Supporting Information for

Oxidative Cross-Dehydrogenative Coupling between *N*-aryl Tetrahydroisoquinolins and 5*H*-Oxazol-4-ones through Two Methodologies: Copper Catalysis or a Metal-Free Strategy

Xihong Liu,^{ab} Jinlong Zhang,^b Shixiong Ma,^b Yunxia Ma,^b and Rui Wang^{*ab}

^aState Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China) ^bKey Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000, P. R. China

E-mail: wangrui@lzu.edu.cn

Contents:

(A)	General Information
(B)	Attempt at asymmetric aerobic oxidative coupling reaction between
1	V-aryl Tetrahydroisoquinolins and 5H-Oxazol-4-onesS1
(C)	Unsuccessful examples of aerobic oxidative coupling reaction of other
ä	amines and 5 <i>H</i> -Oxazol-4-ones
(D)	General procedure of aerobic oxidative coupling reactionS3
(E)	General procedure of metal-free coupling reactionS3
(F)	Characterization of products
(G)	X-ray single crystal data for 3c
(H)	References
(I)	Copies of ¹ H and ¹³ C NMR

(A) General Information

Unless stated otherwise, all reactions were carried out in flame dried glassware. All solvents were purified and dried according to standard methods prior to use. Reactions were monitored by thin layer chromatography (TLC), column chromatography purifications were carried out using silica gel. Proton nuclear resonance (¹H NMR) spectra were recorded on 300 MHz spectrometer in CDCl₃ and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on 75 MHz spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. High resolution mass spectra (HRMS) were obtained by the ESI ionization sources. Substrates *N*-aryl tetrahydroisoquinolins **1**^[11] and Oxazol-4(*5H*)-ones **2**^[2] were prepared according to literature.

(B) Attempt at asymmetric aerobic oxidative coupling reaction between *N*-aryl Tetrahydroisoquinolins and 5*H*-Oxazol-4-ones

Typical experimental procedure: A solution of $Cu(OTf)_2$ (0.01 mmol) and chiral ligand in anhydrous DCM (0.3 mL) under Air (for $L_1 - L_3$) or Ar (for $L_4 - L_9$) atmosphere was stirred at room temperature for 1 h, and then a mixture of **1a** (0.15 mmol) and **2a** (0.10 mmol) in anhydrous DCM (0.2 mL) was added. The resultant reaction mixture was stirred at room temperature under air (O₂) atmosphere for 36 h.

Table 1. Optimizing reaction conditions^a

Entry	Metal (10 mol %)	L (mol %)	[0]	Ee $(\%)^{b}$	Conversion (%) ^c
1	Cu(OTf) ₂	$L_1(20)$	Air	0	67
2	Cu(OTf) ₂	$L_{2}(20)$	Air	-	trace
3	Cu(OTf) ₂	$L_{3}(20)$	Air	-	trace
4	Cu(OTf) ₂	$L_4(12)$	Air	0	46
5	Cu(OTf) ₂	$L_{5}(12)$	Air	-	trace
6	Cu(OTf) ₂	$L_{6}(12)$	Air	-	trace
7	Cu(OTf) ₂	$L_7(12)$	Air	0	88
8	Cu(OTf) ₂	$L_8(12)$	Air	0	47
9	Cu(OTf) ₂	$L_{9}(12)$	Air	0	35
10	Mg(ClO ₄) ₂	$L_{7}(12)$	Air	-	trace

^{*a*} Unless otherwise specified, the reaction was performed on a 0.1 mmol scale at room temperature. ^{*b*} Determined by HPLC on chiral stationary phase. ^{*c*} The conversion was determined by ¹H NMR spectroscopy of the crude mixture.

