Electronic Supplementary Information for

Reactivity of paramagnetic organometallic

phenylenediamido chromium complexes

Wen Zhou,^a Brian O. Patrick^b and Kevin M. Smith,^{*,a}

^aDepartment of Chemistry, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, Canada VIV 1V7 ^bDepartment of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1

E-mail: kevin.m.smith@ubc.ca

Table of Contents

I.	General Considerations	S 2
II.	Syntheses of New Complexes	S2
III.	X-ray Crystallography	S10
IV.	UV-vis and NMR Spectroscopy	S25

General Considerations: All reactions were carried out under nitrogen using standard Schlenk and glove box techniques. Hexanes, toluene, Et₂O and THF were purified by passage through activated alumina and deoxygenizer columns from Glass Contour Co. (Laguna Beach, CA, USA). Celite (Aldrich) was dried overnight at 120 °C before being evacuated and then stored under nitrogen. CrCl₃ (anhydrous), LiN(SiMe₃)₂, n-BuLi (1.6M in hexanes), NaCp (2.0M in THF), Me₃SiCH₂MgCl (1.0 M in Et₂O), PbCl₂, N₃Ad and 1,4-dioxane (anhydrous) were purchased from Aldrich and used as received. (Me₃SiNH)₂C₆H₄,¹ (Me₃CCH₂NH)₂C₆H₄,² (PhNH)₂C₆H₄,³, and CpCrCl₂(THF),⁴ and were prepared according to the literature procedures. Li₂[R₂C₆H₄] were prepared by reaction of the corresponding neutral, doubly protonated ligand with BuLi. The azides: PhN₃, TolN₃, MesN₃,⁵ N₃Ts⁶ and N₃Trisyl⁷ were prepared according to the literature procedures and freeze-pump-thaw degassed before use.

UV-vis spectroscopic data were collected on a Varian Cary 100 Bio UV-visible or a Shimadzu UV 2550 UV-vis spectrophotometer in hexane or THF solution in a specially constructed cell for air-sensitive samples: a Kontes Hi-Vac Valve with PTFE plug was attached by a professional glassblower to a Hellma 10 mm path length quartz absorption cell with a quartz-to-glass graded seal. Elemental analyses were performed by Guelph Chemical Laboratories, Guelph, ON, Canada or by the UBC Department of Chemistry microanalytical services.

Synthesis of CpCr[(Me₃SiN)₂C₆H₄] (1). Method A: To a solution of CpCrCl₂(THF) (314 mg, 1.20 mmol) 30 ml Et₂O, (Me₃SiNH)₂C₆H₄ (351 mg, 1.39 mmol) was added, causing the (1) solution to become dark green. Me₃SiCH₂MgCl (2.6 ml, 1.0 M in Et₂O, 2.6 mmol) was added and stirred for 4 h, during which time solution become dark red. 1,4-dioxane (1.3 ml, 15 mmol) was added, resulting in the immediate formation of a large quantity of white precipitate. After stirring for an additional 1 h, the solvent was removed *in vacuo*, the residue was extracted with 6 ml hexanes, and then the dark red extracts were filtered through Celite and cooled to -35 °C. Black crystals of **1** were isolated in two different fractions (298 mg, 68%).

Method B: To a solution of CpCrCl₂(THF) (421 mg, 1.62 mmol) 20 ml Et₂O, Li₂[(Me₃SiN)₂C₆H₄] (468 mg, 1.77 mmol) was added, causing the solution to become dark red. After sitting for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 6 ml hexanes, and then the dark red extracts were filtered through Celite and cooled to -35 °C. Black crystals of **1** were isolated in two different fractions (316 mg, 53%). (Evans, C₆D₆): 3.49 μ_B . Anal. Calcd for C₁₇H₂₇N₂Si₂Cr: C, 55.55; H, 7.40; N, 7.62. Found: C, 54.84; H, 7.58; N, 6.07. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 359 (3100), 450 (1800), 501(1700), 869(1200).

