Electronic Supplementary Information

Metal-Templated Enantioselective Enamine/H-Bonding Dual

Activation Catalysis

Haohua Huo, Chen Fu, Chuanyong Wang, Klaus Harms and Eric Meggers*

*Email: meggers@chemie.uni-marburg.de

Contents

1. General Information	S2
2. Synthesis of the Iridium Catalysts Λ -Ir1-5 and Δ -Ir4	S3
3. Iridium-Catalyzed Reactions	S21
4. HPLC on Chiral Stationary Phase	S31
5. CD Spectra of Iridium Complexes	S44
6. NMR Spectra of New Iridium Complexes	S49
7. Single Crystal X-Ray Diffraction with Complex rac-Ir4	S58
8. Investigation of an Analogous Thiazole Iridium Catalyst	S86
9. References	S93

1. General Information

All reactions were carried out under an atmosphere of argon with magnetic stirring. Catalysis reactions were performed in a brown glass vial in the dark. Solvents were distilled under nitrogen from calcium hydride (CH₃CN, CH₂Cl₂, CHCl₃), sodium/benzophenone (Et₂O, THF, toluene), or magnesium turnings/iodine (MeOH). The aldehydes 1a-h were freshly distilled. The chiral auxiliary ligand (S)-4-isopropyl-2-(2'-hydroxyphenyl)-2-thiazoline was prepared according to published procedures.^{S1} All other reagents were purchased from commercial suppliers and used without further purification. Flash column chromatography was performed with silica gel 60 M from Macherey-Nagel (irregular shaped, 230-400 mesh, pH 6.8, pore volume: 0.81 mLg⁻¹, mean pore size: 66 Å, specific surface: 492 m² g⁻¹, particle size distribution: 0.5% < 25 μ m and 1.7% > 71 μ m, water content: 1.6%). ¹H- and ¹³C-NMR spectra were recorded with Bruker Avance 300 (300 mHz), Bruker DRX-400 (400 MHz), Bruker AM (400 MHz), Bruker Avance 500 (500 MHz) or Bruker DRX-500 (500 MHz) spectrometers at ambient temperature. NMR standards were used as follows: ¹H NMR spectroscopy: $\delta = 7.26$ ppm (CDCl₃), $\delta = 5.32$ ppm (CD₂Cl₂), $\delta = 2.50$ ppm (DMSO-d₆), $\delta =$ 3.31 ppm (methanol-d₄). ¹³C NMR spectroscopy: $\delta = 77.0$ ppm (CDCl₃), $\delta = 53.8$ ppm (CD₂Cl₂), $\delta = 39.5$ ppm (DMSO-d₆), $\delta = 49.0$ ppm (methanol-d₄). IR spectra were recorded on a Bruker Alpha FT-IR spectrophotometer. CD spectra were recorded on a JASCO J-810 CD spectropolarimeter (600-200 nm, 1 nm bandwidth, 50 nm/min scanning speed, accumulation of 5 scans). High-resolution mass spectra were recorded on a Bruker En Apex Ultra 7.0 TFT-MS instrument using ESI technique. Chiral HPLC chromatograms were obtained from an Agilent 1200 HPLC system. The optical rotations were measured on a Perkin-Elmer 241 polarimeter at concentrations of 1.0 g/100 mL.

2. Synthesis of the Iridium Catalysts Λ -Ir1-5 and Δ -Ir4

Scheme S1. Outline of the exemplary synthesis of the enantiomerically pure catalysts Λ -Ir4 and Δ -Ir4. NaBArF = sodium tetrakis[(3,5-di-trifluoromethyl)phenyl]borate.

2.1. Synthesis of Benzoxazole Ligands

Scheme S2. Synthesis route to the benzoxazole ligands. Benzoxazole S2b, S3b^{S2} and S3a^{S3} were synthesized according to published procedures.

General procedure for synthesis of methyl 2-phenylbenzo[d]oxazole-5-carboxylates (condensation/oxidation procedure):^{S4} A solution of 2-aminophenol (5.0 mmol) and benzaldehyde or substituted benzaldehyde (5.0 mmol) in *m*-xylene (25 mL) was stirred at 120 °C for 0.5 h. Then 4-methoxy-TEMPO (5 mol% in 0.5 mL *m*-xylene) was added to the mixture which was stirred at 120 °C for additional 5 h under an oxygen atmosphere. The reaction mixture was cooled and concentrated under reduced pressure. The residue was

purified by flash chromatography on silica gel (eluent: EtOAc/ hexane = 1:20).

General procedure for synthesis of 5-hydroxymethyl-2-phenylbenzo[d]oxazoles (reduction procedure):^{S2} To a solution of methyl 2-phenylbenzo[d]oxazole-5-carboxylate (4.0 mmol) in THF (20 mL) at 0 °C was added a solution of DIBAL-H (1.0 M in hexane, 10.0 mL, 10.0 mmol) dropwise. After being stirred at 0 °C for 5 min, the reaction was quenched with a saturated aqueous solution of sodium tartrate and stirred vigorously for 1 h at room temperature. The reaction mixture was extracted with EtOAc (4 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: MeOH/CH₂Cl₂ = 1:50).

2',6'-Dimethylbiphenyl-3-carbaldehyde (S1b)

3-Bromobenzaldehyde (2.775 g, 15 mmol) and (2,6-dimethylphenyl)boronic acid (3.150 g, 21 mmol) were dissolved in a mixture of 1 M aqueous sodium carbonate solution (30 mL), toluene (30 mL), and EtOH (15 mL). After degassing with argon for 30 min, Pd(PPh₃)₄ (0.0867 g, 0.75 mmol) was added. The reaction mixture was stirred under argon atmosphere at 80 °C for 20 h. The reaction mixture was cooled to room temperature and water was added to the reaction mixture. The mixture was diluted with EtOAc and the insoluble material was filtered through celite. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1:20) to give compound **S1b** (2.961 g, yield: 94%) as a colorless oil.

¹H NMR (300 MHz, CDCl₃) δ 10.09 (s, 1H), 7.97–7.88 (m, 1H), 7.76–7.70 (m, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.52–7.43 (m, 1H), 7.31–7.08 (m, 3H), 2.06 (s, 6H).

All spectroscopic data were in agreement with the literature.^{S5}

Methyl 2-(2',6'-dimethylbiphenyl-3-yl)benzo[*d*]oxazole-5-carboxylate (S2c)

According to the general condensation/oxidation procedure, S2c (1.767 g, yield: 99%) was

obtained as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.48 (dd, J = 1.2, 0.5 Hz, 1H), 8.28 (dt, J = 7.8, 1.4 Hz, 1H), 8.19–8.08 (m, 2H), 7.68–7.54 (m, 2H), 7.40 (dt, J = 7.6, 1.4 Hz, 1H), 7.27–7.12 (m, 3H), 3.98 (s, 3H), 2.10 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 166.6, 164.3, 153.6, 142.2, 142.1, 140.5, 135.8, 132.8, 129.2, 128.4, 127.5, 127.4, 127.1, 126.9, 126.2, 122.0, 110.3, 52.2, 20.8.

IR (film) v_{max} : 3064, 2952, 2917, 1716, 1618, 1545, 1461, 1431, 1284, 1213, 1188, 1082, 978, 918, 901, 834, 811, 772, 742, 704 cm⁻¹.

HRMS (ESI, *m/z*) calcd for C₂₃H₂₀NO₃ [M+H]⁺: 358.1438, found: 358.1438.

(2-(2',6'-Dimethylbiphenyl-3-yl)benzo[d]oxazol-5-yl)methanol (S3c)

According to the general reduction procedure, S3c (1.223 g, yield: 93%) was obtained as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.24 (dt, J = 7.8, 1.4 Hz, 1H), 8.07 (t, J = 1.5 Hz, 1H), 7.74 (d, J = 0.6 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.51 (d, J = 8.3 Hz, 1H), 7.39–7.31 (m, 2H), 7.24–7.08 (m, 3H), 4.80 (s, 2H), 2.53 (br s, 1H), 2.08 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 163.5, 150.2, 142.1, 142.0, 140.6, 137.9, 135.9, 132.4, 129.2, 128.3, 127.42, 127.39, 127.3, 126.0, 124.4, 118.4, 110.4, 77.4, 77.0, 76.6, 65.2, 20.8.

IR (film) v_{max} : 3422, 3063, 3024, 2931, 2862, 1543, 1456, 1438, 1375, 1324, 1263, 1189, 1051, 979, 905, 801, 761, 726, 702 cm⁻¹.

HRMS (ESI, *m/z*) calcd for C₂₂H₂₀NO₂ [M+H]⁺: 330.1489, found: 330.1490.

2',4',6'-Triisopropylbiphenyl-3-carbaldehyde (S1c)

Synthesized according to a reported method with some mofidications.^{S6} Accordingly, 2,4,6-triisopropylphenylboronic acid (1.488 g, 6.0 mmol), 3-bromobenzaldehyde (0.0736 g, 4.0 mmol), anhydrous K_3PO_4 (2.544 g, 12.0 mmol) and dicyclohexyl(2',6'-dimethoxybiphenyl-2-yl) phosphine (Sphos, 0.0164 g, 0.4 mmol) were mixed in toluene (40.0 mL). After degassing with argon for 30 min, Pd(OAc)₂ (0.0450 g, 0.2

mmol) was added. The reaction mixture was stirred under argon atmosphere at 110 °C for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc, and the insoluble material was filtered through Celite. The combined organic layers were concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1:30) to give compound **S1c** (1.158 g, yield: 94%) as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 10.05 (s, 1H), 7.89 (dt, J = 7.6, 1.3 Hz, 1H), 7.71 (s, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.48 (dt, J = 7.5, 1.3 Hz, 1H), 7.08 (s, 2H), 2.96 (hept, J = 6.9 Hz, 1H), 2.52 (hept, J = 6.9 Hz, 2H), 1.33 (s, 3H), 1.31 (s, 3H), 1.10 (s, 3H), 1.09 (s, 3H), 1.08 (s, 3H), 1.07 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 192.4, 148.6, 146.4, 142.0, 136.3, 135.9, 135.5, 131.3, 128.7, 127.7, 120.7, 34.3, 30.4, 24.09, 24.05, 24.0.

IR (film) v_{max} : 2959, 2926, 2868, 1690, 1604, 1572, 1459, 1372, 1282, 1250, 1164, 878, 802, 729, 705, 652 cm⁻¹.

HRMS (ESI, m/z) calcd for C₂₂H₂₈ONa [M+Na]⁺: 331.2032, found: 331.2033.

Methyl 2-(2',4',6'-triisopropylbiphenyl-3-yl)benzo[d]oxazole-5-carboxylate (S2d)

According to the general condensation/oxidation procedure, **S2d** (2.048 g, yield: 90%) was obtained as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.56–8.42 (m, 1H), 8.37–8.22 (m, 1H), 8.14 (t, J = 1.5 Hz, 1H), 8.11 (dd, J = 8.6, 1.7 Hz, 1H), 7.64–7.55 (m, 2H), 7.49–7.38 (m, 1H), 7.11 (s, 2H), 3.97 (s, 3H), 2.98 (hept, J = 6.9 Hz, 1H), 2.64 (hept, J = 6.8 Hz, 2H), 1.34 (d, J = 6.9 Hz, 6H), 1.14 (d, J = 6.5 Hz, 6H), 1.11 (d, J = 6.5 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 166.7, 164.4, 153.7, 148.5, 146.4, 142.3, 141.9, 135.8, 133.4, 129.1, 128.7, 127.0, 126.5, 126.1, 122.0, 120.7, 110.3, 77.4, 77.0, 76.6, 52.2, 34.3, 30.4, 24.2, 24.13, 24.07. IR (film) ν_{max} : 2958, 2869, 1722, 1624, 1557, 1460, 1437, 1358, 1294, 1209, 1125, 1085, 1054, 841, 810, 756, 702 cm⁻¹.

HRMS (ESI, *m*/*z*) calcd for C₃₀H₃₄NO₃ [M+H]⁺: 456.2533, found: 456.2529.

(2-(2',4',6'-Triisopropylbiphenyl-3-yl)benzo[d]oxazol-5-yl)methanol (S3d)

According to the general reduction procedure, **S3d** (1.674 g, yield: 98%) was obtained as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.26 (dt, J = 7.8, 1.4 Hz, 1H), 8.11 (t, J = 1.5 Hz, 1H), 7.75 (d, J = 0.9 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.49 (d, J = 8.3 Hz, 1H), 7.40 (dt, J = 7.6, 1.3 Hz, 1H), 7.34 (dd, J = 8.4, 1.6 Hz, 1H), 7.11 (s, 2H), 4.80 (s, 2H), 2.98 (hept, J = 6.9 Hz, 1H), 2.64 (hept, J = 6.8 Hz, 2H), 2.52 (br s, 1H), 1.34 (d, J = 6.9 Hz, 6H), 1.14 (d, J = 6.6 Hz, 6H), 1.11 (d, J = 6.6 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 163.6, 150.2, 148.4, 146.4, 142.2, 141.8, 137.9, 135.9, 133.1, 128.9, 128.6, 126.8, 125.9, 124.4, 120.6, 118.4, 110.4, 65.2, 34.3, 30.4, 24.2, 24.13, 24.08.

IR (film) v_{max} : 3277, 2958, 2929, 2869, 1609, 1554, 1460, 1433, 1257, 1190, 1051, 1022, 877, 810, 781, 704 cm⁻¹.

HRMS (ESI, *m/z*) calcd for C₂₉H₃₄NO₂ [M+H]⁺: 428.2584, found: 428.2583.