(C) Unsuccessful examples of aerobic oxidative coupling reaction of

other amines and Oxazol-4(5H)-ones

n.d.= not detected; n.r. = not reaction

Figure 1. Unsuccessful examples

(D) General procedure of aerobic oxidative coupling reaction

Method A: The reaction mixture of aryl-substituted 1,2,3,4-tetrahydroisoquinolin (0.45 mmol, 1.5 equiv), Oxazol-4(*5H*)-ones (0.30 mmol, 1.0 equiv), 4Å molecular sieves (100 mg) and CuBr (0.03mmol, 0.1 equiv) in anhydrous THF (0.6 mL) was stirred at 50 °C for the appropriate time under air atmosphere. After the reaction finished (monitored by TLC), the resulting mixture was concentrated under reduced pressure and the residue was purified by silica gel chromatography (eluent, ethyl acetate / hexane 1:7) to afford the desired coupling products, which can be further purified by recrystallization.

(E) General procedure of metal-free coupling reaction

1. The optimization of reaction conditions

 Table 2. Optimizing reaction conditions ^a

3	DDQ	CH_2Cl_2	38
4	PhI(OAc) ₂	CH ₂ Cl ₂	90
5	$K_2S_2O_8$	CH_2Cl_2	43
6	PhI(OAc) ₂	THF	98
7	PhI(OAc) ₂	toluene	84
^a Reactions were of	carried out with 1a (0.1	12 mmol), 2a (0.1 m	mol), oxidant (0.12
mmol) in solvent ((0.4 mL) for 24h. ^b The	conversion was dete	rmined by ¹ H NMR
spectroscopy of the	e crude mixture.		

Several oxidants were evaluated. As summarized in Table 1, excellent conversion could be obtained in the presence of PhI(OAc)₂ and subsequent screening of solvent displayed that THF gave the best result.

2. General Procedure for synthesis of compound 3

Method B: The reaction mixture of aryl-substituted 1,2,3,4-tetrahydroisoquinolin (0.12 mmol, 1.2 equiv), Oxazol-4(*5H*)-ones (0.10 mmol, 1.0 equiv) and PhI(OAc)₂ (0.12 mmol, 1.2 equiv) in anhydrous THF (0.4 mL) was stirred at room temperature for 24h. Then the resulting mixture was concentrated under reduced pressure and the residue was purified by silica gel chromatography (eluent, ethyl acetate / hexane 1:7) to afford the desired coupling products, which can be further purified by recrystallization.

(F) Characterization of products

5-benzyl-2-phenyl-5-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)oxazol-4(5*H*)one: yellow solid, m.p. 186 – 188 °C; 82% yield (method B: 87% yield); ¹H NMR (300

MHz, CDCl₃) δ 7.69 (d, J = 7.3 Hz, 2H), 7.60-7.42 (m, 1H), 7.43-7.20 (m, 4H), 7.21 – 7.01 (m, 8H), 6.96 (s, 3H), 6.83 (t, J = 6.7 Hz, 1H), 5.50 (s, 1H), 4.20 – 4.01 (m, 1H), 3.98 – 3.79 (m, 1H), 3.62 (d, J = 14.2 Hz, 1H), 3.36 (d, J = 14.2 Hz, 1H), 3.19 – 2.91 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.42, 185.42, 149.39, 135.53, 134.68, 133.22, 131.29, 130.01, 129.48, 129.28, 128.57, 128.25, 128.14, 127.69, 127.14, 127.06, 126.06, 125.11, 118.72, 114.76, 95.55, 63.31, 43.03, 39.86, 26.11; **IR**: 3464.6, 2924.7, 2158.2, 1738.4, 1536.4, 1359.9, 1177.0, 942.3, 751.9, 548.0 cm⁻¹. **HRMS (ESI):** calcd for C₃₁H₂₆N₂O₂+Na⁺: 481.1886; found: 481.1885.