Synthesis of CpCr[(Me₃SiN)₂C₆H₄](THF) (1a). To a solution of CpCrCl₂(THF) (105 mg, 0.405 mmol) 15 ml Et₂O, (Me₃SiNH)₂C₆H₄ (97 mg, 0.38 mmol) was added, causing the solution to become dark green. Me₃SiCH₂MgCl (0.85 ml, 1.0

M in Et₂O, 0.85 mmol) was added and 10 ml THF was also added to dissolve the precipitate in the solution. After stirring for 20 h, 1,4-dioxane (1.3 ml, 15 mmol) was added, resulting in the immediate formation of a large quantity of white precipitate. After stirring for an additional 1 h, the solvent was removed *in vacuo*, the residue was extracted with 4 ml hexanes, and then the dark red extracts were filtered through Celite and cooled to -35 °C. Black crystals of **1a** were isolated in two different fractions (131 mg, 77%). UV-vis (THF; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 472 (1000). Due to the facile loss of THF from **1a**, a satisfactory elemental analysis for this complex was not obtained.

Synthesis of CpCr[(Me₃CCH₂N)₂C₆H₄] (2). Method A: To a solution of CpCrCl₂(THF) (100 mg, 0.384 mmol) 20 ml Et₂O, (Me₃CCH₂NH)₂C₆H₄ (111 mg, 0.447 mmol) was added, causing the solution to become dark green. Me₃SiCH₂MgCl (0.85 ml, 1.0 M in Et₂O, 0.85 mmol) was added and stirred for 4 h, during

which time solution become dark blue. 1,4-dioxane (0.9 ml, 10.2 mmol) was added,

resulting in the immediate formation of a large quantity of white precipitate. After stirring for an additional 1 h, the solvent was removed *in vacuo*, the residue was extracted with 3 ml hexanes, and then the dark blue extracts were filtered through Celite and cooled to -35 °C. Black powders of **2** were isolated in one fraction (25.5 mg, 18%). (Evans, C₆D₆): 3.29 μ_B . Anal. Calcd for C₂₁H₃₁N₂Cr: C, 69.39; H, 8.60; N, 7.70. Found: C, 71.24; H, 9.81; N, 9.77. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 373 (3900), 519 (1600), 710 (1600). Despite repeated attempts, crystals of **2** suitable for X-ray diffraction were not obtained, and elemental analyses of the isolated powder consistently analyzed with higher than calculated values for C, H and N.

Method B: To a solution of CpCrCl₂(THF) (45 mg, 0.17 mmol) 20 ml THF, Li₂[(Me₃CCH₂N)₂C₆H₄] (50 mg, 1.9 mmol) was added, causing the solution to become dark blue. After stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 6 ml hexanes, and then the dark blue extracts were filtered through Celite. Crude solutions of **2** prepared by this route were used in further reactions to prepare CpCr[(Me₃CCH₂N)₂C₆H₄](X) derviatives, as described below.

Synthesis of CpCr[(PhN)₂C₆H₄] (3). To a solution of CpCrCl₂(THF) (100 mg, 0.386 mmol) 10 ml Et₂O, (PhNH)₂C₆H₄ (123 mg, 0.472 mmol) was added, causing the solution to become dark green. LiN(SiMe₃)₂ (145 mg,

0.868 mmol) was added and was stirred for 20 h, during which time solution become dark blue. The solvent was removed *in vacuo*, the residue was extracted with 5 ml Et₂O, and then the dark blue extracts were filtered through Celite and cooled to -35 °C. Black crystals of **3** were isolated in two fractions (47 mg, 32%). (Evans, C₆D₆): 3.82 μ_B . Anal. Calcd for C₂₃H₁₉N₂Cr: C, 73.59; H, 5.10; N, 7.46. Found: C, 70.34; H, 5.25; N, 7.20. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 373 (6400), 657 (3100). Despite repeated attempts, crystals of **3** suitable for X-ray diffraction were not obtained, and elemental analyses of the isolated crystals gave lower than calculated values for carbon.

Synthesis of CpCr[(Me₃SiN)₂C₆H₄](Cl) (4). To a solution of CpCr[(Me₃SiN)₂C₆H₄] (67 mg, 0.18 mmol) in 10 ml Et₂O, PbCl₂ (30 mg, 0.12 mmol) was added, and was stirred for 20 h. During this time the solution colour changed to dark green. The solvent

was then removed *in vacuo*, the residue was extracted with 5 ml hexane, and the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **4** were isolated in one fraction (44 mg, 59%). (Evans, C₆D₆): 2.73 μ _B. Anal. Calcd for C₁₇H₂₇N₂Si₂CrCl: C, 50.66; H, 6.75; N, 6.95. Found: C, 51.02; H, 6.70; N, 7.18. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 336 (5800), 380 (4600), 461 (1030), 530 (1700), 660 (2100) 731 (1500).