2.2. Synthesis of the Secondary Amine Ligand

Scheme S3. Synthesis route to the ligand 8. Synthesized according to a reported method with some modifications.^{S7}

Benzyl 3-hydroxy-4-(picolinamido)pyrrolidine-1-carboxylate (S4b)

To a solution of picolinic acid (4.0 g, 32.8 mmol) in THF (120 mL) at 0 °C was added successively Et₃N (9.1 mL, 65.6 mmol) and ethyl chloroformate (3.1 mL, 32.8 mmol). After being stirred at 0 °C for 1 h, a solution of **S4a**^{S8} (7.1 g, 30.0 mmol) in THF (30 mL) was added. After being stirred at room temperature for overnight, the reaction was quenched with a saturated aqueous solution of NH₄Cl and extracted with CH₂Cl₂ (4 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: MeOH/CH₂Cl₂ = 1:50) to give compound **S4b** (9.5 g, yield: 93%) as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.50 (d, J = 4.5 Hz, 1H), 8.21 (t, J = 6.0 Hz, 1H), 8.11 (d, J = 7.8 Hz, 1H), 7.81 (td, J = 7.7, 1.7 Hz, 1H), 7.45–7.27 (m, 5H), 5.15 (s, 2H), 4.80 (br, 1H), 4.60–4.45 (m, 1H), 4.40 (s, 1H), 4.11–3.91 (m, 1H), 3.76 (td, J = 11.4, 5.2 Hz, 1H), 3.53 (ddd, J = 15.3, 11.8, 3.2 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 165.1, 164.9, 154.9, 148.8, 148.1, 137.5, 136.5, 128.4, 127.9, 127.82, 127.79, 126.6, 122.2, 74.5, 73.6, 67.0, 56.4, 56.0, 51.7, 51.4, 49.1.

IR (film) v_{max} : 3346, 3056, 2952, 2884, 1672, 1516, 1426, 1349, 1192, 1108, 738, 695, 595 cm⁻¹.

HRMS (ESI, *m/z*) calcd for C₁₈H₂₀N₃O₄ [M+H]⁺: 342.1448, found: 342.1446.

Benzyl 2-(pyridin-2-yl)-4*H*-pyrrolo[3,4-*d*]oxazole-5(6*H*)-carboxylate (S4d)

N-Cbz

To a solution of **S4b** (2.0 g, 5.9 mmol) in CH₂Cl₂ (59 mL) at 0 °C was added Dess-Martin reagent (6.1 g, 14.4 mmol). After being stirred at room temperature for overnight, the reaction mixture was diluted with CH₂Cl₂ and washed with NaOH (0.5 M, 3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product of **S4c** was used for next step without further purification. The crude **S4c** (5.9 mmol estimated on the theoretical yield) was dissolved in CHCl₃ (59 mL). PCl₅ (3.7 g, 17.7 mmol) was added at 50 °C and stirring was continued for an additional 3 h. The reaction was quenched with a saturated aqueous solution of Na₂CO₃ and extracted with CH₂Cl₂ (4 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was passed through a short column of silica gel (eluent: MeOH/CH₂Cl₂ = 1:50) to afford the crude product as a black solid. The crude product was washed with MeOH (3 × 3 mL) and centrifuged to afford the **S4d** (663 mg, 35% in two steps) as a white solid.

¹H NMR (300 MHz, CDCl₃) δ 8.70–8.54 (m, 1H), 8.09–7.92 (m, 1H), 7.72 (tt, *J* = 7.9, 1.5 Hz, 1H), 7.40–7.22 (m, 6H), 5.13 (d, *J* = 0.8 Hz, 2H), 4.63–4.50 (m, 2H), 4.50–4.36 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 164.5, 154.7, 154.6, 149.9, 149.8, 149.4, 149.3, 145.7, 140.3, 140.2, 137.0, 136.9, 136.24, 136.21, 128.4, 128.1, 128.07, 128.02, 127.9, 124.7, 121.7, 121.6, 67.22, 67.20, 45.5, 45.4, 44.9, 44.7.

IR (film) v_{max} : 3053, 2938, 2882, 1696, 1413, 1362, 1295, 1095, 942, 797, 745, 695, 614 cm⁻¹.

HRMS (ESI, m/z) calcd for C₁₈H₁₆N₃O₃ [M+H]⁺: 322.1186, found: 188.0814.

2-(Pyridin-2-yl)-5,6-dihydro-4H-pyrrolo[3,4-d]oxazole (8)

To a solution of **S4d** (96.3 mg, 0.3 mmol) in CH₃CN/CH₂Cl₂ (3 mL/1mL) at 0 °C was added TMSI (0.12 mL, 0.9 mmol). After being stirred at room temperature for 1 h, the reaction was quenched with dry MeOH (0.5 mL). The solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: MeOH/CH₂Cl₂ = 1:10) to give compound **8** (53.0 mg, yield: 95%) as a white solid.

¹H NMR (300 MHz, MeOD) δ 8.68 (d, J = 4.6 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 8.03 (td, J =

7.8, 1.6 Hz, 1H), 7.70–7.47 (m, 1H), 4.33–4.20 (m, 2H), 4.19–4.02 (m, 2H).

 $^{13}\mathrm{C}$ NMR (75 MHz, MeOD) δ 167.0, 154.7, 151.0, 146.3, 145.0, 139.4, 126.8, 123.0, 44.4, 43.8.

IR (film) v_{max} : 3036, 2934, 2882, 1423, 1363, 1296, 1209, 1153, 1095, 956, 738, 696 cm⁻¹. HRMS (ESI, *m/z*) calcd for C₁₀H₁₀N₃O [M+H]⁺: 188.0818, found: 188.0816.

2.3. Synthesis of Iridium Complexes

Our developed synthetic strategy^{S2,S8} for the generation of enantiomerically pure iridium(III) complexes relies on the use of (*S*)-4-isopropyl-2-(2'-hydroxyphenyl)-2-thiazoline^{S2} as a chiral auxiliary. As described in detail below, racemic iridium(III) precursor complexes were converted to diastereomeric phenolato complexes, then resolved into single diastereomers by flash silica gel column chromatography, and followed by an acid-induced substitution of the auxiliary under complete retention of configuration to afford the enantiomerically pure iridium complexes.

2.3.1. Synthesis of Iridium Precursor Complexes

Cyclometalated iridium(III) μ -chloro-bridged dimers formula of the general $[(C^N)_2 Ir(\mu - Cl) Ir(C^N)_2]$ (C^N = (2-phenylbenzo[d] oxazol- 5-yl)methanol and its derivatives were synthesized according to a method reported by Nonoyama,^{\$9} which involves refluxing IrCl₃•nH₂O with 2.0-2.5 equiv of cyclometalating ligand in a 3:1 mixture of 2-methoxyethanol and water. Accordingly, (2-phenylbenzo[d]oxazol-5-yl) methanol or its derivatives (2.0 mmol) were added to iridium chloride (1.0 mmol) in a mixture of methoxyethanol/water (3:1, 44 mL). The reaction mixture was heated at reflux (120 °C) with constant stirring for 24 h. The resulting precipitate was collected by centrifugation, washed with diethyl ether and dried to yield the product as a yellow powder (60-89%), which was used without further purification.

Scheme S4. Synthesis of cyclometalated Ir(III) μ -chloro-bridged dimers 5a-e.

2.3.2. Preparation of Iridium Auxiliary Complexes^{S2}

Scheme S5. Preparation of iridium precursor complexes Λ -(*S*)-7a-e. The complexes Λ -(*S*)-7b, Λ -(*S*)-7e were synthesized according to published procedures.^{S2}

Preparation of iridium auxiliary complex Λ -(*S*)-7a. A mixture of iridium(III) dimer complex 5a (259.0 mg, 0.20 mmol), (*S*)-4-isopropyl-2-(2'-hydroxyphenyl)-2-thiazoline (*S*)-6 (110.5 mg, 0.50 mmol), and triethylamine (0.28 mL, 2.0 mmol) in ethanol (20 mL) was purged with argon for 5 min and then heated at reflux overnight. The reaction mixture was cooled to room temperature and concentrated to dryness. The residue was subjected to a flash silica gel chromatography (eluent: EtOAc/CH₂Cl₂ = 1:10) to separate the two diastereomers. Only the first eluting diastereomer (yellow solid, 127.0 mg, 38%) was characterized and used for the synthesis of enantiopure iridium catalyst, which was assigned as Λ -configuration by CD spectroscopy in analogy to reported complexes.^{S2}

¹H NMR (500 MHz, DMSO) δ 9.86 (s, 1H), 9.78 (s, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 6.9 Hz, 1H), 7.56 (d, J = 6.7 Hz, 1H), 7.33 (dd, J = 8.2, 1.7 Hz, 1H), 7.10 (d, J = 2.5 Hz, 1H), 7.07 (ddd, J = 8.6, 6.8, 1.7 Hz, 1H), 6.97 (dd, J = 3.4, 2.6 Hz, 1H), 6.96 (dd, J = 3.4, 2.6 Hz, 1H), 6.90 (t, J = 7.4 Hz, 2H), 6.79 (dtd, J = 8.7, 7.5, 1.3 Hz, 2H), 6.71 (d, J = 2.3 Hz, 1H), 6.52 (d, J = 7.6 Hz, 2H), 6.29–6.21 (m, 1H), 6.18 (d, J = 7.6

Hz, 1H), 4.57 (d, *J* = 9.8 Hz, 1H), 3.47 (dd, *J* = 11.8, 10.1 Hz, 1H), 3.17 (d, *J* = 5.2 Hz, 1H), 0.83–0.70 (m, 1H), 0.21 (d, *J* = 2.4 Hz, 3H), 0.19 (d, *J* = 2.4 Hz, 3H).

¹³C NMR (125 MHz, DMSO) δ 177.7, 177.1, 167.4, 166.9, 156.2, 155.9, 150.6, 148.9, 143.4, 143.0, 138.9, 138.7, 134.3, 133.02, 132.98, 131.6, 131.3, 131.0, 130.6, 130.2, 125.5, 125.0, 123.6, 121.5, 120.6, 117.7, 113.8, 113.7, 112.8, 112.3, 112.0, 102.8, 101.0, 84.1, 31.0, 26.8, 18.6, 13.9.

IR (film) v_{max} : 2958, 2925, 2867, 1592, 1561, 1530, 1440, 1388, 1355, 1299, 1160, 1028, 1003, 944, 816, 741 cm⁻¹.

HRMS (ESI, m/z) calcd for C₃₈H₃₀IrN₃O₅SNa [M+Na]⁺: 856.1428, found: 856.1422.

CD (MeOH): λ , nm ($\Delta\epsilon$, M⁻¹cm⁻¹) 356 (+40), 289 (-28), 221 (-47).

Preparation of iridium auxiliary complex Λ -(*S*)-7c A mixture of iridium(III) dimer complex 5c (265.0 mg, 0.15 mmol), (*S*)-4-isopropyl-2-(2'-hydroxyphenyl)-2-thiazoline (*S*)-6 (83.0 mg, 0.38 mmol), and triethylamine (0.21 mL, 1.5 mmol) in ethanol (15 mL) was purged with argon for 5 min and then heated at reflux overnight. The reaction mixture was cooled to room temperature and concentrated to dryness. The residue was subjected to a flash silica gel chromatography (eluent: EtOAc/CH₂Cl₂ = 1:10) to separate the two diastereomers. Only the first eluting diastereomer (orange solid, 120.0 mg, 37%) was characterized and used for the synthesis of enantiopure iridium catalyst, which was assigned as Λ -configuration by CD spectroscopy in analogy to reported complexes.^{S2}

¹H NMR (300 MHz, CDCl₃) δ 7.68 (s, 1H), 7.57 (d, J = 8.5 Hz, 1H), 7.52–7.39 (m, 5H), 7.25–6.98 (m, 8H), 6.90 (d, J = 8.2 Hz, 1H), 6.68–6.56 (m, 2H), 6.53 (dd, J = 7.8, 1.7 Hz, 1H), 6.41 (d, J = 7.8 Hz, 1H), 6.35 (t, J = 7.1 Hz, 1H), 4.96 (d, J = 9.7 Hz, 1H), 4.68–4.40 (m, 4H), 3.57–3.43 (m, 1H), 3.37 (t, J = 5.6 Hz, 1H), 2.79 (d, J = 11.3 Hz, 1H), 2.53 (t, J = 6.1 Hz, 1H), 2.09 (s, 3H), 1.99 (s, 3H), 1.75 (s, 3H), 1.72 (s, 3H), 0.26 (d, J = 6.4 Hz, 3H), 0.24 (d, J = 6.4 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 178.5, 178.3, 167.67, 166.73, 149.4, 149.2, 147.9, 147.2, 141.5, 141.4, 139.8, 139.7, 138.8, 138.3, 136.6, 136.4, 136.2, 135.8, 134.1, 133.6, 133.3, 133.2,

133.1, 132.6, 132.5, 131.6, 130.9, 130.2, 127.2, 127.1, 127.03, 126.98, 126.8, 126.7, 126.0, 125.9, 124.1, 124.0, 123.5, 118.7, 116.0, 113.6, 113.4, 111.3, 111.0, 86.0, 64.7, 64.4, 31.0, 27.4, 21.0, 20.9, 20.2, 20.1, 18.7, 14.0.

IR (film) v_{max} : 2958, 2924, 2869, 1598, 1560, 1524, 1463, 1436, 1364, 1253, 1191, 1148, 1031, 1014, 941, 836, 766, 742 cm⁻¹.