5-benzyl-2-phenyl-5-(2-(m-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)oxazol-4(5*H***)one: yellow solid, m.p. 175 - 176 °C; 77% yield; ¹H NMR (300 MHz, CDCl₃) \delta 7.69 (d,** *J* **= 7.6 Hz, 2H), 7.51 (t,** *J* **= 7.2 Hz, 1H), 7.32 (t,** *J* **= 7.4 Hz, 2H), 7.27 - 7.01 (m, 7H), 6.94 (d,** *J* **= 8.8 Hz, 5H), 6.66 (d,** *J* **= 7.2 Hz, 1H), 5.49 (s, 1H), 4.20 - 4.01 (m, 1H), 4.01 - 3.84 (m, 1H), 3.62 (d,** *J* **= 14.2 Hz, 1H), 3.36 (d,** *J* **= 14.2 Hz, 1H), 3.20 -3.03 (m, 1H), 3.00-2.93 (m, 1H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) \delta 193.46, 185.42, 149.46, 139.26, 135.50, 134.67, 133.25, 131.29, 130.00, 129.32, 129.27, 128.56, 128.30, 128.13, 127.63, 127.12, 127.05, 125.99, 125.10, 119.66, 115.53, 112.00, 95.67, 63.27, 42.89, 39.86, 26.02, 21.92; IR**: 3382.0, 2923.6, 2370.7, 1886.7, 1746.5, 1602.2, 1450.9, 1261.3, 1115.4, 1026.9, 702.9, 603.5 cm⁻¹. **HRMS (ESI):** calcd for C₃₂H₂₈N₂O₂+Na⁺: 495.2043; found: 495.2048.

5-benzyl-2-phenyl-5-(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)oxazol-4(5H)-

one: yellow solid, m.p. 181 - 183 °C; 71% yield (method B: 86% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 7.4 Hz, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.7 Hz, 2H), 7.16-6.97 (m, 10H), 6.94 (s, 3H), 5.42 (s, 1H), 4.19 – 4.01 (m, 1H), 3.94 – 3.76 (m, 1H), 3.64 (d, J = 14.2 Hz, 1H), 3.34 (d, J = 14.2 Hz, 1H), 3.16 – 2.87 (m, 2H), 2.26 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.46, 185.39, 147.25, 135.56, 134.64, 133.30, 131.27, 129.98, 129.92, 129.23, 128.53, 128.26, 128.17, 128.09, 127.58, 127.07, 127.04, 125.96, 125.09, 115.22, 95.70, 63.40, 43.30, 39.83, 25.85, 20.25; **IR**: 3374.8, 2921.7, 2374.7, 1748.3, 1548.1, 1359.1, 1176.9, 941.6, 800.9, 703.6, 553.6 cm⁻¹. **HRMS (ESI):** calcd for C₃₂H₂₈N₂O₂+Na⁺: 495.2043; found: 495.2045.

5-benzyl-5-(2-(4-ethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-phenyloxazol-4(5*H***)-one: yellow solid, m.p. 183 - 184 °C; 87% yield; ¹H NMR (300 MHz, CDCl₃) \delta 7.69 (d, J = 7.1 Hz, 2H), 7.54 - 7.43 (m, 1H), 7.36 - 7.24 (m, 2H), 7.20-7.00 (m, 10H), 6.93 (s, 3H), 5.44 (s, 1H), 4.20-4.00 (m, 1H), 3.89-3.75 (m, 1H), 3.65 (d, J = 14.2 Hz, 1H), 3.35 (d, J = 14.1 Hz, 1H), 3.20-2.85 (m, 2H), 2.66 - 2.44 (m, 2H), 1.19 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) \delta 193.45, 185.37, 147.41, 135.56, 134.61, 133.28, 131.28, 129.96, 129.20, 128.71, 128.51, 128.39, 128.24, 128.07, 127.55, 127.05, 127.01, 126.90, 125.93, 125.07, 115.12, 95.66, 63.45, 43.23, 39.83, 27.71, 25.88, 15.77; IR: 3360.1, 2962.1, 1961.1, 1748.6, 1548.1, 1359.4, 1177.5, 942.3, 703.6, 599.5 cm⁻¹. HRMS (ESI): calcd for C₃₃H₃₀N₂O₂+Na⁺: 509.2199; found: 509.2208.**