Synthesis of CpCr[(Me₃CCH₂N)₂C₆H₄](Cl) (5). To a solution of CpCr[(Me₃CCH₂N)₂C₆H₄] (0.769 mmol) in 10 ml Et₂O (prepared from CpCrCl₂(THF) and Li₂[(Me₃CCH₂N)₂C₆H₄] as described in **2** method B, above), PbCl₂ (109 mg, 0.423 mmol)

was added. The mixture was stirred for 20 h, during which time solution colour changed to dark green yellow. The solvent was then removed *in vacuo*, the residue was extracted with 9 ml hexane, and the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **5** were isolated in three fractions (70 mg, 23%). (Evans, C₆D₆): 2.62 μ _B. Anal. Calcd for C₂₁H₃₁N₂CrCl: C, 63.23; H, 7.83; N, 7.02. Found: C, 62.89; H, 7.81; N, 6.96. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 383 (7800), 450 (11200), 533 (1900), 632 (1500).

Synthesis of CpCr[(Ph)₂C₆H₄](Cl) (6). To a solution of CpCrCl₂(THF) (30 mg, 0.12 mmol) 10 ml Et₂O, (PhNH)₂C₆H₄ (33 mg, 0.13 mmol) was added, causing the solution to become dark green. LiN(SiMe₃)₂ (43 mg, 0.26 mmol) was added and

the mixture was stirred for 20 h, during which time solution become dark blue. The solvent was removed *in vacuo*, the residue was extracted with 5 ml Et₂O, and then the dark blue extracts were filtered through Celite. $PbCl_2$ (67 mg, 0.24 mmol) was then added as a suspension in 20 ml THF. After stirring for 20 h, the solution colour

changed to dark green yellow. The solvent was then removed *in vacuo*, the residue was extracted with 4 ml hexane, and the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **6** were isolated in two fractions (23 mg, 48%). (Evans, C₆D₆): 2.53 μ_B . Anal. Calcd for C₂₃H₁₉N₂CrCl: C, 67.24; H, 4.66; N, 6.82. Found: C, 64.82; H, 4.80; N, 6.88. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 350 (8400), 452 (8900), 504 (2900), 538 (3000), 652 (2400). Elemental analysis of **6** repeatedly gave lower than calculated values for carbon.

Synthesis of CpCr[(Me₃SiN)₂C₆H₄](NAd) (7a). To a solution of CpCr[(Me₃SiN)₂C₆H₄] (67 mg, 0.18 mmol) in 12 ml Et₂O, N₃Ad (35 mg, 0.20 mmol) was added, causing the solution to become dark red yellow. After stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted

with 3 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **7a** were isolated in three different fractions (56 mg, 59%). (Evans, C_6D_6): 2.09 μ_B . Anal. Calcd for $C_{27}H_{42}N_3Si_2Cr$: C, 62.75; H, 8.19; N, 8.13. Found: C, 62.67; H, 8.24; N, 8.22. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 459 (3800).

Synthesis of CpCr[(Me₃SiN)₂C₆H₄](NMes) (7b). To a solution of CpCr[(Me₃SiN)₂C₆H₄] (29 mg, 0.079 mmol) in 8 ml Et₂O, N₃Mes (16 mg, 0.097 mmol) was added, causing the solution to become dark brown. After

stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 2 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **7b** were isolated in one fraction (17 mg, 43%). (Evans, C₆D₆): 1.69 μ_B . Anal. Calcd for C₂₆H₃₈N₃Si₂Cr: C, 62.36; H, 7.65; N, 8.39. Found: C, 60.93; H, 7.75; N, 8.57. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 377 (5900). Elemental analysis of **7b** repeatedly gave lower than calculated values for carbon.

Synthesis of CpCr[(Me₃CCH₂N)₂C₆H₄](NAd) (8). To a solution of CpCr[(Me₃CCH₂N)₂C₆H₄] (0.384 mmol) in 8 ml Et₂O (prepared from CpCrCl₂(THF) and Li₂[(Me₃CCH₂N)₂C₆H₄] as described in **2** method B, above), N₃Ad (76 mg, 0.43 mmol) was added, causing the

solution to become dark black. After stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 2 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **8** were isolated in one fraction (49 mg, 25%). (Evans, C₆D₆): 1.67 μ_B . Anal. Calcd for C₃₁H₄₆N₃Cr: C, 72.62; H, 9.04; N, 8.19. Found: C, 72.95; H, 9.41; N, 8.04. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 378 (6200).