HRMS (ESI, m/z) calcd for C₅₆H₅₁IrN₃O₅S [M+H]⁺: 1070.3176, found: 1070.3189.

CD (MeOH): λ , nm ($\Delta \epsilon$, M⁻¹cm⁻¹) 366 (+26), 328 (+30), 306 (-28), 298 (-28), 230 (-26).

Preparation of iridium auxiliary complex Λ**-**(*S*)**-7d and** Δ**-**(*S*)**-7d:** A mixture of iridium(III) dimer complex **5d** (324.0 mg, 0.15 mmol), (*S*)-4-isopropyl-2-(2'-hydroxyphenyl)-2-thiazoline (*S*)-**6** (83.0 mg, 0.38 mmol), silver triflate (77.1 mg, 0.30 mmol), and triethylamine (0.21 mL, 1.5 mmol) in ethanol (15 mL) was purged with argon for 5 min and then heated at reflux overnight. The reaction mixture was cooled to room temperature and concentrated to dryness. The residue was subjected to a flash silica gel chromatography (eluent: EtOAc/CH₂Cl₂ = 1:30) to separate the two diastereomers. Two eluting diastereomers was characterized and can be used for the synthesis of enantiopure iridium catalyst. The first eluting diastereomer (orange solid, 140.0 mg, 37%) was assigned as Λ-configuration by CD spectroscopy in analogy to reported complexes.^{S2} The second eluting diastereomer (orange solid, 140.0 mg, 37%) was assigned accordingly as Δ-configuration.

¹H NMR (300 MHz, CDCl₃) δ 7.53 (s, 1H), 7.42–7.28 (m, 4H), 7.28–7.17 (m, 3H), 7.05 (dd, J = 8.6, 1.4 Hz, 1H), 6.97 (ddd, J = 8.6, 6.8, 1.7 Hz, 1H), 6.85–6.73 (m, 4H), 6.63 (d, J = 8.5 Hz, 1H), 6.49–6.35 (m, 3H), 6.21 (d, J = 7.8 Hz, 1H), 6.17–6.05 (m, 1H), 4.74 (d, J = 10.3 Hz, 1H), 4.61 (s, 2H), 4.40 (s, 2H), 3.39 (t, J = 10.8 Hz, 1H), 2.86–2.61 (m, 3H), 2.61–2.40 (m, 2H), 2.29–2.14 (m, 2H), 2.06 (s, 1H), 1.68 (br s, 2H), 1.08 (d, J = 3.7 Hz, 6H), 1.06 (d, J = 3.7 Hz, 6H), 0.88 (d, J = 5.3 Hz, 3H), 0.86 (d, J = 5.4 Hz, 3H), 0.80 (dd, J = 6.9, 1.5 Hz, 6H), 0.75 (d, J = 6.9 Hz, 6H), 0.71 (dd, J = 6.8, 1.8 Hz, 6H), 0.13 (d, J = 6.9 Hz, 3H), 0.01 (d, J = 6.9 Hz, 3H).

 $^{13}\mathrm{C}$ NMR (75 MHz, CDCl₃) δ 178.6, 167.9, 167.4, 149.6, 149.4, 147.7, 147.6, 147.1, 147.0, S14

146.8, 146.7, 139.6, 139.3, 139.1, 138.6, 136.8, 134.0, 133.5, 133.4, 133.2, 133.1, 132.7, 131.4, 130.6, 129.7, 126.9, 126.6, 124.3, 124.1, 123.0, 120.6, 120.5, 120.4, 120.3, 118.7, 116.1, 113.4, 113.2, 111.5, 111.2, 85.8, 65.0, 64.9, 34.2, 31.2, 30.2, 30.1, 30.0, 27.4, 24.7, 24.4, 24.3, 24.13, 24.05, 24.0, 23.9, 18.6, 14.1.

IR (film) v_{max} : 2958, 2926, 2867, 1599, 1562, 1531, 1464, 1436, 1363, 1334, 1256, 1191, 1155, 1059, 1031, 1012, 942, 788, 748 cm⁻¹.

HRMS (ESI, *m*/*z*) calcd for C₇₀H₇₉IrN₃O₅S [M+H]⁺: 1266.5368, found: 1266.5361.

CD (MeOH): λ , nm ($\Delta \epsilon$, M⁻¹cm⁻¹) 368 (+33), 329 (+41), 306 (-35), 295 (-35), 231 (-26).

¹H NMR (300 MHz, CDCl₃) δ 7.94 (s, 1H), 7.62–7.58 (m, 2H), 7.56–7.39 (m, 4H), 7.31 (dd, J = 7.9, 1.7 Hz, 1H), 7.27 (d, J = 8.3 Hz, 1H), 7.12–6.96 (m, 4H), 6.88 (ddd, J = 8.6, 7.1, 1.7 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 6.65 (dd, J = 7.8, 1.8 Hz, 1H), 6.62–6.52 (m, 2H), 6.48 (d, J = 7.8 Hz, 1H), 6.34–6.21 (m, 1H), 4.75–4.44 (m, 4H), 3.76 (d, J = 9.5 Hz, 1H), 3.07 (d, J = 11.4 Hz, 1H), 3.01–2.69 (m, 6H), 2.59–2.33 (m, 2H), 2.29–2.10 (m, 1H), 2.02 (t, J = 5.6 Hz, 1H), 1.32 (d, J = 3.3 Hz, 6H), 1.30 (d, J = 3.3 Hz, 6H), 1.17 (d, J = 6.7 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 1.08 (d, J = 6.9 Hz, 3H), 1.06–0.97 (m, 12H), 0.94 (d, J = 4.3 Hz, 3H), 0.92 (d, J = 4.3 Hz, 3H), 0.34 (d, J = 6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 179.1, 168.8, 168.5, 149.7, 149.1, 147.9, 147.7, 147.5, 147.2, 147.0, 146.8, 146.5, 146.3, 140.1, 139.4, 138.5, 138.4, 136.7, 135.2, 133.6, 133.4, 133.1, 132.7, 132.6, 132.0, 129.6, 129.5, 129.3, 127.2, 126.5, 124.6, 124.0, 123.7, 121.8, 120.6, 120.5, 120.4, 120.3, 116.0, 115.2, 113.3, 111.3, 111.0, 80.9, 64.9, 64.6, 34.19, 34.17, 31.6, 30.8, 30.1, 30.02, 29.95, 29.86, 24.7, 24.5, 24.4, 24.2, 24.03, 23.96, 23.9, 20.2, 16.4.

IR (film) v_{max} : 2958, 2868, 1599, 1564, 1530, 1437, 1365, 1319, 1252, 1199, 1147, 1028, 942, 877, 816, 749 cm⁻¹.

HRMS (ESI, m/z) calcd for C₇₀H₇₉IrN₃O₅S [M+H]⁺: 1266.5369, found: 1266.5336. CD (MeOH): λ , nm ($\Delta \epsilon$, M⁻¹cm⁻¹) 328 (-28), 304 (+24), 288 (+32).

2.3.3. Synthesis of Enantiopure Iridium Catalysts

The enantiopure iridium catalysts were prepared according to a reported method with some modifications,^{S2} which relies on the acid-induced substitution of the coordinated phenolato ligand against 2-(pyridin-2-yl)-5,6-dihydro-4*H*-pyrrolo[3,4-*d*]oxazole under retention of configuration and is analogous to previously reported auxiliary-mediated ruthenium(II) chemistry by Meggers et al.^{S10} The absolute configurations of the obtained Λ -configured iridium(III) complexes were verified by CD spectroscopy in analogy to reported complexes.^{S2} The enantiomeric purities were verified by chiral HPLC analysis.

Scheme S6. Synthesis of enantiopure iridium catalysts Λ -Ir1-5 and Δ -Ir4.

General procedure: A suspension of the iridium auxiliary complexes Λ -(*S*)-**7a-e** or Δ -(*S*)-**7d** (1.0 eq), ligand **8** (2.0 eq), and NH₄PF₆ (5.0 eq) in acetonitrile (10 mM) was stirred at room temperature for 1 h under argon in the dark. Then, the reaction mixture was concentrated to dryness and dissolved in MeOH/CH₂Cl₂ (3:1, 10 mM). After being stirred at room temperature for 3 h, the reaction mixture was concentrated to dryness and subjected to a flash silica gel chromatography (eluent: MeOH/CH₂Cl₂ = 1:30) to give the pure yellow solid as a hexafluorophosphate salt. The product was directly suspended in CH₂Cl₂. Sodium tetrakis[(3,5-di-trifluoromethyl)phenyl]borate (NaBArF₂₄) (0.95 eq) was added in one portion and the mixture was stirred at room temperature for 10 min. After removal of the CH₂Cl₂ in vacuo, the residue was taken up in Et₂O (about 2.0 mL) twice and centrifuged. The combined organic layers were dried and concentrated in vacuo to give the pure product as the borate salt.

Following the general procedure, Λ -(S)-7a (83.3 mg, 0.10 mmol) was converted to Λ -Ir1 (109.7 mg, yield: 66%) as an orange solid.

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 5.2 Hz, 1H), 7.85 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.9 Hz, 1H), 7.71 (s, 8H), 7.56–7.46 (m, 1H), 7.41 (s, 4H), 7.29 (d, J = 8.9 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 7.10–6.99 (m, 2H), 6.94 (t, J = 7.5 Hz, 1H), 6.82 (dd, J = 9.0, 2.2 Hz, 1H), 6.67 (dd, J = 9.0, 2.3 Hz, 1H), 6.64 (d, J = 7.6 Hz, 1H), 6.54 (d, J = 7.6Hz, 1H), 5.78 (d, J = 2.1 Hz, 1H), 5.08 (d, J = 2.3 Hz, 1H), 4.01 (d, J = 13.9 Hz, 1H), 3.92 (d, J = 14.7 Hz, 1H), 3.54 (d, J = 14.2 Hz, 1H), 3.25 (d, J = 13.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 178.01, 177.96, 169.9, 162.6, 162.0, 161.3, 160.7, 157.7, 155.4, 154.4, 152.9, 146.1, 144.6, 144.4, 144.0, 143.3, 141.5, 139.7, 138.0, 134.8, 133.5, 133.3, 132.9, 129.8, 129.5, 129.1, 129.0, 128.9, 128.7, 128.3, 126.8, 126.4, 126.2, 123.8, 123.7, 123.4, 122.6, 119.0, 117.5, 114.4, 113.8, 113.2, 112.7, 100.2, 99.6, 43.0, 41.8. IR (film) v_{max} : 1595, 1451, 1352, 1273, 1115, 888, 831, 738, 708, 672 cm⁻¹. HRMS (ESI, m/z) calcd for C₃₆H₂₅IrN₅O₅ [M–BArF₂₄]⁺: 800.1481, found: 800.1489. CD (MeOH): λ , nm ($\Delta \epsilon$, M⁻¹cm⁻¹) 337 (+40), 218 (-45).

∆-**lr2**

Following the general procedure, Λ -(S)-7b (43.3 mg, 0.050 mmol) was converted to Λ -Ir2 (60.0 mg, yield: 71%) as an orange solid.

¹H NMR (500 MHz, CD₂Cl₂) δ 8.28 (dt, J = 5.4, 1.2 Hz, 1H), 8.15–8.09 (m, 2H), 7.87 (ddd, J = 7.7, 1.3, 0.4 Hz, 1H), 7.81 (dd, J = 7.7, 0.9 Hz, 1H), 7.72 (t, J = 2.3 Hz, 8H), 7.67–7.60 (m, 3H), 7.54 (s, 4H), 7.33 (dd, J = 8.5, 1.7 Hz, 1H), 7.28 (dd, J = 8.6, 1.6 Hz, 1H), 7.19 (td, J =

7.5, 1.0 Hz, 1H), 7.12 (td, J = 7.5, 1.0 Hz, 1H), 7.06 (td, J = 7.5, 1.4 Hz, 1H), 6.97 (td, J = 7.5, 1.4 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.58-6.50 (m, 2H), 5.83 (d, J = 0.8 Hz, 1H), 4.77 (d, J = 14.0 Hz, 1H), 4.71 (d, J = 14.0 Hz, 1H), 4.56 (d, J = 13.4 Hz, 1H), 4.52 (d, J = 13.4 Hz, 1H), 4.30 (ddd, J = 15.1, 3.9, 2.1 Hz, 1H), 4.18 (ddd, J = 15.0, 3.7, 2.7 Hz, 1H), 3.74 (s, 3H), 3.62 (ddd, J = 14.1, 3.9, 2.0 Hz, 1H), 3.22 (ddd, J = 14.1, 3.6, 2.6 Hz, 1H).

¹³C NMR (126 MHz, CD₂Cl₂) δ 178.3, 177.9, 162.8, 162.4, 162.0, 161.6, 154.0, 149.9, 149.8, 147.0, 144.7, 142.2, 141.0, 140.6, 140.5, 138.1, 137.7, 135.2, 134.0, 133.73, 133.72, 133.3, 129.7, 129.44, 129.42, 129.39, 129.37, 129.19, 129.17, 129.14, 129.12, 128.94, 128.92, 128.89, 128.87, 128.3, 127.4, 127.0, 126.1, 124.8, 124.4, 124.2, 123.9, 121.8, 118.0, 117.94, 117.91, 117.88, 117.85, 112.9, 112.6, 112.2, 111.5, 64.2, 64.1, 44.2, 42.9.