5-benzyl-5-(2-(4-isopropylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(5*H*)-one: yellow solid, m.p. 195 - 197 °C; 69% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.21 - 6.99 (m, 10H), 6.99 - 6.87 (m, 3H), 5.44 (s, 1H), 4.18 - 4.01 (m, 1H), 3.94 - 3.79 (m, 1H), 3.65 (d, *J* = 14.2 Hz, 1H), 3.37 (d, *J* = 14.2 Hz, 1H), 3.15-2.70 (m, 3H), 1.23 (s, 3H), 1.21 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.49, 185.39, 147.47, 139.26, 135.59, 134.63, 133.32, 131.34, 130.00, 129.25, 128.54, 128.25, 128.11, 127.58, 127.28, 127.09, 127.05, 125.97, 125.12, 114.98, 95.68, 63.53, 43.18, 39.87, 33.02, 25.94, 24.12; **IR**: 3342.6, 2958.3, 2370.0, 1748.7, 1548.4, 1451.5, 1359.1, 1176.9, 942.3, 748.0, 702.9, 546.0 cm⁻¹. **HRMS (ESI):** calcd for C₃₄H₃₂N₂O₂+Na⁺: 523.2356; found: 523.2360.

5-benzyl-5-(2-(4-butylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(5*H*)-one: yellow solid, m.p. 157 - 159 °C; 75% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.21 - 6.99 (m, 10H), 6.95 (s, 3H), 5.43 (s, 1H), 4.19 - 4.00 (m, 1H), 3.94 - 3.78 (m, 1H), 3.65 (d, *J* = 14.3 Hz, 1H), 3.36 (d, *J* = 14.2 Hz, 1H), 3.17 - 3.01 (m, 1H), 3.01 - 2.86 (m, 1H), 2.53 (t, *J* = 7.5 Hz, 2H), 1.69 - 1.45 (m, 2H), 1.43-1.20 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.49, 185.40, 147.42, 135.61, 134.64, 133.36, 131.36, 130.02, 129.30, 128.55, 128.27, 128.12, 127.60, 127.09, 126.00, 125.16, 115.09, 95.73, 63.50, 43.27, 39.88, 34.55, 33.84, 25.95, 22.33, 13.96; **IR:** 3335.0, 2926.9, 2372.0, 1749.1, 1548.9, 1359.2, 1176.6, 942.0, 703.7, 548.3 cm⁻¹. **HRMS (ESI):** calcd for C₃₅H₃₄N₂O₂+Na⁺: 537.2512; found: 537.2532.

5-benzyl-5-(2-(3,4-dimethylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(5*H*)-one: yellow solid, m.p. 151 - 153 °C; 84% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.19 – 6.99 (m, 7H), 7.00-6.85 (m, 5H), 5.42 (s, 1H), 4.19 – 4.01 (m, 1H), 3.97 – 3.82 (m, 1H), 3.65 (d, *J* = 14.2 Hz, 1H), 3.34 (d, *J* = 14.2 Hz, 1H), 3.15-3.03 (m, 1H), 2.97-2.87 (m, 1H), 2.26 (s, 3H), 2.18 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 193.50, 185.41, 147.69, 137.55, 135.57, 134.63, 133.38, 131.32, 130.45, 130.02, 129.27, 128.55, 128.33, 128.12, 127.55, 127.08, 125.95, 125.17, 116.83, 112.75, 95.84, 63.36, 43.18, 39.88, 25.84, 20.36, 18.65; **IR**: 3354.9, 2923.5, 1960.2, 1748.0, 1604.0, 1451.3, 1176.0, 1025.5, 703.2, 599.7 cm⁻¹. **HRMS (ESI):** calcd for C₃₃H₃₀N₂O₂+Na⁺: 509.2199; found: 509.2203.