Synthesis of Cr[(Me₃CCH₂N)₂C₆H₄](NMes)₂ (9). To a solution of CpCr[(Me₃CCH₂N)₂C₆H₄] (0.191 mmol) in 15 ml Et₂O (prepared from CpCrCl₂(THF) and Li₂[(Me₃CCH₂N)₂C₆H₄] as described in **2** method B, above), N₃Mes (41 mg, 0.25 mmol) was added, causing the solution to become dark green. After stirring for 20 h, the solvent was removed *in vacuo*, the residue was

extracted with 3 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of Cr[(Me₃CCH₂N)₂C₆H₄](NMes)₂ **9** (16 mg, 25%) were obtained, as characterized by X-ray crystallography. ¹H NMR (C₆D₆, 400 MHz): δ 7.03 (m, 2H, Ar-H), 6.92 (m, 2H, Ar-H), 6.64 (s, 4H, Mes-H), 4.3 (s, 4H, CH₂), 2.35 (s, 12H, *p*-Mes-CH₃), 2.08 (s, 6H, *o*-Mes-CH₃), 1.04 (s, 18H, ^tBu-CH₃). Anal. Calcd for C₃₄H₄₈N₄Cr: C, 72.31; H, 8.57; N, 9.92. Found: C, 72.11; H, 8.61; N, 9.83. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 343 (17000), 582 (10000).

Synthesis of CpCr[(Me₃SiN)₂C₆H₄](NHTs) (10). To a solution of CpCr[(Me₃SiN)₂C₆H₄] (27 mg, 0.073 mmol) in 15 ml Et₂O, N₃Ts (27 mg, 0.14 mmol) was added, causing the solution to become dark green. After

stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 3 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **10** were isolated in one fraction (17 mg, 44%). (Evans, C₆D₆): 2.32 μ_B . Anal. Calcd for C₂₄H₃₅N₃Si₂CrSO₂: C, 53.61; H, 6.56; N, 7.81. Found: C, 53.41; H, 6.25; N, 8.57. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 450 (6400), 643 (1500).

Synthesis of CpCr[(Me_3CCH_2N)₂C₆H₄](NHTs) (11). To a solution of CpCr[(Me_3CCH_2N)₂C₆H₄] (0.393 mmol) in 15 ml Et₂O (prepared from CpCrCl₂(THF) and Li₂[(Me_3CCH_2N)₂C₆H₄] as described in **2** method B,

above), N₃Ts (91 mg, 0.46 mmol) was added and causing the solution to become dark green. After stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 3 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **11** were isolated in one fraction (24 mg, 11%). (Evans, C₆D₆): 2.49 μ_B . Anal. Calcd for C₃₂H₅₁N₃CrSSi₂O₂: C, 59.14; H, 7.91; N, 6.46. Found: C, 59.33; H, 7.69; N, 6.81. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 378 (8300), 440 (8500), 637 (1700).

Synthesis of CpCr[(Me₃SiN)₂C₆H₄](NHTrisyl) (12). To a solution of CpCr[(Me₃SiN)₂C₆H₄] (28 mg, 0.075 mmol) in 8 ml C₆H₆, N₃Trisyl (27 mg, 0.14 mmol) was added, causing the solution to become dark green

yellow. After stirring for 20 h, the solvent was removed *in vacuo*, the residue was extracted with 3 ml hexane, and then the extracts were filtered through Celite and cooled to -35 °C. Black crystals of **12** were isolated in one fraction (8 mg, 16%). (Evans, C_6D_6): 2.37 μ_B . Anal. Calcd for $C_{32}H_{51}N_3CrSi_2SO_2$: C, 59.14; H, 7.91; N,

6.46. Found: C, 59.33; H, 7.69; N, 6.81. UV-vis (hexane; λ_{max} , nm (ϵ , M⁻¹cm⁻¹)): 451 (8000), 641 (1900).

Cyclization of N₃Trisyl with 3.

