820	0.165944
53	1	0	4 664581	5 029651	0 893844
51	1	0	5 635786	3 608661	0 518130
55	1	0	5.055700	J. 601626	0.010634
55	1	0	5.057238	4.641555	-0.010034
56	/	0	0.283298	-0.668689	-1.882131
57	./	0	-0.062143	0.595802	-1.924073
58	6	0	1.626857	-0.887569	-1.870181
59	7	0	5.771526	-1.374735	-1.797682
60	6	0	-2.265852	-0.340188	-1.900599
61	6	0	2,475329	0.256879	-1.774204
62	6	0	-1 436048	0 799158	-2 017645
63	6	0	3 837682	0 002386	_1 771514
0.5	1	0	J.057002	0.092300	1 ((000)
64	L	0	4.403554	0.966056	-1.009800
65	6	0	2.188671	-2.180336	-1.971404
66	1	0	1.538019	-3.041376	-2.041394
67	6	0	-1.973486	2.077341	-2.233664
68	1	0	-1.315301	2.928589	-2.336112
69	6	0	-3.639375	-0.173824	-1.952576
70	1	0	-4.309048	-1.014547	-1.850117
71	6	0	4 423265	-1 207738	-1 846403
72	6	0	2 550067	-2 225055	_1 050102
72	1	0	3.330907	-2.333033	-1.950125
/3	Ţ	0	3.960217	-3.331813	-2.028257
74	6	0	-3.349264	2.234370	-2.267129
75	1	0	-3.801705	3.206185	-2.401280
76	7	0	-5.614371	1.297797	-2.012211
77	6	0	-4.161982	1.112403	-2.104298
78	6	0	6.353768	-2.711692	-1.679929
79	1	0	7.437443	-2.622094	-1.677693
80	± 1	0 0	6 051927	-3 192950	-0 746926
81	⊥ 1	0	6 0676024	-3 343537	-2 52/620
0.7	⊥ ○	0	C 2001E0	-3.343337	-Z.JZ4039
ŏΖ	ð	U	-0.32U158	0.29//93	-1.092128

84 1 0 7.687295 -0.553883 -1.824 85 1 0 6.422711 0.559932 -2.340 86 1 0 6.622466 0.171069 -0.609 87 8 0 -6.053414 2.445574 -2.026 88 46 0 1.275743 1.993225 1.517 89 46 0 1.470046 1.923858 -1.210 91 8 0 0.369799 3.764760 -1.210 91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -0.453985 6.235427 0.704	83	6	0	6.667055	-0.230110	-1.628538
85 1 0 6.422711 0.559932 -2.340 86 1 0 6.622466 0.171069 -0.609 87 8 0 -6.053414 2.445574 -2.026 88 46 0 1.275743 1.993225 1.517 89 46 0 1.470046 1.923858 -1.514 90 8 0 0.369799 3.764760 -1.210 91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -0.453985 6.235427 0.704	84	1	0	7.687295	-0.553883	-1.824594
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	1	0	6.422711	0.559932	-2.340118
87 8 0 -6.053414 2.445574 -2.026 88 46 0 1.275743 1.993225 1.517 89 46 0 1.470046 1.923858 -1.514 90 8 0 0.369799 3.764760 -1.210 91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	86	1	0	6.622466	0.171069	-0.609875
88 46 0 1.275743 1.993225 1.517 89 46 0 1.470046 1.923858 -1.514 90 8 0 0.369799 3.764760 -1.210 91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	87	8	0	-6.053414	2.445574	-2.026373
89 46 0 1.470046 1.923858 -1.514 90 8 0 0.369799 3.764760 -1.210 91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	88	46	0	1.275743	1.993225	1.517609
90 8 0 0.369799 3.764760 -1.210 91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	89	46	0	1.470046	1.923858	-1.514323
91 8 0 0.199537 3.812808 1.038 92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	90	8	0	0.369799	3.764760	-1.210432
92 6 0 0.042565 4.303313 -0.115 93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	91	8	0	0.199537	3.812808	1.038631
93 6 0 -0.644854 5.654273 -0.197 94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	92	6	0	0.042565	4.303313	-0.115601
94 1 0 -0.317070 6.196837 -1.083 95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	93	6	0	-0.644854	5.654273	-0.197013
95 1 0 -1.724341 5.491377 -0.277 96 1 0 -0.453985 6.235427 0.704	94	1	0	-0.317070	6.196837	-1.083010
96 1 0 -0.453985 6.235427 0.704	95	1	0	-1.724341	5.491377	-0.277100
	96	1	0	-0.453985	6.235427	0.704510

HF=-3246.6837057 ZeroPoint=0.7010537 Thermal=0.7629919

Scheme S2. Bond denotation for Raman assignation.

Table S5

Experimental (d_{exp}) and calculated (d_{calc}) bond lengths (in Å) for 1, 1A and 1B.

	1		1A		1 B	
	d_{\exp}^{a}	$d_{ m calc}$	d_{\exp}^{b}	$d_{\rm calc}$	d_{\exp}^{b}	$d_{\rm calc}$
d(N=N)	1.258(6), 1.271(15)	1.262	1.305(6)-1.313(7)	1.288	1.311(6)	1.312
d(C-N _{azo}) _{NMe2}	1.400(5), 1.412(14)	1.395	1.344(7)-1.355(7)	1.351	1.347(6)	1.361
d(C-N _{azo}) _{NO2}	1.422(6), 1.422(13)	1.413	1.418(6)-1.426(7)	1.411	1.406(6)	1.392

^{*a*} Data collected at 150(2) K.¹² ^{*b*} Data collected at 298(2) K.

REFERENCES:

1) CrysAlisPRO, Oxford Diffraction Ltd. Oxford, U. K. 2007.

2) Sheldrick, G. M. SHELX97, *Programs for Crystal Structure Analysis (Release 97-2)*, Universität Göttingen, Germany, **1997**.

3) Sheldrick, G. M. SHELXL97, *Program for Refinement of Crystal Structures*, Universität Göttingen, Germany, **1997**.

4) Spek, A. L. PLATON98: *A Multipurpose Crystallographic Tool, 120398 Version*, University of Utrecht, Netherlands, **1998**.

5) Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565-566.

6) McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R; Towler, M.; Macrae, C. F.; Edgington, P. R.; Van de Streek. J. J. Appl. Cryst. 2006, 39, 453-457.

7) Wakatsuki, Y.; Yamazaki, H.; Grutsch, P. A.; Santhanam, M.; Kutal, C. J. Am. Chem. Soc. 1985, 107, 8153-8159.

8) a) Fernández, A.; Vázquez-García, D.; Fernández, J. J.; López-Torres, M.; Suárez, A.; Castro-Juiz, S.; Vila, J. M. *Eur. J. Inorg. Chem.* 2002, 2389–2401; b) Lentijo, S.; Miguel, J. A.; Espinet, P. *Organometallics* 2011, *30*, 1059–1066; c) Cárdenas, D. J.; Echavarren, A. M.; Ramírez de Arellano, M. C. *Organometallics* 1999, *18*, 3337–3341; and references cited therein.

9) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.

10) *Gaussian 09, Revision D.01*, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

11) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123-141.

12) Adams, H.; Allen, R. W. K.; Chin, J.; O'Sullivan, B.; Styring, P.; Sutton, L. R. Acta Cryst. E 2004, 60, o289-o290.