5-benzyl-5-(2-(2-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(*5H*)-one: yellow solid, m.p. 154 - 156 °C; 49% yield (method B: 72% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.4 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 2H), 7.12-7.01 (m, 8H), 6.98 (s, 3H), 5.41 (s, 1H), 4.17 - 4.00 (m, 1H), 3.92 - 3.73 (m, 1H), 3.56 (d, *J* = 14.1 Hz, 1H), 3.32 (d, *J* = 14.2 Hz, 1H), 3.19 - 2.91 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.23, 185.46, 148.00, 135.31, 134.78, 132.99, 130.94, 129.98, 129.26, 128.60, 128.26, 128.18, 127.88, 127.23, 127.05, 126.20, 125.00, 123.55, 115.99, 95.24, 63.36, 43.35, 39.80, 26.04; **IR**: 3341.9, 2925.5, 2371.5, 1748.4, 1547.7, 1359.0, 1177.7, 941.2, 809.4, 700.9, 549.6 cm⁻¹. **HRMS (ESI):** calcd for C₃₁H₂₅ClN₂O₂+Na⁺: 515.1497; found: 515.1514.

5-benzyl-5-(2-(3-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(*5H*)-one: yellow solid, m.p. 141 - 143 °C; 68% yield (method B: 79% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.26 – 7.19 (m, 1H), 7.11 – 6.98 (m, 11H), 6.79 (d, *J* = 7.5 Hz, 1H), 5.45 (s, 1H), 4.19 – 3.99 (m, 1H), 3.95 – 3.76 (m, 1H), 3.54 (d, *J* = 14.2 Hz, 1H), 3.33 (d, *J* = 14.1 Hz, 1H), 3.23 – 2.93 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.12, 185.46, 150.46, 135.35, 135.23, 134.79, 132.93, 130.86, 130.43, 130.00, 129.30, 128.61, 128.30, 128.19, 127.93, 127.25, 127.09, 126.22, 124.99, 118.56, 114.45, 112.75, 95.17, 63.20, 43.03, 39.81, 26.13; **IR:** 3366.4, 2925.7, 2371.6, 1748.7, 1547.7, 1358.8, 1177.8, 944.9, 701.0, 545.6 cm⁻¹. **HRMS (ESI):** calcd for C₃₁H₂₅ClN₂O₂+Na⁺: 515.1497; found: 515.1512.

5-benzyl-5-(2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(*5H*)-one: yellow solid, m.p. 138 - 140 °C ; 74% yield (method B: 85% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 7.4 Hz, 2H), 7.52 (t, *J* = 7.0 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 2H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.20-6.80 (m, 11H), 5.41 (s, 1H), 4.20 – 3.98 (m, 1H), 3.91 – 3.72 (m, 1H), 3.57 (d, *J* = 14.1 Hz, 1H), 3.32 (d, *J* = 14.1 Hz, 1H), 3.19 – 2.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.23, 185.46, 148.00, 135.31, 134.78, 132.99, 130.93, 129.98, 129.26, 128.60, 128.27, 128.18, 127.88, 127.23, 127.05, 126.20, 125.00, 123.55, 115.99, 95.24, 63.36, 43.35, 39.81, 26.04; **IR**: 3339.7, 2925.5, 1748.4, 1547.4, 1494.3, 1358.9, 1177.6, 941.0, 808.8, 700.6, 549.3 cm⁻¹. **HRMS (ESI):** calcd for C₃₁H₂₅ClN₂O₂+Na⁺: 515.1497; found: 515.1513.

5-benzyl-5-(2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(5*H*)-one: yellow solid, m.p. 152 - 154 °C; 66% yield (method B: 77% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, *J* = 7.3 Hz, 2H), 7.50-7.35 (m, 1H), 7.42 – 7.21 (m, 4H), 7.10-6.95 (m, 11H), 5.42 (s, 1H), 4.09-4.02 (m, 1H), 3.89 – 3.71 (m, 1H), 3.55 (d, *J* = 14.1 Hz, 1H), 3.31 (d, *J* = 14.1 Hz, 1H), 3.15-2.90 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.18, 185.42, 148.33, 135.26, 134.77, 132.89, 132.09, 130.85, 129.91, 129.22, 128.56, 128.21, 128.12, 127.85, 127.19, 126.95, 126.12, 124.87, 116.25, 110.59, 95.11, 63.22, 43.17, 39.73, 26.02; **IR**: 3337.2, 2925.5, 2370.8, 1747.9, 1547.5, 1358.8, 1177.5, 995.3, 806.1, 699.7, 503.4 cm⁻¹. **HRMS (ESI)**: calcd for C₃₁H₂₅BrN₂O₂+Na⁺: 559.0992; found: 559.1016.