To a solution of CpCr[(PhN)₂C₆H₄] (10 mg, 0.026 mmol, 20 mol%) in 1 ml of C₆H₆, was added N₃Trisyl (41 mg, 0.13 mmol) and was stirred for 65 hr at 70 °C. The solvent was then removed *in vacuo*, the residue was extracted with 0.5 ml CDCl₃ then filtered through Celite into an air-tight J. Young NMR tube. The crude cyclized product was identified by ¹H NMR (CDCl₃, 400 MHz). The solvent was then removed *in vacuo* again, the residue was purified by flash chromatography with a gradient solvent system of 100:0 (hexanes: ethyl acetate) to 50:50 (hexanes: ethyl acetate), the product is eluted. Removal of solvent *in vacuo* gave a white powder (34 mg, 84%) that was identified as the previously reported⁷ benzosultam complex by ¹H NMR (CDCl₃, 400 MHz): δ 7.2, 6.9 (s, 2H, Ar-H), 4.4 (s, 1H, NH), 3.5 (sept, 1H, ⁱPr-CH), 2.9 (sept, 1H, ⁱPr-CH), 1.5 (s, 6 H, ⁱPr-Me), 1.2 (d, 6 H, ⁱPr-Me), 1.1 (d, 6 H, ⁱPr-Me).

X-ray Crystallography: Single crystals were mounted on glass fibers and measurements were made on a Bruker X8 APEX II diffractometer with graphite-monochromated Mo Kα radiation. The data were collected at a temperature of -100 ± 1 °C in a series of φ and ω scans in 0.50° oscillations. Data were collected and integrated using the Bruker SAINT software package¹ and were corrected for absorption effects using the multi-scan technique (SADABS).² The data were corrected for Lorentz and polarization effects and the structure was solved by direct methods.³ Compounds **1a**, **8** and **9** crystallize on a mirror plane, with one half-molecule in the asymmetric unit. Additionally, the Cp ring and THF of compound 1a were disordered and subsequently modeled in two orientations. Compound 6 crystallizes with two independent molecules in the asymmetric unit. One of CH₂CMe₃ group of compound 9 was disordered and subsequently modeled in two orientations. For complex 6, data were corrected for absorption effects using the multiscan technique (TWINABS). All non-hydrogen atoms in complex 6 were refined anisotropically except for C1, C21, C22, C42 and C44. All refinements were performed using the SHELXTL crystallographic software package of Bruker-AXS.⁴ The molecular drawings were generated by the use of $ORTEP-3^5$ and POV-Ray.

¹ SAINT, version 7.46A; Bruker Analytical X-ray System: Madison, WI, 1997-2007.

² SADABS. Bruker Nonius area detector scaling and absorption correction, V2.10; Bruker AXS Inc.: Madison, WI, 2003.

³ *SIR92*. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. *J. Appl. Crystallogr.* **1993**, *26*, 343-350.

⁴ SHELXTL, Version 5.1; Bruker AXS Inc.: Madison, WI, 1997.

⁵ Farrugia, L. J. J. Appl. Crystallogr. 1997, 32, 565.

Compound Number	1a	5	6
Formula	$C_{21}H_{35}N_2OSi_2Cr$	$C_{21}H_{31}N_2CrCl$	$C_{23}H_{19}N_2CrCl$
Formula Weight	439.69	398.93	410.85
Crystal Color, Habit	black, prism	black, plate	black, irregular
Crystal Dimensions, mm	$0.10 \times 0.15 \times 0.25$	$0.05 \times 0.25 \times 0.30$	$0.10 \times 0.20 \times 0.26$
Crystal System	monoclinic	orthorhombic	triclinic
Space Group	<i>C</i> 2/ <i>m</i>	P bna	P -1
<i>a</i> , Å	13.073(2)	13.5642(10)	10.747(4)
b, Å	15.574(3)	16.8668(13)	12.676(4)
<i>c</i> , Å	12.961(2)	18.2940(14)	16.141(5)
<i>α</i> , °	90.00	90.00	90.420(6)
eta, °	118.861(9)	90.00	107.496(6)
γ, °	90.00	90.00	110.920(5)
$V, Å^3$	2310.9(7)	4185.4(5)	1942.6(11)
Z	4	8	4
D calc, g/cm^3	1.264	1.266	1.405
F ₀₀₀	940	1696	848
μ (MoK α), cm ⁻¹	6.12	6.80	7.36
Data Images (no., <i>t</i> /s)	1239	587.00	2427
$2\theta_{max}$	57.46	57.42	45.28
Reflections measrd	11469	23860	28907
Unique reflcn, R _{int}	3025, 0.0433	5426, 0.0462	4962, 0.1822
Absorption, T_{min} , T_{max}	0.712, 0.869	0.871, 0.967	0.543, 0.929
Observed data (I>2.00 σ (I))	2104	3888	4070
No. parameters	165	226	462
R1, wR2 (F^2 , all data)	0.0767, 0.1127	0.0656, 0.0952	0.1531, 0.3480
R1, wR2 (F, I>2.00σ(I))	0.0424, 0.0977	0.0364, 0.0814	0.1357, 0.3382
Goodness of Fit	1.044	1.010	1.099
Max, Min peak, e ⁻ /Å ³	0.495, -0.514	0.363, -0.416	2.343, -1.140

Table S1.X-ray crystallographic data for complexes 1a, 5 and 6.