IR (film) v_{max} : 1600, 1520, 1446, 1391, 1354, 1274, 1116, 939, 888, 835, 741, 710 673 cm⁻¹. HRMS (ESI, *m*/*z*) calcd for C₃₈H₂₉IrN₅O₅ [M–BArF₂₄]⁺: 828.1797, found: 828.1789.

CD (MeOH): λ , nm ($\Delta\epsilon$, M⁻¹cm⁻¹) 354 (+26), 330 (+32), 261 (-9), 226 (-27).

Following the general procedure, Λ -(*S*)-**7c** (64.0 mg, 0.060 mmol) was converted to Λ -**Ir3** (79.8 mg, yield: 70%) as an orange solid.

¹H NMR (300 MHz, CDCl₃) δ 8.20 (d, J = 5.3 Hz, 1H), 7.83–7.68 (m, 2H), 7.57 (d, J = 1.4 Hz, 9H), 7.52 (d, J = 1.7 Hz, 1H), 7.44 (d, J = 8.5 Hz, 2H), 7.41–7.35 (m, 1H), 7.32 (s, 4H), 7.16–6.93 (m, 8H), 6.77 (dd, J = 7.8, 1.8 Hz, 1H), 6.68 (dd, J = 7.8, 1.8 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 6.55-6.38 (m, 2H), 5.72 (s, 1H), 4.62 (d, J = 14.1 Hz, 1H), 4.54 (d, J = 14.1 Hz, 1H), 4.43 (d, J = 13.5 Hz, 1H), 4.36 (d, J = 13.5 Hz, 1H), 4.07 (d, J = 15.0 Hz, 1H), 3.88 (d, J = 15.1 Hz, 1H), 3.59 (d, J = 14.0 Hz, 1H), 3.18 (d, J = 14.6 Hz, 1H), 2.49 (br s, 2H), 2.00 (s, 3H), 1.93 (s, 3H), 1.81 (s, 6H), 1.56 (br s, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 177.8, 177.5, 169.5, 162.7, 162.0, 161.3, 160.7, 160.5, 153.0, 149.3, 149.2, 145.9, 144.6, 140.6, 140.3, 140.2, 140.0, 139.7, 137.6, 137.4, 136.6, 136.5, 136.2, 135.8, 135.5, 134.7, 134.0, 133.4, 129.9, 129.3, 129.2, 128.6, 127.6, 127.5, 126.9, 126.3, 124.3, 123.8, 123.3, 122.7, 119.0, 117.4, 112.3, 111.5, 110.9, 63.7, 63.4, 43.6, 42.5, 20.9, 20.8, 20.6.

IR (film) v_{max} : 1608, 1446, 1354, 1272, 1116, 1042, 943, 889, 837, 711, 673, 643 cm⁻¹. HRMS (ESI, *m/z*) calcd for C₅₄H₄₅IrN₅O₅ [M–BArF₂₄]⁺: 1036.3048, found: 1036.3053. CD (MeOH): λ , nm ($\Delta \varepsilon$, M⁻¹cm⁻¹) 360 (+31), 332 (+33), 274 (–15), 241 (–18).

Following the general procedure, Λ -(*S*)-**7d** (140.0 mg, 0.11 mmol) was converted to Λ -**Ir4** (154.4 mg, yield: 67%) and Δ -(*S*)-**7d** (140.0 mg, 0.11 mmol) to Δ -**Ir4** (185.5 mg, yield: 80%). Both complexes are orange solids.

NMR spectra of Λ -Ir4 and Δ -Ir4 are identical:

¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, J = 5.3 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.87 (td, J = 7.8, 1.4 Hz, 1H), 7.74 (d, J = 1.8 Hz, 1H), 7.70 (s, 9H), 7.61-7.49 (m, 3H), 7.44 (s, 4H), 7.25 (d, J = 8.7 Hz, 1H), 7.19 (d, J = 8.7 Hz, 1H), 7.12 (d, J = 1.6 Hz, 1H), 7.09–7.05 (m, 3H), 6.95 (dd, J = 7.8, 1.8 Hz, 1H), 6.87 (dd, J = 7.8, 1.8 Hz, 1H), 6.76 (d, J = 7.8 Hz, 1H), 6.57 (d, J = 7.8 Hz, 1H), 6.54 (s, 1H), 5.85 (s, 1H), 4.73 (d, J = 14.1 Hz, 1H), 4.67 (d, J = 14.1 Hz, 1H), 4.58 (d, J = 13.5 Hz, 1H), 4.50 (d, J = 13.5 Hz, 1H), 4.26 (d, J = 15.2 Hz, 1H), 4.05 (d, J = 15.3 Hz, 1H), 3.76 (d, J = 14.8 Hz, 1H), 3.33 (d, J = 14.0 Hz, 1H), 2.97 (hept, J = 6.8 Hz, 1H), 2.78 (hept, J = 6.9 Hz, 1H), 2.65 (hept, J = 6.9 Hz, 1H), 2.51 (hept, J = 6.8 Hz, 1H), 2.78 (hept, J = 6.9 Hz, 1H), 1.31 (d, J = 6.2 Hz, 6H), 1.19 (d, J = 6.8 Hz, 3H), 1.17 (d, J = 6.9 Hz, 3H), 1.14 (d, J = 6.9 Hz, 3H), 1.07 (dd, J = 6.9 Hz, 6H), 1.03 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 177.9, 177.5, 169.9, 162.3, 161.9, 161.5, 161.1, 159.5, 153.2, 149.3, 149.2, 148.6, 148.5, 146.7, 146.6, 146.3, 146.0, 145.2, 144.4, 144.2, 140.4, 140.1, 139.7, 139.5, 137.7, 137.4, 136.3, 135.61, 135.56, 135.5, 134.7, 132.9, 132.7, 129.3, 129.1, 128.9, 128.8, 128.7, 128.6, 128.0, 127.7, 127.6, 125.5, 124.3, 123.8, 123.5, 123.4, 121.2, 120.9, 120.8, 120.7, 120.5, 117.48, 117.45, 117. 42, 112.4, 112.3, 111.5, 110.6, 63.7, 63.5, 43.7, 42.6, 34.3, 30.60, 30.56, 30.33, 30.26, 24.24, 24.15, 24.10, 24.02, 23.99, 23.96.

Λ-**Ir4**:

IR (film) v_{max}: 2963, 1606, 1527, 1445, 1354, 1272, 1118, 1040, 886, 836, 711, 673, 640

 cm^{-1} .

HRMS (ESI, *m/z*) calcd for C₆₈H₇₃IrN₅O₅ [M–BArF₂₄]⁺: 1232.5242, found: 1232.5234.

CD (MeOH): λ , nm ($\Delta \epsilon$, M⁻¹cm⁻¹) 361 (+36), 334 (+37), 269 (-22), 238 (-23).

 Δ -Ir4:

IR (film) ν_{max} : 2961, 2912, 2872, 1606, 1525, 1445, 1353, 1274, 1119, 886, 835, 711, 673 cm⁻¹.

HRMS (ESI, m/z) calcd for C₆₈H₇₃IrN₅O₅ [M–BArF₂₄]⁺: 1232.5242, found: 1232.5239. CD (MeOH): λ , nm ($\Delta\epsilon$, M⁻¹cm⁻¹) 361 (-37), 335 (-37), 272 (+21), 241 (+16).

Following the general procedure, Λ -(*S*)-**7e** (40.1 mg, 0.050 mmol) was converted to Λ -**Ir5** (38.0 mg, yield: 46%) as an orange solid.

¹H NMR (500 MHz, CD₂Cl₂) δ 8.20 (dt, J = 5.4, 1.2 Hz, 1H), 8.11–8.06 (m, 2H), 7.88 (ddd, J = 7.7, 1.4, 0.5 Hz, 1H), 7.83 (ddd, J = 7.7, 1.4, 0.5 Hz, 1H), 7.74–7.71 (m, 9H), 7.71–7.69 (m, 1H), 7.59–7.56 (m, 1H), 7.55 (s, 4H), 7.46 (ddd, J = 8.5, 7.6, 1.2 Hz, 1H), 7.42 (ddd, J = 8.5, 7.6, 1.1 Hz, 1H), 7.35–7.30 (m, 1H), 7.18 (td, J = 7.5, 1.0 Hz, 1H), 7.16–7.11 (m, 2H), 7.04 (td, J = 7.5, 1.4 Hz, 1H), 6.98 (td, J = 7.5, 1.4 Hz, 1H), 6.70–6.64 (m, 1H), 6.62–6.57 (m, 1H), 6.49 (ddd, J = 8.1, 1.1, 0.6 Hz, 1H), 5.81 (ddd, J = 8.1, 1.0, 0.6 Hz, 1H), 4.25 (ddd, J = 15.2, 4.3, 2.5 Hz, 1H), 4.04 (ddd, J = 15.2, 4.4, 2.6 Hz, 1H), 3.50 (ddd, J = 14.2, 4.4, 2.5 Hz, 1H), 3.02 (ddd, J = 14.2, 4.3, 2.6 Hz, 1H), 1.95 (s, 1H).

¹³C NMR (125 MHz, CD₂Cl₂) δ 178.0, 177.8, 169.9, 162.8, 162.4, 162.0, 161.6, 161.0, 153.5, 150.71, 150.68, 147.4, 146.0, 145.0, 142.6, 140.4, 137.7, 137.5, 135.2, 134.0, 133.8, 133.7, 133.3, 129.7, 129.5, 129.48, 129.46, 129.43, 129.41, 129.39, 129.3, 129.21, 129.18, 129.16, 129.1, 128.9, 128.3, 127.4, 127.3, 127.05, 126.95, 126.7, 126.6, 126.1, 124.1, 124.01, 123.92, 123.7, 121.8, 117.93, 117.90, 117.87, 114.6, 114.5, 113.05, 113.00, 44.2, 42.5. IR (film) v_{max} : 1673, 1601, 1521, 1453, 1353, 1273, 1116, 937, 889, 743, 711, 673 cm⁻¹.

HRMS (ESI, m/z) calcd for C₃₆H₂₅IrN₅O₃ [M–BArF₂₄]⁺: 768.1583, found: 768.1591.

CD (MeOH): λ , nm ($\Delta\epsilon$, M⁻¹cm⁻¹) 354 (+25), 328 (+30), 263 (-10), 227 (-25).

3. Iridium-Catalyzed Reactions

Scheme S7. Iridium-catalyzed asymmetric α -amination of aldehydes.

General procedure for catalytic reactions of Table 1:

To a solution of dibenzyl azodicarboxylate **2a** (0.2 mmol) and Λ -**Ir1-5** (0.1-4 mol%) in anhydrous toluene (2.0 mL, 0.1 M for entries 1-5, 9 or 200.0 µL, 1.0 M for entries 6-8) at 0 °C was added the 3,3-dimethylbutyraldehyde **1a** (0.30 mmol). After being stirred at 0 °C (entries 1-4, 5) or RT (entries 5-8) for 1.5 to 36 h under argon atmosphere, MeOH (2.0 mL for entries 1-5, 9 or 200.0 µL for entries 6-8) was added followed by careful addition of NaBH₄ (10.0 mg, 0.26 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 0.52 mL) was added and after an additional 2 h the mixtures were diluted with water. The aqueous phase was extracted with EtOAc (4 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1:4) to give compound **3a**.

General procedure for catalytic reactions of Table 2:

Azodicarboxylates **2a-c** (0.2 mmol) and Λ -**Ir4** (1 mol%) were mixed in a brown glass vial with anhydrous toluene (200.0 µL, 1.0 M), and the corresponding aldehyde **1a-j** (0.30 mmol) was added at 0 °C. While being stirred at room temperature under argon atmosphere for 12-15 h, the amination products precipitated. MeOH (200.0 µL) was added followed by a careful addition of NaBH₄ (10.0 mg, 0.26 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 0.52 mL) was added and after an additional 2 h the mixtures were diluted with water (exception for entries 11-12: this NaOH step was skipped). The aqueous phase was extracted with EtOAc (4 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc:hexane = 1:4→1:1) to give compounds **4k-l** and **3a-j**.

Catalysis with the PF₆ salt of Λ -Ir4 (in analogy to entry 1 of Table 2):

To a solution of Λ -**Ir4/PF**₆ (2.8 mg, 0.002 mmol) in anhydrous toluene (200.0 µL) was added sodium tetrakis[(3,5-di-trifluoromethyl)phenyl]borate (NaBArF₂₄) (1.8 mg, 0.002 mmol) in one portion and the mixture was stirred at room temperature for 15 min. Then, dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and 3,3-dimethylbutyraldehyde **1a** (37.6 µL, 0.30 mmol) were added successively at 0 °C. After being stirred at room temperature for 15 h under argon atmosphere, MeOH (200.0 µL) was added followed by a careful addition of NaBH₄ (10.0 mg, 0.26 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 0.52 mL) was added and after an additional 2 h the mixtures were diluted with water. The aqueous phase was extracted with EtOAc (4 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1:4) to give compound **3a** (50.0 mg, yield: 85%, ee: 96%) as a white solid.

Recycling experiments of catalyst Λ -Ir4 (catalysis in analogy to entry 1 of Table 2).