5-benzyl-5-(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-

phenyloxazol-4(5*H*)-one: yellow solid, m.p. 74 - 76 °C; 55% yield (method B: 74% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, *J* = 5.5 Hz, 2H), 7.60-7.43 (m, 1H), 7.44-7.20 (m, 2H), 7.21-6.80 (m, 13H), 5.32 (s, 1H), 4.20-3.98 (m, 1H), 3.90-3.70 (m, 1H), 3.65 (d, *J* = 13.9 Hz, 1H), 3.31 (d, *J* = 13.9 Hz, 1H), 3.15-2.80 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.32, 185.47, 146.10, 135.42, 134.72, 133.17, 130.98, 129.99, 129.26, 128.57, 128.36, 128.15, 127.74, 127.17, 127.06, 126.13, 125.05, 117.09, 117.00, 115.95, 115.65, 95.50, 63.74, 44.08, 39.84, 25.61; **IR**: 3479.7, 3062.2, 1965.0, 1748.5, 1603.8, 1359.5, 1177.8, 941.7, 822.2, 704.0, 554.1 cm⁻¹. **HRMS (ESI):** calcd for C₃₁H₂₅FN₂O₂+Na⁺: 499.1792; found: 499.1796.

5-benzyl-2-phenyl-5-(2-(4-(trifluoromethoxy)phenyl)-1,2,3,4-

tetrahydroisoquinolin-1-yl)oxazol-4(5*H*)-one: yellow solid, m.p. 125 - 127 °C; 64% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.69 (d, J = 7.3 Hz, 2H), 7.60-7.43 (m, 1H), 7.33 (t, J = 7.7 Hz, 2H), 7.19 – 7.03 (m, 10H), 7.03 – 6.88 (m, 3H), 5.43 (s, 1H), 4.19 – 4.00 (m, 1H), 3.90 – 3.77 (m, 1H), 3.58 (d, J = 14.2 Hz, 1H), 3.33 (d, J = 14.2 Hz, 1H), 3.22 – 2.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 193.22, 185.50, 148.17, 135.30, 134.80, 132.99, 130.92, 130.01, 129.31, 128.62, 128.30, 128.21, 127.93, 127.27, 127.10, 126.96, 126.27, 125.03, 122.44, 115.95, 115.40, 95.19, 63.52, 43.49, 39.84, 26.04; **IR**: 3365.2, 2923.3, 2378.1, 1745.8, 1603.6, 1452.1, 1360.0, 1259.5, 1093.2, 801.2, 703.5 cm⁻¹. **HRMS (ESI):** calcd for C₃₂H₂₅FN₂O₃+Na⁺: 565.1709; found: 565.1717.

5-benzyl-5-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-2-(p-tolyl)oxazol-4(5*H***)one: yellow solid, m.p. 192 - 194 °C; 61% yield (method B: 90% yield); ¹H NMR (300 MHz, CDCl₃) \delta 7.60 (d,** *J* **= 8.2 Hz, 2H), 7.30 (t,** *J* **= 8.0 Hz, 2H), 7.18 – 7.08 (m, 6H), 7.08 – 7.00 (m, 4H), 7.00 – 6.88 (m, 3H), 6.82 (t,** *J* **= 7.2 Hz, 1H), 5.49 (s, 1H), 4.16 – 4.02 (m, 1H), 3.96 – 3.81 (m, 1H), 3.60 (d,** *J* **= 14.2 Hz, 1H), 3.35 (d,** *J* **= 14.2 Hz, 1H), 3.17 – 2.90 (m, 2H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) \delta 193.40, 185.38, 149.39, 146.01, 135.51, 133.30, 131.34, 130.00, 129.45, 129.36, 128.20, 128.09, 127.64, 127.07, 126.00, 122.27, 118.63, 114.70, 95.32, 63.26, 42.98, 39.82, 26.09, 21.88; IR**: 3463.3, 2927.0, 2365.4, 1921.7, 1744.2, 1548.0, 1358.1, 1183.8, 943.4, 736.6, 601.5, 483.3 cm⁻¹. **HRMS (ESI):** calcd for C₃₂H₂₈N₂O₂+Na⁺: 495.2043; found: 495.2055.