Compound Number	7a	7b	8
Formula	$C_{27}H_{42}N_3Si_2Cr$	$C_{26}H_{38}N_3Si_2Cr$	$C_{31}H_{46}N_3Cr$
Formula Weight	516.82	500.77	512.71
Crystal Color, Habit	black, plate	black, prism	black, plate
Crystal Dimensions, mm	$0.10 \times 0.40 \times 0.40$	$0.15 \times 0.20 \times 0.25$	$0.10 \times 0.15 \times 0.25$
Crystal System	monoclinic	monoclinic	monoclinic
Space Group	$P 2_1/n$	$P 2_{1}/c$	<i>C</i> 2/ <i>m</i>
<i>a</i> , Å	10.5631(12)	9.4360(14)	15.964(3)
b, Å	19.238(2)	26.568(4)	13.0182(19)
<i>c</i> , Å	14.5072(16)	11.3270(17)	14.345(3)
α, °	90.00	90.0	90.0
β, °	111.307(6)	108.782(3)	113.436(5)
γ, °	90.00	90.0	90.0
$V, Å^3$	2746.5(5)	2688.3(7)	2735.2(8)
Z	4	4	4
D calc, g/cm^3	1.25	1.237	1.245
F ₀₀₀	1108	1068	1108
μ (MoK α), cm ⁻¹	5.24	5.33	4.42
Data Images (no., <i>t</i> /s)	993.00	1008	1081
$2\theta_{max}$	51.50	60.14	56.00
Reflections measrd	17253	31476	12656
Unique reflcn, R _{int}	5084, 0.0767	7880, 0.0376	3404, 0.0359
Absorption, T_{min} , T_{max}	0.811, 0.949	0.877, 0.923	0.860, 0.957
Observed data (I> $2.00\sigma(I)$)	3241	6367	2645
No. parameters	298	291	169
R1, wR2 (F^2 , all data)	0.1148, 0.1868	0.0556, 0.0992	0.0598, 0.1073
R1, wR2 (F, I>2.00σ(I))	0.0653, 0.1667	0.0406, 0.0927	0.0393, 0.0976
Goodness of Fit	1.080	1.067	1.053
Max, Min peak, $e^{-}/Å^{3}$	0.844, -0.593	0.456, -0.424	0.418, -0.371

Table S2.X-ray crystallographic data for complexes **7a**, **7b** and **8**.

Compound Number	9	11	12
Formula	$C_{34}H_{48}N_4Cr$	$C_{28}H_{38}N_3SO_2Cr$	$C_{32}H_{51}N_3O_2Si_2SCr$
Formula Weight	564.76	533.68	650.00
Crystal Color, Habit	black, prism	black, prism	black, prism
Crystal Dimensions, mm	$0.06 \times 0.11 \times 0.27$	$0.025 \times 0.075 \times 0.100$	$0.06 \times 0.095 \times 0.175$
Crystal System	triclinic	orthorhombic	monoclinic
Space Group	P -1	P bca	$P 2_1/n$
<i>a</i> , Å	12.1837(4)	19.539(2)	15.9850(18)
<i>b</i> , Å	12.1849(3)	9.9443(11)	11.6860(13)
<i>c</i> , Å	12.4184(4)	27.280(3)	19.444(2)
α , °	106.3990(10)	90.0	90.00
eta, °	91.635(2)	90.0	110.836(3)
γ, °	113.395(2)	90.0	90.00
$V, Å^3$	1602.36(8)	5300.6(10)	3394.6(7)
Z	2	8	4
D calc, g/cm^3	1.171	1.338	1.272
F ₀₀₀	608.00	2272	1392
μ (MoK α), cm ⁻¹	3.84	5.41	5.01
Data Images (no., t/s)	1736	930	1144
$2\theta_{max}$	55.86	46.04	60.14
Reflections measrd	29214	27184	39849
Unique reflcn, R _{int}	7442, 0.0280	3682, 0.1263	9932, 0.0576
Absorption, T_{min} , T_{max}	0.862, 0.977	0.780, 0.987	0.917, 0.970
Observed data (I> $2.00\sigma(I)$)	6059	2370	7024
No. parameters	358	311	371
R1, wR2 (F^2 , all data)	0.0558, 0.1152	0.1084, 0.1338	0.0743, 0.0969
R1, wR2 (F, I>2.00σ(I))	0.0417, 0.1072	0.0579, 0.1153	0.0409, 0.0855
Goodness of Fit	1.049	1.078	1.004
Max, Min peak, $e^{-}/Å^{3}$	0.508, -0.426	0.659, -0.375	0.444, -0.400