Cycle 1: Dibenzyl azodicarboxylate 2a (298.3 mg, 1.0 mmol) and A-Ir4 (20.9 mg, 0.01 mmol) were mixed in a centrifuge tube with anhydrous toluene (1.0 mL), followed by the addition of 3,3-dimethylbutyraldehyde 1a (188.0 µL, 1.5 mmol) at 0 °C. After being stirred at room temperature for 15 h under argon atmosphere, n-hexane (300.0 µL) was added followed by centrifugation at 4 °C. The mother liquor was transferred out and concentrated under reduced pressure. The residue (TLC showed it contained the catalyst along with a minor amount of amination product) was purified by flash chromatography on silica gel (eluent: MeOH/CH₂Cl₂ = 1:10) to give the pure catalyst Λ -Ir4 (17.0 mg, recovery yield: 81%). MeOH (1.0 mL) was added to the solid in the centrifuge tube followed by careful addition of NaBH₄ (49.4 mg, 1.3 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 2.6 mL) was added and after an additional 2 h the mixtures were diluted with water. The aqueous phase was extracted with EtOAc (4×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude compound 3a was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1:4) to give compound 3a (222.3) mg, yield: 76%, ee: 97%) as a white solid. The recycled catalyst A-Ir4 was used for another catalysis reaction (cycle 2).

Cycle 2: Dibenzyl azodicarboxylate 2a (242.1 mg, 0.81 mmol) and the recycled catalyst Λ -Ir4 (17.0 mg, 0.0081 mmol) were mixed in a centrifuge tube with anhydrous toluene S22

(811.0 µL), followed by the addition of 3,3-dimethylbutyraldehyde **1a** (152.0 µL, 1.22 mmol) at 0 °C. After being stirred at room temperature for 15 h under argon atmosphere, n-hexane (250.0 µL) was added followed by centrifugation at 4 °C. The mother liquor was transferred out and concentrated under reduced pressure. The residue (TLC showed it contained the catalyst along with a minor amount of amination product) was purified by flash chromatography on silica gel (eluent: MeOH/CH₂Cl₂ = 1:10) to give the pure catalyst Λ -**Ir4** (13.2 mg, recovery yield: 78%). MeOH (811.0 µL) was added to the solid in the centrifuge tube followed by a careful addition of NaBH₄ (40.0 mg, 1.05 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 2.1 mL) was added and after an additional 2 h the mixtures were diluted with water. The aqueous phase extracted with EtOAc (4 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude compound **3a** (168.0 mg, yield: 71%, ee: 95%) as a white solid. The twice recycled catalyst Λ -**Ir4** was used for another catalysis reaction (cycle 3).

Cycle 3: Dibenzyl azodicarboxylate 2a (188.0 mg, 0.63 mmol) and the twice recycled catalyst Λ -Ir4 (13.2 mg, 0.0063 mmol) were mixed in a centrifuge tube with anhydrous toluene (630.0 μ L), followed by the addition of 3,3-dimethylbutyraldehyde **1a** (118.0 μ L, 0.95 mmol) at 0 °C. After being stirred at room temperature for 15 h under argon atmosphere, n-hexane (200.0 µL) was added followed by centrifugation at 4 °C. The mother liquor was transferred out and concentrated under reduced pressure. The residue (TLC showed that it contained the catalyst along with a minor amount of amination product) was purified by flash chromatography on silica gel (eluent: MeOH/CH₂Cl₂ = 1:10) to give the pure catalyst Λ -Ir4 $(MeOH/CH_2Cl_2 = 1:10)$ (10.0 mg, recovery yield: 76%). MeOH (630.0 µL) was added to the solid in the centrifuge tube followed by a careful addition of NaBH₄ (31.0 mg, 0.82 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 1.7 mL) was added and after an additional 2 h the mixtures were diluted with water. The aqueous phase extracted with EtOAc (4×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude compound **3a** was purified by flash chromatography on silica gel (eluent: EtOAc/hexane = 1:4) to give compound 3a (123.0 mg, yield: 67%, ee: 96%) as a white solid.

(S)-Benzyl 4-tert-butyl-2-oxooxazolidin-3-ylcarbamate (3a)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and 3,3-dimethylbutyraldehyde **1a** (37.6 μ L, 0.30 mmol) for 12 h according to the general procedure to give **3a** (56.0 mg, yield: 96%) as a white solid. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IB column, ee = 97% (HPLC: IB, 254 nm, 40 °C, hexane/ isopropanol = 90/ 10, flow rate 0.5 mL/ min, t_r(major) = 25.0 min, t_r(minor)= 28.7 min); [α]_D²⁰ –10.0 (*c* 0.2, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.33 (s, 5H), 5.15 (q, *J* = 12.2 Hz, 1H), 4.39 (t, *J* = 8.8 Hz, 1H), 4.25–3.98 (m, 1H), 3.83 (s, 1H), 0.93 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) *δ* 158.9, 155.0, 135.4, 128.5, 128.4, 128.0, 67.9, 64.5, 64.2, 33.3, 25.4.

IR (film) v_{max} : 3320, 2959, 1762, 1721, 1505, 1410, 1371, 1224, 1118, 1039, 995, 744, 692 cm⁻¹.

HRMS (ESI, m/z) calcd for C₁₅H₂₀N₂O₄Na [M+Na]⁺: 315.1315, found: 315.1313.

(S)-Benzyl 4-butyl-2-oxooxazolidin-3-ylcarbamate (3b)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and hexanal **1b** (31.8 μ L, 0.30 mmol) for 15 h according to the general procedure to give **3b** (47.0 mg, yield: 81%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 94% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 70/ 30, flow rate 0.8 mL/ min, t_r(minor) = 23.0 min, t_r(major)= 36.5 min); [α]_D²⁰ +27.1 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.64–6.83 (m, 6H), 5.18–4.91 (m, 2H), 4.36 (s, 1H), 4.08–3.55 (m, 2H), 1.81–1.57 (m, 1H), 1.53–1.31 (m, 1H), 1.30–1.00 (m, 4H), 0.81 (t, J = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) *δ* 157.5, 155.3, 135.3, 128.5, 128.3, 128.0, 67.9, 67.6, 56.7, 31.2, 26.4, 22.5, 13.8.

IR (film) v_{max}: 3278, 2956, 2931, 2866, 1775, 1729 1503, 1458, 1420, 1227, 1118, 1049, 747,

 697 cm^{-1} .

HRMS (ESI, m/z) calcd for C₁₅H₂₀N₂O₄Na [M+Na]⁺: 315.1315, found: 315.1313.

(S)-Benzyl 4-isopropyl-2-oxooxazolidin-3-ylcarbamate (3c)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and 3-methylbutanal **1c** (32.2 μ L, 0.30 mmol) for 14 h according to the general procedure to give **3c** (49.3 mg, yield: 89%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IA column, ee = 95% (HPLC: IA, 254 nm, 40 °C, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 50% B in 40 min, flow rate 0.5 mL/ min, t_r(major) = 27.9 min, t_r(minor)= 29.8 min); [α]_D²⁰ +14.2 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.34 (s, 5H), 7.14 (s, 1H), 5.16 (s, 2H), 4.36 (s, 1H), 4.12–3.66 (m, 2H), 2.07–1.90 (m, 1H), 0.90 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (75 MHz, CDCl₃) *δ* 157.9, 155.2, 135.3, 128.6, 128.4, 128.1, 68.0, 64.0, 60.8, 28.5, 17.7, 15.8.

IR (film) v_{max} : 3272, 2963, 1771, 1723, 1505, 1460, 1421, 1395, 1217, 1118, 1046, 744, 698 cm⁻¹.

HRMS (ESI, *m*/*z*) calcd for C₁₄H₁₈N₂O₄Na [M+Na]⁺: 301.1159, found: 301.1157.

(S)-Benzyl 2-oxo-4-propyloxazolidin-3-ylcarbamate (3d)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and pentanal **1d** (31.8 μ L, 0.30 mmol) for 15 h according to the general procedure to give **3d** (43.2 mg, yield: 78%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IA column, ee = 96% (HPLC: IA, 254 nm, 40 °C, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 45% B in 40 min, flow rate 0.5 mL/ min, t_r(major) = 31.7 min, t_r(minor)= 33.8 min); [α]_D²⁰ +23.4 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.35 (s, 5H), 7.21 (s, 1H), 5.15 (s, 2H), 4.43 (s, 1H), 4.06–3.80 (m, 2H), 1.86–1.61 (m, 1H), 1.56–1.37 (m, 1H), 1.36–1.18 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) *δ* 157.5, 155.3, 135.3, 128.5, 128.3, 128.1, 67.9, 67.6, 56.6, 33.6, 17.8, 13.9.

IR (film) v_{max} : 3300, 2965, 2934, 2875, 1778, 1701, 1512, 1258, 1228, 1202, 1113, 1052, 1010, 744, 694, 621, 579 cm⁻¹.

HRMS (ESI, m/z) calcd for C₁₄H₁₈N₂O₄Na [M+Na]⁺: 301.1159, found: 301.1157.

(S)-Benzyl 4-ethyl-2-oxooxazolidin-3-ylcarbamate (3e)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and butyraldehyde **1e** (27.0 μ L, 0.30 mmol) for 15 h according to the general procedure to give **3e** (39.2 mg, yield: 73%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IA column, ee = 93% (HPLC: IA, 254 nm, 40 °C, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 45% B in 40 min, flow rate 0.5 mL/ min, t_r(major) = 23.8 min, t_r(minor)= 25.3 min); [α]_D²⁰ +19.2 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.34 (s, 5H), 7.18 (s, 1H), 5.15 (s, 2H), 4.44 (s, 1H), 4.19–3.66 (m, 2H), 1.91–1.66 (m, 1H), 1.65–1.39 (m, 1H), 0.88 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) *δ* 157.5, 155.3, 135.3, 128.5, 128.4, 128.1, 68.0, 67.1, 57.6, 24.3, 8.3.

IR (film) v_{max} : 3279, 2964, 1768, 1724, 1508, 1218, 1118, 1046, 745, 695 cm⁻¹; HRMS (ESI, *m/z*) calcd for C₁₃H₁₆N₂O₄Na [M+Na]⁺: 287.1002, found: 287.1003.

(S)-Benzyl 4-allyl-2-oxooxazolidin-3-ylcarbamate (3f)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and pent-4-enal **1f** (29.6 μ L, 0.30 mmol) for 15 h according to the general procedure to give **3f** (48.0 mg, yield: 87%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IA column, ee = 92% (HPLC: IA, 254 nm, 40 °C, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 45% B in 40 min, flow rate 0.5 mL/ min, t_r(major) = 28.0 min, t_r(minor)= 29.7 min); $[\alpha]_D^{20}$ +36.5 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.27 (s, 5H), 7.07 (s, 1H), 5.60 (td, *J* = 17.0, 7.0 Hz, 1H), 5.09 (s, 3H), 5.05 (s, 1H), 4.34 (t, *J* = 7.5 Hz, 1H), 4.02 (s, 2H), 3.92 (t, *J* = 8.1 Hz, 1H), 2.54–2.34 (m, 1H), 2.23 (dt, *J* = 14.5, 7.3 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 157.3, 155.3, 135.3, 131.2, 128.6, 128.4, 128.1, 119.4, 68.0, 66.8, 55.8, 35.7.

IR (film) v_{max} : 3271, 2912, 1772, 1726, 1502, 1425, 1226, 1119, 1050, 924, 749, 698 cm⁻¹. HRMS (ESI, *m*/*z*) calcd for C₁₄H₁₆N₂O₄Na [M+Na]⁺: 299.1002, found: 299.1000.

(S)-Benzyl 4-hexyl-2-oxooxazolidin-3-ylcarbamate (3g)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and octanal **1g** (31.8 μ L, 0.30 mmol) for 15 h according to the general procedure to give **3g** (48.0 mg, yield: 75%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IA column, ee = 95% (HPLC: IA, 254 nm, 40 °C, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 60% B in 40 min, flow rate 0.5 mL/ min, t_r(major) = 33.2 min, t_r(minor)= 35.1 min); [α]_D²⁰ +24.8 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.26 (s, 6H), 5.07 (d, *J* = 2.0 Hz, 2H), 4.35 (s, 1H), 4.10–3.55 (m, 2H), 1.82–1.54 (m, 1H), 1.40 (s, 1H), 1.18 (s, 8H), 0.80 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) *δ* 157.5, 155.3, 135.3, 128.5, 128.3, 128.0, 67.9, 67.6, 56.7, 31.6, 31.5, 29.0, 24.3, 22.4, 13.9.

IR (film) v_{max} : 3274, 2925, 2857, 1774, 1728, 1502, 1458, 1420, 1220, 1118, 1048, 748, 698 cm⁻¹.

HRMS (ESI, m/z) calcd for C₁₇H₂₄N₂O₄Na [M+Na]⁺: 343.1628, found: 343.1628.

(S)-Benzyl 4-cyclohexyl-2-oxooxazolidin-3-ylcarbamate (3h)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and 2-cyclohexylacetaldehyde **1h** (37.8 mg, 0.30 mmol) for 15 h according to the general procedure to give **3h** (49.0 mg, yield:

77%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 70/ 30, flow rate 0.8 mL/ min, $t_r(minor) = 23.9 \text{ min}$, $t_r(major) = 52.3 \text{ min}$; $[\alpha]_D^{20} + 24.1$ (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.34 (s, 1H), 7.26 (s, 5H), 5.31–4.65 (m, 2H), 4.27 (s, 1H), 3.98 (t, *J* = 8.2 Hz, 1H), 3.85 (s, 1H), 1.88–1.32 (m, 6H), 1.32–0.61 (m, 5H).

¹³C NMR (75 MHz, CDCl₃) *δ* 158.1, 155.2, 135.3, 128.5, 128.3, 128.0, 67.8, 64.6, 60.3, 38.5, 28.3, 26.3, 26.1, 25.8, 25.5.

IR (film) v_{max} : 3265, 2925, 2854, 1771, 1722, 1504, 1449, 1419, 1213, 1121, 1047, 741, 696 cm⁻¹.

