Supplementary Information

The Simplest Method for Fabrication of High Refractive Index Polymer-Metal Oxide Hybrid Based on Soap-Free Process

Hirokuni Jintoku^a, and Hirotaka Ihara^{a,b*}

^a Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan

^b Kumamoto Institute for Photo-Electro Organics (PHOENICS), Kumamoto, 862-0901, Japan

* ihara@kumamoto-u.ac.jp

1. Materials and Generals

12-tungstophosphoric acid ($[H_3PW_{12}O_{40}]$ nH₂O) and 12-tungstosilicic acid ($[H_4SiW_{12}O_{40}]$ 26H₂O) were purchased from Wako Chemical. Polymethylmethacrylate (Mw: ~280,000), poly(2-hydroxyethylmethacrylate) (Mw: ~300,000), polyacrylate (Mw: ~25,000), poly(vinyl phenol) (Mw: ~25,000), and polystyrene (Mw: ~280,000) were purchased from Aldrich. Refractive index was measured by using prism coupler (Sairon Technology, Inc., model SPA-4000) equipped with a He-Ne laser (wavelength: 632.8 nm) and GGG prism (*n* = 1.965). Transmission and FT-IR spectra were measured with V-560 (JASCO) and FT/IR-4100. TEM, AFM and EDX images were observed with JEM-1400 plus (JEOL), di-Inova (Bruker), and FE-SEM SU-8000 (Hitachi), respectively. X-Ray diffraction (XRD) patterns were recorded with a RINT-2500HV diffractometer (Rigaku) equipped with a thin film attachment. And radiation was generated from a copper target (Cu-K α 1.54060 A) using X ray generator operated at 40 kV and 200 mA. The concentration of heteropoly acids as WO₃ were measured by using TG/DTA-6200 (Hitachi-hitec) when heating from room temperature to 550 °C at 5 °C/min under air at a flow rate of 200 mL/min. The WO₃ concentration was detected by the residual weight. Surface hardness of film on glass substrate was measured by using pencil hardness test (ISO 15184) (COTEC) with 750 g load. Weight fraction (wt%) of SiW12 (or PW12) in composite was obtained by equation (1),

$$wt\% = w_{\rm H}/(w_{\rm H} + w_{\rm P}) \ x \ 100 \tag{1}$$

w_H: weight of SiW12 (or PW12) and w_P: weight of polymer.

The theoretical refractive indexes of the heteropolyacid/polymer composites are calculated by the Lorentz-Lorenz equation $(2)^1$,

$$(n^{2} - 1)/(n^{2} + 2) = \varphi_{P} (n_{P}^{2} - 1)/(n_{P}^{2} + 2) + \varphi_{H}(n_{H}^{2} - 1)/(n_{H}^{2} + 2)$$
⁽²⁾

n: refractive index of the hybrid, φ_P , H: volume fraction of component polymer and heteropoly acid, n_P , H: refractive index of component polymer and heteropoly acid. For example, the refractive indexes of WO₃, PMMA and PHEMA were used as 2.2, 1.4881 (measured) and 1.5053 (measured), respectively.

1. J. V. Herráez, R. Belda, J. Solution Chem. 2006, 35, 1315.

Figure S1. Transmission spectra of (a) PMMA/PW12 and (b) PHEMA/SiW12 hybrid films. Film thickness = c.a. 3 µm.

Figure S2. Transmission spectra of polymer/SiW12 hybrid films. Film thickness = c.a. 3 µm.

Figure S3. Refractive indexes of (a) PHEMA/SiW12 and (b) PMMA/PW12 hybrid films versus SiW12 and PW12 concentration. Solid circles: measured refractive index. Dotted line: calculated refractive index as $H_4SiW_{12}O_{40}$ or $H_3PW_{12}O_{40}$. Dashed line: calculated refractive index as $[H_4SiW_{12}O_{40}]$ 6H₂O or $[H_3PW_{12}O_{40}]$ 6H₂O.

Figure S4. EDX spectra of (a) PHEMA/SiW12 (20 wt%) and (b) PHEMA/SiW12 (80 wt%) films on glass plate.

Figure S5. AFM images of PHEMA/SiW12 (80 wt%) film on glass plate.

Figure S6. FT-IR spectra of (a) PMMA/PW12 and (b, c) PHEMA/SiW12 hybrid films.

Figure S7. XRD spectra of (a) PMMA/PW12 and (b) PHEMA/SiW12 hybrid films.

Figure S8. Photo image of PHEMA/SiW12 (55 wt%) hybrid films (a) before and after thermal treatment for 30 min at (b) 200 °C and (c) 250 °C.