Table S3. X-ray crystallographic data for complexes 9, 11 and 1	12.
---	-----

Figure S1. Thermal ellipsoid diagram (50%) of **1a** (CCDC 1001249). All hydrogen atoms have been removed for clarity.

Figure S2. Thermal ellipsoid diagram (50%) of **5** (CCDC 1001254). All hydrogen atoms have been removed for clarity.

Figure S3. Thermal ellipsoid diagram (50%) of **6** (CCDC 1001255). All hydrogen atoms have been removed for clarity.

Figure S4. Thermal ellipsoid diagram (50%) of **7a**. (CCDC 1001256) All hydrogen atoms have been removed for clarity.

Figure S5. Thermal ellipsoid diagram (50%) of **7b** (CCDC 1001257). All hydrogen atoms have been removed for clarity.

Figure S6. Thermal ellipsoid diagram (50%) of **8** (CCDC 1001260). All hydrogen atoms have been removed for clarity.

Figure S7. Thermal ellipsoid diagram (50%) of **9** (CCDC 1001261). All hydrogen atoms have been removed for clarity.

Figure S8. Thermal ellipsoid diagram (50%) of **11** (CCDC 1001262). All hydrogen atoms have been removed for clarity.

Figure S9. Thermal ellipsoid diagram (50%) of **12** (CCDC 1001263). All hydrogen atoms have been removed for clarity.

Table S4. Bond Lengths (in Å) for $(Me_3CCH_2N)_2C_6H_4$ ligand in **2a-c**, **5**, **8**, **9**, **11**.

M								
$ \begin{array}{c} $								
entry	#	N1C1	N2-C2	C1–C2	C4–C5	Ox. Level		
1	Zr(pda)	1.412(2)	1.411(2)	1.365(3)	1.380(3)	X_2		
2	Zr(disq)	1.346(2)	1.347(2)	1.467(2)	1.421(3)	LX•		
3	Zr (ave)	1.379	1.379	1.416	1.4005			
4	5 Cl	1.360(2)	1.353(2)	1.439(3)	1.407(3)	LX•		
			C(6)–N(2)	C(1)–C(6)	C(3)–C(4)			
5	8 NAd	1.379(2)	a	1.439(3)	1.392(4)	?		
		C(3)–N(1)		C(3)-C(3)#	C(1)-C(1)#			
6	9 NMes	1.369(2)	1.362(3)	1.449(3)	1.408(3)	LX•		
		C(6)–N(1)	C(1)–N(2)	C(1)–C(6)	C(3)–C(4)			
7	11	1.363(7)	1.367(7)	1.439(7)	1.390(8)	LX•		
	NHTs	C(1)–N(1)	C(6)–N(2)	C(1)–C(6)	C(3)–C(4)			

^{*a*} Both ligand N–C bond lengths are identical due to crystallographic mirror plane.

For the four $(Me_3CCH_2N)_2C_6H_4$ complexes that were structurally characterized by single crystal X-ray diffraction, the oxidation level of the ancillary ligand was assigned by comparison with the structural parameters reported by Heyduk and co-workers for Zr[$(Me_3CCH_2N)_2C_6H_4$]₂(THF) (X₂ ligand, entry 1) and Zr[$(Me_3CCH_2N)_2C_6H_4$]₂(Cl)₂ (LX• ligand, entry 2).² Following the analysis used by Brown for related catecholate and 2-amidophenoxide ligands,⁸ the four most significant bond lengths were compared for all complexes. Entry 3 lists the midpoint between the two limiting structures reported by Heyduk: this value was used as the cut-off to distinguish between the dianionic and monoanionic ligand oxidation levels.