HRMS (ESI, m/z) calcd for C₁₇H₂₂N₂O₄Na [M+Na]⁺: 341.1472, found: 341.1470.

(S)-Benzyl 4-(benzyloxymethyl)-2-oxooxazolidin-3-ylcarbamate (3i)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and 3-(benzyloxy)propanal^{S12} **1i** (49.2 mg, 0.30 mmol) for 15 h according to the general procedure to give **3i** (51.2 mg, yield: 75%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 91% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 80/ 20, flow rate 0.5 mL/ min, $t_r(minor)$ = 27.4 min, $t_r(major)$ = 30.6 min); $[\alpha]_D^{20}$ +13.2 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.50–7.20 (m, 10H), 7.10 (s, 1H), 5.28–4.96 (m, 2H), 4.52 (s, 2H), 4.44 (t, *J* = 7.8 Hz, 1H), 4.30–4.00 (m, 2H), 3.59 (qd, *J* = 10.2, 3.7 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 157.1, 155.3, 137.3, 135.2, 128.5, 128.3, 128.1, 128.0, 127.7, 73.3, 67.9, 67.7, 64.8, 55.8.

IR (film) v_{max} : 3273, 3031, 2867, 1774, 1728, 1499, 1453, 1213, 1105, 1038, 742, 697 cm⁻¹. HRMS (ESI, *m*/*z*) calcd for C₁₉H₂₀N₂O₅Na [M+Na]⁺: 379.1264, found: 379.1262.

(S)-Benzyl 4-benzyl-2-oxooxazolidin-3-ylcarbamate (3j)

From dibenzyl azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and 3-phenylpropanal **1j** (29.6 μ L, 0.30 mmol) for 22 h (5 °C for 14 h, then up to RT for additional 8 h) according to the general procedure to give **3j** (59.2 mg, yield: 91%) as a colorless oil. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 89% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 70/ 30, flow rate 0.5 mL/ min, t_r(minor)= 40.0 min, t_r(major) = 50.5 min); [α]_D²⁰ +23.5 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.35–6.91 (m, 10H), 5.07 (s, 2H), 4.20 (s, 2H), 3.95 (s, 1H), 3.05 (dd, *J* = 13.7, 4.1 Hz, 1H), 2.91–2.12 (m, 1H).

¹³C NMR (75 MHz, CDCl₃) *δ* 157.3, 155.2, 135.3, 135.1, 128.9, 128.6, 128.4, 128.2, 127.2, 68.0, 67.1, 57.7, 37.9.

IR (film) v_{max} : 3278, 3029, 2938, 1773, 1725, 1496, 1450, 1419, 1221, 1117, 1026, 742, 698 cm⁻¹.

HRMS (ESI, *m*/*z*) calcd for C₁₈H₁₈N₂O₄Na [M+Na]⁺: 349.1159, found: 349.1156.

(S)-Di-tert-butyl 1-(1-hydroxy-3-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (4k)

From di-*tert*-butyl azodicarboxylate **2b** (46.0 mg, 0.20 mmol) and 3-phenylpropanal **1j** (29.6 μ L, 0.30 mmol) for 15 h according to the general procedure to give **4k** (67.0 mg, yield: 91%) as a white solid. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 96% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 80/ 20, flow rate 0.5 mL/ min, t_r(major) = 13.9 min, t_r(minor)= 16.9 min); [α]_D²⁰ –33.7 (*c* 1.0, CHCl₃), (lit^{S13} [α]_D²⁵ +30.8 (*c* 0.53, CHCl₃) product obtained by *L*-proline catalyzed α -amination with *R*-configuration),

¹H NMR (300 MHz, CDCl₃) δ 7.50–6.76 (m, 5H), 6.21–5.78 (m, 1H), 4.94–4.31 (m, 1H), 3.70–3.23 (m, 2H), 2.93–2.14 (m, 2H), 1.43 (s, 9H), 1.23 (m, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 158.7, 155.7, 155.5, 154.7, 137.8, 128.8, 128.5, 126.5, 82.6, 82.3, 81.7, 81.3, 62.2, 61.9, 34.7, 28.1, 28.0, 27.8.

IR (film) ν_{max} : 3419, 3224, 2975, 2930, 1720, 1675, 1531, 1392, 1367, 1333, 1278, 1255, 1160, 1022, 791, 752, 701 cm⁻¹.

HRMS (ESI, *m/z*) calcd for C₁₉H₃₀N₂O₅Na [M+Na]⁺: 389.2047, found: 389.2045.

(S)-Diethyl 1-(1-hydroxy-3-phenylpropan-2-yl)hydrazine-1,2-dicarboxylate (4l)

From diethyl azodicarboxylate **2c** (2.2 M in toluene, 90.9 µL, 0.20 mmol) and 3-phenylpropanal **1j** (29.6 µL, 0.30 mmol) for 15 h according to the general procedure to give **4l** (54.6 mg, yield: 88%) as a white solid. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 95% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 70/ 30, flow rate 0.5 mL/ min, $t_r(minor)$ = 31.3 min, $t_r(major)$ = 76.1 min); $[\alpha]_D^{20}$ –26.1 (*c* 1.0, CHCl₃).

¹H NMR (300 MHz, CDCl₃) δ 7.53–6.78 (m, 5H), 6.59–6.09 (m, 1H), 4.92–4.40 (m, 1H), 4.29–4.09 (m, 2H), 4.08–3.84 (m, 2H), 3.69–3.19 (m, 2H), 2.90–2.30 (m, 2H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.05 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) *δ* 159.4, 156.8, 137.4, 128.7, 128.6, 126.6, 62.9, 62.7, 61.9, 34.6, 14.2.

IR (film) v_{max} : 3428, 3244, 2989, 2922, 2864, 1724, 1678, 1524, 1416, 1254, 1219, 1061, 1025, 776, 753 cm⁻¹.

HRMS (ESI, *m/z*) calcd for C₁₅H₂₂N₂O₅Na [M+Na]⁺: 333.1421, found: 333.1417.

4. HPLC on Chiral Stationary Phase

4.1. Determination of Enantiopurities of the Iridium Catalyst Λ -Ir4 and Δ -Ir4

The analysis was performed with a Daicel Chiralpak IA (250×4.6 mm) HPLC column on an Agilent 1200 Series HPLC System. The column temperature was 30 °C and UV-absorption was measured at 254 nm. mobile phase: solvent A = 0.1% TFA, solvent B = MeCN, flow rate = 0.5 mL/min, column temperature = 40 °C, UV absorption = 254 nm.

Figure S1. HPLC traces of the reference *rac*-**Ir4**, Λ -**Ir4**, and Δ -**Ir4** (all as their PF₆ salt). Integration of peak areas > 99% *ee* (Daicel Chiralpak IA, with a linear gradient of 30% to 60% B in 25 min, flow rate = 0.5 mL/min).

4.2. Determination of Enantioselectivities for the Asymmetric α -Amination Reactions

Optical purities of the compounds **3k-l** and **4a-j** were analyzed with Daicel Chiralpak IA, IB or IC (250×4.6 mm) HPLC columns on an Agilent 1200 Series HPLC System. Mobile phase: hexane/isopropanol or 0.1% TFA/MeCN, flow rate = 0.5 or 0.8 mL/min, column temperature = 40 °C, UV absorption = 254 nm.

Figure S2. HPLC traces of *rac*-**3a** and (*S*)-**3a**. Area integration = 98.3:1.7 (97% ee, Daicel Chiralpak IB, hexane/isopropanol = 90/10, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Area		Height		Area
ŧ	[min]		[min]	mAU	* 3	[mAU]	8
1	24.966	MM	1.0509	3536.	45825	56.0	08680	98.2966
2	28.678	MM	0.9525	61.	28478	1.0	7235	1.7034

Figure S3. HPLC traces of *rac*-**3b** and (*S*)-**3b**. Area integration = 96.8: 3.2 (94% ee, Daicel Chiralpak IC, hexane/isopropanol = 70/30, flow rate = 0.8 mL/min).

Peak	RetTime	Type	Width	Aı	rea	Heig	Jht	Area
#	[min]		[min]	mAU	*s	[mAU]	8
								I
1	23.035	BB	0.4929	101	.36393	2.6	3267	3.1877
2	36.547	BB	1.0792	3078	.53125	38.2	23318	96.8123

Figure S4. HPLC traces of *rac*-**3c** and (*S*)-**3c**. Area integration = 97.4: 2.6 (95% ee, Daicel Chiralpak IA, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 50% B in 40 min, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Area Height		ght	Area	
#	[min]		[min]	mAU	*s	[mAU]	26
1	27.945	BB	0.5279	5090.	43408	139.4	43045	97.3738
2	29.765	BB	0.5253	137.	.29082	3.0	58219	2.6262

Figure S5. HPLC traces of *rac*-**3d** and (*S*)-**3d**. Area integration = 97.9: 2.1 (96% ee, Daicel Chiralpak IA, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 45% B in 40 min, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	20
1	31.706	MM	0.5609	424.	41931	12.6	51043	97.9412
2	33.772	MM	0.5907	8.	92175	2.5174	43e-1	2.0588

Figure S6. HPLC traces of *rac*-**3e** and (*S*)-**3e**. Area integration = 96.4: 3.6 (93% ee, Daicel Chiralpak IA, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 45% B in 40 min, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Aı	Area		ght	Area
#	[min]		[min]	mAU	*s	[mAU]	20
1	23.776	BB	0.4808	2040.	58545	61.	88373	96.4197
2	25.263	BB	0.4699	75.	77260	2.	24263	3.5803

Figure S7. HPLC traces of *rac*-**3f** and (*S*)-**3f**. Area integration = 95.9: 4.1 (92% ee, Daicel Chiralpak IA, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 45% B in 40 min, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	28.041	BB	0.5221	2359	.26465	66.6	6464	95.9081
2	29.660	BB	0.5412	100	65646	2.5	5497	4.0919

Figure S8. HPLC traces of *rac*-**3g** and (*S*)-**3g**. Area integration = 97.3: 2.7 (95% ee, Daicel Chiralpak IA, solvent A = 0.1% TFA, solvent B = MeCN, with a linear gradient of 30% to 60% B in 40 min, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	A	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	33.215	MF	0.5966	1713	.63708	47.8	37411	97.2567
2	35.129	FM	0.5794	48	.33672	1.3	39031	2.7433

Figure S9. HPLC traces of *rac*-**3h** and (*S*)-**3h**. Area integration = 97.7: 2.3 (95% ee, Daicel Chiralpak IC, hexane/isopropanol = 70/30, flow rate = 0.8 mL/min).

Peak	RetTime	Type	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	જ
1	23.908	BB	0.4937	78	.81164	1.	97315	2.3083
2	52.283	MM	2.1248	3335	.46729	26.3	16319	97.6917

Figure S10. HPLC traces of *rac*-**3i** and (*S*)-**3i**. Area integration = 95.5: 4.5 (91% ee, Daicel Chiralpak IC, hexane/isopropanol = 80/20, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Ar	ea	Heig	ht	Area
Ŧ	[min]		[min]	mAU	*s	[mAU	1	왕
1	27.449	MM	0.7611	44.	72052	9.7933	39e-1	4.5345
2	30.626	MM	0.8366	941.	49713	18.7	5706	95.4655

Figure S11. HPLC traces of *rac*-**3j** and (*S*)-**3j**. Area integration = 94.4: 5.6 (89% ee, Daicel Chiralpak IC, hexane/isopropanol = 70/30, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Ar	rea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	40.049	MM	0.9141	105.	75706	1.9	92819	5.5810
2	50.518	MM	1.2278	1789.	18652	24.2	28755	94.4190

Figure S12. HPLC traces of *rac*-**4k** and (*S*)-**4k**. Area integration = 97.8: 2.2 (96% ee, Daicel Chiralpak IC, hexane/isopropanol = 80/20, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Are	ea	Hei	ght	Area
Ŧ	[min]		[min]	mAU	*s	[mAU]	울
1	13.926	MM	0.6591	1242.	48035	31.	41781	97.7571
2	16.907	MM	0.7234	28.	50731	6.568	32e-1	2.2429

Figure S13. HPLC traces of *rac*-4l and (*S*)-4l. Area integration = 97.6: 2.4 (95% ee, Daicel Chiralpak IC, hexane/isopropanol = 70/30, flow rate = 0.5 mL/min).

Peak	RetTime	Type	Width	Ar	ea	Heig	ght	Area
ŧ	[min]		[min]	mAU	*s	[mAU]	8
1	31.295	MM	0.8908	53.	62602	1.0	00336	2.4407
2	76.147	MM	2.3183	2143.	56348	15.4	41068	97.5593

5. CD Spectra of Chiral Iridium Complexes

Figure S14. CD spectrum of complex Λ -(*S*)-**7a** recorded in CH₃OH (0.2 mM).

Figure S15. CD spectrum of complex Λ -(*S*)-**7b** recorded in CH₃OH (0.2 mM).

Figure S16. CD spectrum of complex Λ -(*S*)-7c recorded in CH₃OH (0.2 mM).

Figure S17. CD spectra of complexes Λ -(*S*)-7d and Δ -(*S*)-7d recorded in CH₃OH (0.2 mM).

Figure S18. CD spectrum of complex Λ -(*S*)-**7e** recorded in CH₃OH (0.2 mM).

Figure S19. CD spectrum of catalyst Λ -Ir1 recorded in CH₃OH (0.2 mM).

Figure S20. CD spectrum of catalyst Λ -Ir2 recorded in CH₃OH (0.2 mM).