5-benzyl-2-(4-chlorophenyl)-5-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-

yl)oxazol-4(5*H*)-one: yellow solid, m.p. 196 - 198 °C; 57% yield (method B: 81% yield); ¹H NMR (300 MHz, CDCl₃) δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.31 (t, *J* = 8.1 Hz, 4H), 7.18 - 7.01 (m, 8H), 6.96 (d, *J* = 9.4 Hz, 3H), 6.84 (t, *J* = 7.1 Hz, 1H), 5.49 (s, 1H), 4.26 - 3.97 (m, 1H), 3.97 - 3.81 (m, 1H), 3.61 (d, *J* = 14.2 Hz, 1H), 3.36 (d, *J* = 14.2 Hz, 1H), 3.22 - 3.04 (m, 1H), 3.04 - 2.89 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.15, 184.37, 149.33, 141.35, 135.51, 133.11, 131.20, 130.47, 129.96, 129.50, 129.12, 128.27, 128.18, 127.78, 127.22, 127.01, 126.10, 123.50, 118.82, 114.78, 95.84, 63.34, 43.09, 39.83, 26.14; **IR**: 3366.2, 2923.3, 2368.1, 1739.0, 1597.3, 1260.5, 1085.6, 942.8, 742.3, 604.4 cm⁻¹. **HRMS (ESI):** calcd for C₃₁H₂₅ClN₂O₂+Na⁺: 515.1497; found: 515.1502.

(G) X-ray single crystal data for 3c

Bond prec	cision:		C-C=0.0045 A		Wavelength=0.71073
Cell:	a = 6.5198 (3)	b	= 16.3244 (7)	(c = 24.2413 (9)
	alpha = 90	b	eta = 94.884(4)	8	gamma = 90
Temperatu	ure: 293 K				
		Calcu	lated		Reported
Volume		2570.	68(19)		2570.66(18)
Space gr	oup	P 21/c	2		P 1 21/c 1
Hall grou	ıp	-P 2ył	oc		-P 2ybc
Moiety f	ormula	C32 H	I28 N2 O2		C32 H28 N2 O2
Sum form	nula	C32 H	128 N2 O2		C32 H28 N2 O2
Mr		472.5	6		472.56
Dx, g cm	1-3	1.221			1.221
Ζ		4			4
Mu (mm	-1)	0.076			0.076
F000		1000.	0		1000.0
F000'		1000.4	40		
h, k, lma	X	8, 21,	32		8, 21, 30
Nref		6508			5764
Tmin, Tr	nax	0.973	, 0.981		0.566, 1.000
Tmin'		0.973			
Correction	n method = MU	LTI-SO	CAN		
Data com	pleteness = 0.88	86	Theta (max) =	28.	.477
R (reflecti	ions) = 0.0667 (3293)	wR2 (reflectio	ons))= 0.1843 (5764)
S = 1.073		Npar =	= 373		

(H) References

[1] X.-Z. Shu, X.-F. Xia, K.-G. Ji, X.-Y. Liu and Y.-M. Liang, J. Org. Chem., 2009, 74, 7464.

[2] T. Misaki, G. Takimoto and T. Sugimura, J. Am. Chem. Soc., 2010, 132, 6286.

----5.496

Bn, н Ô 3c

Bn, Ή 0 Ph 3c

Bn., O≓

`N[≠] 3d Ph

Bn, Ω N 3d

Bn. 3e

Bn, 0= Ph 'N 3g

S26

-0.000

5.420

703 685 713 715 713 715 713 715 713 713 713 713 713 713 713 713 713 713	616	.102	819 675 628	337 290	.019 .958
0	Ω.	4	n n n	т	ΜN
$ \langle $			$ \rangle /$	\backslash	

H Bn, OCF₃ 0= Ph 3m