For all of the chromium complexes, the C1–C2 bond length (the two carbons bound to the N-donor atoms) were found to be closer to the monoanionic diiminosemiquinonate LX• form than the phenylenediamide X₂ form. For most of the complexes, however, the other bond lengths were indicative of the oxidation level of the ligand. The exception was the adamantyl imido complex **8**, which also displayed unusual Cr–NAd bonding parameters, with a long Cr–NAd bond (1.658(2) Å) and a Cr–N–Ad angle that deviated from linearity (159.76(18)°).

Table S5. Bond Lengths (in Å) for $(Me_3SiN)_2C_6H_4$ ligand in **1a**, **7a-d**, **12**.

Μ

$\begin{array}{c} Me_3Si \\ N_1 \\ N_2 \\ C_1 \\ C_2 \\ C_6 \\ C_5 \\ C_4 \\ \end{array} \\ \begin{array}{c} SiMe_3 \\ $								
entry	#	N1-C1	N2-C2	C1–C2	C4–C5	Cr-N	Ox.	
						imido	Level	
1	Zr(pda)	1.412(2)	1.411(2)	1.365(3)	1.380(3)		X_2	
2	Zr(disq)	1.346(2)	1.347(2)	1.467(2)	1.421(3)		LX•	
3	Zr (ave)	1.379	1.379	1.416	1.4005			
4	1a THF	1.407(3)	a	1.415(5)	1.377(5)		X_2	
		C(1)–N(1)		C(1)–C(1)#	C(3)–C(3)#			
5	7a NAd	1.387(6)	1.396(6)	1.420(6)	1.386(7)	1.632(4)	X_2	
		C(6)–N(1)	C(1)–N(2)	C(1)–C(6)	C(3)–C(4)			
6	7b NMes	1.388(2)	1.382(2)	1.428(2)	1.382(2)	1.660(1)	X_2	
		C(1)–N(1)	C(6)–N(2)	C(1)–C(6)	C(3)–C(4)			
7	12	1.361(2)	1.360(2)	1.439(3)	1.405(3)	2.027(2)	LX•	
	NHTrisyl							

^{*a*} Both ligand N–C bond lengths are identical due to crystallographic mirror plane.

As in Table S6, the table above is an attempt to tentatively assign the oxidation level of the $(Me_3SiN)_2C_6H_4$ ligand by comparison of the key ligand bond lengths to the zirconium complexes reported by Heyduk and co-workers.² Both of the imido complexes **7ab** showed bond lengths consistent with a dianionic X₂ ligand, with the C1–C2 length again being closer to the radical LX• form in both cases.

Figure S10. UV-visible spectra indicating reversible binding of THF to $CpCr[(Me_3SiN)_2C_6H_4]$ (1).

UV-vis absorption spectra of CpCr[(Me₃SiN)₂C₆H₄] (1) in hexane [1.6×10^{-4} M] (red line) and in THF [1.6×10^{-4} M] (black line).

Figure S11. ¹H NMR (400 MHz, C_6D_6) spectrum 8.

Figure S12. ¹H NMR (400 MHz, CDCl₃) spectrum of product of N₃Trisyl cyclization by 20 mol% **3**.

- J. M. Boncella, S.-Y. S. Wang, D. D. VanderLende, R. L. Huff, K. A. Abboud and W. M. Vaughn, J. Organomet. Chem., 1997, 530, 59.
- 2 N. A. Ketterer, H. Fan, K. J. Blackmore, X. Yang, J. W. Ziller, M.-H. Baik and A. F. Heyduk, *J. Am. Chem. Soc.*, 2008, **130**, 4364.
- 3 L. Weber, J. Halam, V. Werner, K. Hanke, L. Böhling, A. Chrostowska, A. Dargelos, M. Maciejczyk, A.-L. Raza, H.-G. Stammler and B. Neumann, *Eur. J. Inorg. Chem.*, 2010, 5416.
- 4 A. Fürstner and J. Shi, J. Am. Chem. Soc., 1996, 118, 12349.
- 5 K. Barral, A. D. Moorhouse and J. E. Moses, Org. Lett., 2007, 9, 1809.
- 6 L. M. White and D. A. Dougherty, J. Am. Chem. Soc., 1984, 106, 3466.
- 7 J. V. Ruppel, R. M. Kamble and X. P. Xhang, Org. Lett., 2007, 9, 4889.
- 8 Brown, S. N., Inorg. Chem., 2012, 51, 1251.