Figure S21. CD spectrum of catalyst Λ -Ir3 recorded in CH₃OH (0.2 mM).

Figure S22. CD spectra of catalyst Λ -Ir4 and Δ -Ir4 recorded in CH₃OH (0.2 mM).

Figure S23. CD spectrum of catalyst Λ -Ir5 recorded in CH₃OH (0.2 mM).

6. NMR Spectra of New Iridium Complexes

Figure S24. ¹H-NMR and ¹³C-NMR spectrum of Λ -(*S*)-7a.

Figure S25. ¹H-NMR and ¹³C-NMR spectrum of Λ -(*S*)-7c.

Figure S26. ¹H-NMR and ¹³C-NMR spectrum of Λ -(*S*)-7d.

Figure S27. ¹H-NMR and ¹³C-NMR spectrum of Δ -(*S*)-7d.

Figure S28. ¹H-NMR and ¹³C-NMR spectrum of Λ -**Ir1**.

Figure S29. ¹H-NMR and ¹³C-NMR spectrum of Λ -**Ir2**.

Figure S30. ¹H-NMR and ¹³C-NMR spectrum of Λ -**Ir3**.

Figure S31. ¹H-NMR and ¹³C-NMR spectrum of Λ -**Ir4**.

Figure S32. ¹H-NMR and ¹³C-NMR spectrum of Λ -**Ir5**.

7. Single Crystal X-Ray Diffraction with Racemic Iridium Complex Λ/Δ -Ir4

An X-ray crystal structure of the racemic complex Λ/Δ -**Ir4** was obtained as an iodide salt (identification code = cat112_0m_sq). Suitable crystals were obtained by slow diffusion from a solution of Λ/Δ -**Ir4** in CH₂Cl₂/MeOH 5:1 saturated with NaI and layered with Et₂O.

Figure S33. Crystal structure of the racemic catalyst Λ/Δ -Ir4. ORTEP drawing of complex 1 with 30% probability thermal ellipsoids. Iodide counterions, water molecules and CH₂Cl₂ are omitted for clarity.

Figure S34. Crystal structure of the racemic catalyst Λ/Δ -Ir4. ORTEP drawing of complex 2 with 30% probability thermal ellipsoids. Iodide counterions, water molecules and CH₂Cl₂ are omitted for clarity.

Figure S35. Hydrogen bonding network. ORTEP drawing with 50% probability thermal ellipsoids.

Table S1. Crystal data and structure refinement for cat112_0m_sq.

Crystal data

Identification code Habitus, colour Crystal size Crystal system Space group Unit cell dimensions

Volume Cell determination Empirical formula Moiety formula O) Formula weight Density (calculated) Absorption coefficient F(000)

Data collection:

Diffractometer type Wavelength Temperature Theta range for data collection Index ranges Data collection software Cell refinement software Data reduction software

Solution and refinement:

Reflections collected Independent reflections Completeness to theta = 25.240° Observed reflections Reflections used for refinement Absorption correction Max. and min. transmission Largest diff. peak and hole Solution Refinement Treatment of hydrogen atoms Programs used

Data / restraints / parameters Goodness-of-fit on F² R index (all data) R index conventional [I>2sigma(I)]

cat112_0m_sq plate, yellow 0.609 x 0.209 x 0.044 mm³ Triclinic P - 1 Z = 1a = 14.9997(6) Å $\alpha = 105.6071(19)^{\circ}$. b = 20.6925(7) Å $\beta = 100.893(2)^{\circ}$. c = 26.1024(10) Å $\gamma = 99.749(2)^{\circ}$. 7451.9(5) Å³ 9717 peaks with Theta 2.5 to 27.2°. C275 H308 Cl6 I10 Ir4 N20 O25 4[C68 H73 Ir N5 O5]+, 2(I-), I3-, I5-, 3(C H2 Cl2), 5(H2

6543.90 1.458 Mg/m³ 2.930 mm⁻¹ 3238

Bruker D8 QUEST area detector 0.71069 Å 100(2) K 2.005 to 25.371°. -18<=h<=18, -24<=k<=24, -31<=l<=31 BRUKER APEX2 2014.1-1 SAINT V8.32B (Bruker AXS Inc., 2013) SAINT V8.32B (Bruker AXS Inc., 2013)

173852 27246 [R(int) = 0.0892] 99.9 % 20449[I > 2sigma(I)]27246 Semi-empirical from equivalents 0.72 and 0.55 4.544 and -2.517 e.Å-3 direct/ difmap Full-matrix least-squares on F² mixed, mixed SHELXS-97 (Sheldrick, 2008) SHELXL-2013 (Sheldrick, 2013) **DIAMOND** (Crystal Impact) 27246 / 1352 / 1746 1.055 wR2 = 0.1826R1 = 0.0682

	X	у	Z	U(eq)	Occupancy
$\overline{C^2}$	0 6798(7)	0 5005(4)	0 1728(4)	0.047(2)	1
C_{3}	0.0734(7)	0.4589(4)	0.1331(4)	0.042(2)	1
C4	0.7131(7) 0.8094(7)	0.4708(5)	0.1391(4)	0.012(2) 0.049(2)	1
C5	0.8688(8)	0.4700(5) 0.5233(5)	0.1371(4) 0.1859(5)	0.047(2)	1
C6	0.8354(9)	0.5633(6)	0.1057(5)	0.000(3)	1
C_0	0.0334(9) 0.7411(8)	0.5033(0)	0.2251(0) 0.2176(5)	0.070(3)	1
C7	0.7411(0) 0.5020(2)	0.5311(5) 0.5470(5)	0.2170(3)	0.001(3)	1
C9	0.3989(8)	0.5470(5)	0.2272(4)	0.033(2)	1
C10	0.3193(8)	0.5550(5)	0.2488(4)	0.033(2)	1
	0.4378(8)	0.5005(5)	0.2149(4)	0.051(2)	1
CI2	0.3556(9)	0.5112(5)	0.2312(5)	0.057(2)	1
	0.3524(10)	0.5622(6)	0.2764(5)	0.0/0(3)	1
C14	0.4351(9)	0.6104(5)	0.3098(5)	0.061(2)	1
CIS	0.5186(9)	0.60/3(5)	0.2963(5)	0.062(3)	1
C16	0.8501(7)	0.4269(5)	0.0984(5)	0.052(2)	1
C18	0.4331(10)	0.6687(6)	0.3587(5)	0.071(3)	l
C19	0.4271(13)	0.6564(8)	0.4087(6)	0.099(4)	1
C20	0.4237(12)	0.7099(8)	0.4525(6)	0.101(5)	1
C21	0.4248(11)	0.7752(8)	0.4481(6)	0.087(4)	1
C22	0.4281(9)	0.7873(7)	0.3983(5)	0.073(3)	1
C23	0.4320(8)	0.7344(5)	0.3529(5)	0.059(3)	1
C24	0.4301(18)	0.5853(9)	0.4168(8)	0.131(6)	1
C25	0.5203(18)	0.5930(10)	0.4565(9)	0.156(7)	1
C26	0.349(2)	0.5634(15)	0.4409(12)	0.207(11)	1
C27	0.4127(12)	0.8323(9)	0.4969(6)	0.103(4)	1
C28	0.3155(13)	0.8411(10)	0.4874(7)	0.122(6)	1
C29	0.4816(16)	0.8926(11)	0.5119(9)	0.161(9)	1
C30	0.4314(10)	0.7468(6)	0.2990(5)	0.075(3)	1
C31	0.5295(13)	0.7889(9)	0.2998(9)	0.128(6)	1
C32	0.3595(13)	0.7830(8)	0.2818(7)	0.109(5)	1
C34	0.2327(7)	0.3746(5)	0.0979(4)	0.048(2)	1
C35	0.1938(8)	0.4098(7)	0.0658(6)	0.071(3)	1
C36	0.0987(9)	0.3877(8)	0.0426(6)	0.079(4)	1
C37	0.0441(8)	0.3349(7)	0.0508(5)	0.072(3)	1
C38	0.0812(7)	0.2976(6)	0.0832(5)	0.057(2)	1
C39	0.1769(7)	0.3203(5)	0.1058(4)	0.046(2)	1
C41	0.3194(6)	0.3310(4)	0.1502(3)	0.0328(16)	1
C42	0.4012(6)	0.3226(4)	0.1831(3)	0.0309(16)	1
C43	0.4816(6)	0.3740(4)	0.1889(3)	0.0334(17)	1
C44	0.5649(7)	0.3690(4)	0.2195(4)	0.0380(18)	1
C45	0.5684(6)	0.3148(4)	0.2412(3)	0.0357(18)	1
C46	0.4902(6)	0.2639(4)	0.2343(3)	0.0312(16)	1
C47	0.4053(6)	0.2682(4)	0.2056(3)	0.0310(16)	1
C48	0.0521(12)	0.4257(12)	0.0057(10)	0.144(8)	1
C50	0.5021(5)	0.2030(4)	0.2540(3)	0.0297(15)	1
C51	0.5058(7)	0.2058(5)	0.3083(4)	0.0401(19)	1
C52	0.5266(6)	0.1491(5)	0.3245(4)	0.0404(19)	1
C53	0.5421(6)	0.0916(4)	0.2889(3)	0.0355(17)	1
C54	0.5335(5)	0.0894(4)	0.2346(3)	0.0299(16)	1
C55	0.5135(5)	0.1435(4)	0.2162(3)	0.0308(16)	1
C56	0.4834(8)	0.2662(5)	0.3479(4)	0.055(2)	1
C57	0.5680(11)	0.3208(7)	0.3791(6)	0.096(5)	- 1
C58	0.4287(10)	0.2451(6)	0.3864(5)	0.070(3)	1
C59	0.5659(7)	0.0312(5)	0.3074(4)	0.048(2)	1
C60	0.6539(8)	0.0539(6)	0 3525(5)	0.061(3)	1
C61	0.00000000000000000000000000000000000	-0.0050(0)	0.3226(5)	0.001(3)	1
C62	0.5020(6)	0.1365(4)	0 1550(3)	0.000(3)	1
C63	0.4145(6)	0.1303(-)	0.1330(3) 0.1207(4)	0.0334(17) 0.047(2)	1
205	0.11+3(0)	0.0007(3)	0.1207(7)	0.0 (2)	1

Table S2. Atomic coordinates and equivalent isotropic displacement parameters (Ų)for cat112_0m_sq. U(eq) is defined as one third ofthe trace of the orthogonalized U^{ij} tensor.

C64	0.5887(6)	0.1223(5)	0.1369(4)	0.0391(19)	1
C66	0.5165(6)	0.3315(4)	0.0482(4)	0.0355(17)	1
C67	0.5600(6)	0.2313(1) 0.2768(4)	0.0627(4)	0.0386(19)	1
C69	0.5000(0) 0.5352(8)	0.2700(4) 0.2650(5)	0.0027(4) 0.0353(4)	0.0500(17)	1
C70	0.5552(0)	0.2050(5)	-0.0333(+)	0.031(2) 0.043(2)	1
C70	0.3039(7)	0.3230(3)	-0.0040(4)	0.043(2)	1
C72	0.4480(0) 0.4007(7)	0.4092(4)	0.0311(4)	0.0381(18)	1
C73	0.4097(7)	0.4701(5)	0.0402(4)	0.040(2)	1
C75	0.3813(8)	0.5557(5)	0.1059(5)	0.060(3)	1
C76	0.3396(9)	0.5822(6)	0.0669(5)	0.067(3)	1
C77	0.3325(8)	0.5503(6)	0.0131(5)	0.061(3)	1
C78	0.3691(7)	0.4927(6)	-0.0013(5)	0.056(2)	1
N1	0.5898(6)	0.4991(3)	0.1796(3)	0.0441(17)	1
N33	0.3245(5)	0.3805(4)	0.1277(3)	0.0402(16)	1
N65	0.4790(5)	0.3860(3)	0.0717(3)	0.0353(15)	1
N68	0.5871(5)	0.2455(4)	0.0111(3)	0.0438(17)	1
N74	0.4154(6)	0.5001(4)	0.0934(4)	0.0480(19)	1
08	0.6886(6)	0.5810(3)	0.2516(3)	0.0653(19)	1
017	0.7806(5)	0.3710(4)	0.0613(3)	0.0523(16)	1
040	0.2330(4)	0.2929(3)	0.1397(2)	0.0398(13)	1
049	0.1041(13)	0.2525(3) 0.4588(17)	-0.0158(14)	0.0390(13)	0.74(2)
019	-0.035(2)	0.1300(17) 0.416(2)	-0.0095(18)	0.210(10) 0.102(17)	0.76(2)
030	-0.033(2)	0.410(2) 0.3740(3)	-0.0093(10)	0.102(17) 0.0470(15)	0.20(2)
U/1 In1	0.4011(3) 0.45694(2)	0.3740(3)	-0.0173(3)	0.0470(13)	1
II 1 C102	0.43084(3)	0.44130(2)	0.14733(2)	0.03820(11)	1
C102	-0.1068(6)	-0.0461(5)	-0.2268(4)	0.0378(17)	1
C103	-0.1425(6)	0.0085(5)	-0.2039(4)	0.044(2)	1
C104	-0.2392(6)	-0.0065(5)	-0.2081(4)	0.043(2)	1
C105	-0.2943(6)	-0.0732(5)	-0.2346(4)	0.047(2)	1
C106	-0.2591(6)	-0.1274(5)	-0.2568(4)	0.047(2)	1
C107	-0.1633(6)	-0.1113(5)	-0.2527(4)	0.0397(18)	1
C109	-0.0235(5)	-0.1179(4)	-0.2560(4)	0.0349(17)	1
C110	0.0577(6)	-0.1415(5)	-0.2662(3)	0.0352(17)	1
C111	0.1380(5)	-0.0864(4)	-0.2458(3)	0.0323(17)	1
C112	0.2203(6)	-0.1051(5)	-0.2528(4)	0.0362(18)	1
C113	0.2226(6)	-0.1732(4)	-0.2771(3)	0.0368(18)	1
C114	0.1416(6)	-0.2264(5)	-0.2957(4)	0.0391(18)	1
C115	0.0583(6)	-0.2094(5)	-0.2906(3)	0.0369(17)	1
C116	-0.2805(7)	0.0523(6)	-0.1813(5)	0.056(3)	1
C119	0.2003(7) 0.1/191(6)	-0.3005(5)	-0.3160(4)	0.030(3) 0.047(2)	1
C120	0.1491(0) 0.1560(7)	0.3005(5)	0.3100(4) 0.2773(5)	0.047(2) 0.051(2)	1
C120	0.1309(7) 0.1716(7)	-0.3309(3)	-0.2773(3)	0.051(2) 0.062(2)	1
C121	0.1710(7) 0.1708(8)	-0.4033(3)	-0.2940(3)	0.002(3)	1
C122	0.1/90(0)	-0.4337(0)	-0.5434(0)	0.071(3)	1
C123	0.16/9(9)	-0.3989(6)	-0.3839(5)	0.076(3)	1
C124	0.1521(8)	-0.3314(6)	-0.3/03(5)	0.064(3)	1
C125	0.1355(11)	-0.2932(7)	-0.4127(5)	0.087(4)	1
C126	0.2231(14)	-0.2608(11)	-0.4241(7)	0.127(6)	1
C127	0.0656(15)	-0.3392(11)	-0.4650(7)	0.143(7)	1
C128	0.2006(10)	-0.5060(6)	-0.3626(7)	0.092(4)	1
C129	0.2964(11)	-0.5028(7)	-0.3692(7)	0.103(5)	1
C130	0.1235(12)	-0.5569(7)	-0.4074(7)	0.111(6)	1
C131	0.1466(8)	-0.3066(6)	-0.2199(5)	0.058(2)	1
C132	0.0560(9)	-0.3442(9)	-0.2122(7)	0.096(5)	1
C133	0.2291(8)	-0.3057(6)	-0.1753(5)	0.056(3)	1
C135	0.3409(5)	0.0715(4)	-0.1609(3)	0.0231(14)	1
C136	0.3718(5)	0.0602(4)	-0.1114(3)	0.0228(14)	1
C137	0.4665(5)	0.0789(4)	-0.0881(3)	0.0220(14)	1
C138	0.5287(5)	0.1087(4)	-0.1137(3)	0.0242(14)	1
C139	0.4984(5)	0.1207(1)	-0 1627(3)	0.0256(15)	1
C140	0.4904(3)	0.1210(-1) 0.1020(1)	-0.18/8(3)	0.0230(13)	1
C140	0.4047(3)	0.1027(4) 0.0811(4)	-0.10+0(3)	0.02+0(1+) 0.0270(15)	1 1
C142	0.2033(3)	0.0011(4) 0.0675(4)	-0.2309(3)	0.0270(13) 0.0200(14)	1
C145	0.3020(3)	0.0073(4)	-0.0333(3)	0.0300(10) 0.0220(17)	1
C145	0.18/1(0)	0.0721(4)	-0.2819(3)	0.0332(17)	1
C146	0.1045(6)	0.0337(4)	-0.2758(3)	0.0333(17)	1

C147	0.0242(6)	0.0226(5)	-0.3181(4)	0.042(2)	1
C148	0.0303(7)	0.0497(5)	-0.3610(4)	0.048(2)	1
C149	0.1111(7)	0.0866(5)	-0.3656(4)	0.046(2)	1
C150	0 1923(6)	0.0988(4)	-0.3251(3)	0.0360(18)	1
C151	0.1106(9)	0 1147(6)	-0.4127(4)	0.060(3)	1
C152	0.1459(11)	0.0831(8)	-0 4546(5)	0.088(4)	1
C153	0.1137(11) 0.1142(18)	0.0051(0) 0.0863(15)	-0 5078(9)	0.068(6)	0.5
C154	0.0676(14)	0.0003(13) 0.1407(12)	-0.5118(8)	0.000(0) 0.055(4)	0.5
C155	0.0070(1+) 0.030(2)	0.1772(15)	-0.3110(0) 0.4673(10)	0.033(+) 0.071(6)	0.5
C155	0.039(2) 0.0701(11)	0.1772(13) 0.1724(7)	-0.4073(10)	0.071(0) 0.081(3)	0.5
C157	0.0701(11) 0.1010(10)	0.1724(7) 0.0253(8)	-0.4141(3) 0.4545(4)	0.081(3)	1
C159	0.1313(10) 0.1208(12)	0.0233(8) 0.0284(10)	-0.4343(4)	0.003(4) 0.122(6)	1
C150	0.1370(13) 0.2022(12)	-0.0364(10)	-0.4508(7)	0.133(0) 0.121(6)	1
C159	0.2952(15) 0.0261(12)	0.0400(12) 0.1528(15)	-0.4398(7)	0.131(0)	1
C160	0.0301(13)	0.1528(15) 0.1717(15)	-0.5081(11)	0.079(8)	0.5
C161	0.104/(19)	0.1/1/(15) 0.1210(10)	-0.5930(11)	0.077(7)	0.5
C162	-0.0605(13)	0.1310(10)	-0.5882(8)	0.048(5)	0.5
C163	0.0329(12)	0.2091(7)	-0.3678(5)	0.086(4)	1
C164	-0.0362(15)	0.2474(10)	-0.3822(8)	0.133(6)	1
C165	0.1155(16)	0.2614(9)	-0.3221(8)	0.138(7)	1
C166	0.1699(19)	0.1299(15)	-0.4942(9)	0.068(5)	0.5
C167	0.137(2)	0.1867(14)	-0.4924(9)	0.073(6)	0.5
C168	0.095(2)	0.2109(16)	-0.4525(11)	0.082(8)	0.5
C169	0.159(2)	0.2289(18)	-0.5334(14)	0.102(10)	0.5
C170	0.075(2)	0.215(2)	-0.5686(16)	0.123(12)	0.5
C171	0.249(3)	0.266(2)	-0.525(2)	0.165(18)	0.5
C173	0.1615(6)	-0.0484(6)	-0.0979(4)	0.051(2)	1
C174	0.1906(8)	-0.1141(6)	-0.1049(5)	0.060(2)	1
C176	0.1728(9)	-0.0681(7)	-0.0120(5)	0.070(3)	1
C177	0.1520(7)	-0.0232(6)	-0.0458(4)	0.051(2)	1
C179	0.1070(6)	0.0423(5)	-0.0926(4)	0.0440(18)	1
C180	0.0736(6)	0.0960(5)	-0.1073(4)	0.048(2)	1
C182	0.0522(7)	0.1472(6)	-0.1757(5)	0.058(3)	1
C183	0.0125(8)	0.1951(6)	-0.1457(5)	0.064(3)	1
C184	0.0065(8)	0.1947(7)	-0.0937(5)	0.071(3)	1
C185	0.0391(7)	0.1446(6)	-0.0751(5)	0.064(3)	1
N101	-0.0169(4)	-0.0529(4)	-0.2303(3)	0.0365(15)	1
N134	0.2516(4)	0.0578(3)	-0.1960(3)	0.0262(13)	1
N172	0.1328(5)	-0.0067(4)	-0.1272(3)	0.0425(16)	1
N175	0.2118(7)	-0.1193(6)	-0.0479(4)	0.068(2)	1
N181	0.0801(5)	0.0962(4)	-0.1577(3)	0.0425(16)	1
0108	-0.1118(4)	-0.1572(3)	-0.2721(3)	0.0420(14)	1
0117	-0.234(2)	0.0824(15)	-0.1230(9)	0.066(8)	0.25
0118	-0.2627(8)	0.1058(6)	-0.2062(4)	0.070(3)	0.75
0141	0.3543(4)	0.1090(3)	-0.2331(2)	0.070(3)	1
0144	0.5974(4)	0.1090(3)	-0.0047(2)	0.02/2(11) 0.0344(13)	1
0178	0.3921(1) 0.1150(5)	0.0336(4)	-0.0417(3)	0.0575(17)	1
Ir?	0.1130(3) 0.11712(2)	0.0050(1) 0.00684(2)	-0.20652(2)	0.0375(17) 0.03171(10)	1
II2 I1	0.0614(3)	0.00001(2)	0.20052(2) 0.14745(18)	0.03171(10) 0.0828(18)	0.226(3)
11	0.0014(3) 0.0055(3)	0.1001(3) 0.1076(3)	0.14745(10) 0.10705(16)	0.0820(10) 0.0807(10)	0.220(3) 0.231(4)
12	0.0955(5) 0.1062(4)	0.1070(3)	0.10795(10) 0.0850(2)	0.0007(19) 0.120(3)	0.231(4) 0.243(4)
13 14	0.1002(4) 0.2057(3)	0.0+35(3) 0.1576(2)	0.0830(2) 0.05755(17)	0.120(3)	0.243(4) 0.158(3)
14	0.2037(3) 0.20252(12)	0.1370(2) 0.1702(2)	0.03733(17) 0.02140(12)	0.0494(10)	0.130(3)
	0.30232(12)	0.1792(2) 0.2021(6)	0.02140(13)	0.0420(9)	0.300(13)
10	0.2900(8)	0.2051(0) 0.2070(14)	0.0095(0)	0.001(5)	0.55(2)
1/ TQ	0.2909(10) 0.2211(4)	0.2079(14) 0.2861(2)	-0.0070(13)	0.0/1(0) 0.107(2)	0.121(18)
10	0.2311(4)	0.2801(3)	-0.0331(2)	0.107(3)	0.270(6)
19 110	0.2739(2)	0.24/50(10)	-0.00202(10)	0.1083(19)	0.502(6)
110	0.1055(3)	0.3/062(19)	-0.0884(2)	0.106(2)	0.304(5)
111	0.2219(4)	0.3333(2)	-0.1299(2)	0.138(5)	0.284(6)
112	0.2942(4)	0.2916(3)	-0.15887(18)	0.130(3)	0.323(5)
115	0.2931(10)	0.2275(7)	-0.1442(6)	0.099(6)	0.085(4)
114	0.4208(13)	0.3238(9)	-0.1603(6)	0.334(11)	0.237(6)
115	0.2577(17)	0.2578(9)	-0.2181(8)	0.211(11)	0.114(5)

I17	0.7810(5)	0.2637(4)	-0.0660(4)	0.130(3)	0.209(5)
I18	0.76769(8)	0.25129(6)	-0.10091(9)	0.0574(6)	0.791(5)
O400	0.8232(9)	0.2435(6)	0.0252(7)	0.107(5)	0.791(5)
C300	0.770(2)	0.0537(14)	-0.3332(12)	0.122(10)	0.667
C11	0.7547(3)	-0.0295(3)	-0.3630(2)	0.0826(15)	0.667
Cl2	0.8041(8)	0.1157(5)	-0.3547(5)	0.173(5)	0.667
C400	0.892(3)	0.3768(16)	-0.172(2)	0.20(3)	0.5
C13	0.8746(5)	0.4483(4)	-0.1475(4)	0.096(2)	0.5
Cl4	0.9147(8)	0.3319(6)	-0.2271(5)	0.150(5)	0.5
C500	0.324(3)	0.226(2)	-0.4451(16)	0.077(11)	0.333
C15	0.2854(9)	0.2994(6)	-0.4263(7)	0.133(6)	0.333
Cl6	0.3292(9)	0.2028(8)	-0.5151(5)	0.104(4)	0.333

<u>C2-C7</u>	1.385(14)	С30-Н30	1.0000
C2-C3	1.389(13)	C31-H31A	0.9800
C2-N1	1.392(12)	C31-H31B	0.9800
C3-C4	1 390(13)	C31-H31C	0.9800
C3-H3	0.9500	C32-H32A	0.9800
C4-C5	1 420(15)	C32-H32B	0.9800
C4 C16	1.426(13)	C32 H32C	0.9800
C_{1}^{-1}	1.490(14)	C34 C35	1.362(14)
C5 H5	0.0500	C_{34} C_{30}	1.302(14) 1.272(14)
C5-115 C6 C7	1.360(16)	C24 N22	1.372(14) 1.415(12)
$C_{C_{1}}$	0.0500	C_{24} -1055 C_{25} C_{26}	1.413(12) 1.294(17)
Со-по	0.9300	C35-C30	1.364(17)
C7-08	1.38/(13)	C35-H35	0.9500
C9-N1	1.331(12)	$C_{36} = C_{37}$	1.342(18)
C9-08	1.351(13)	C36-C48	1.540(18)
C9-C10	1.428(15)	C37-C38	1.391(15)
C10-C15	1.40/(14)	C3/-H3/	0.9500
C10-C11	1.415(15)	C38-C39	1.390(14)
C11-C12	1.389(14)	C38-H38	0.9500
C11-Ir1	2.010(9)	C39-O40	1.400(11)
C12-C13	1.370(15)	C41-N33	1.309(11)
C12-H12	0.9500	C41-O40	1.334(10)
C13-C14	1.413(18)	C41-C42	1.423(11)
C13-H13	0.9500	C42-C47	1.408(11)
C14-C15	1.370(16)	C42-C43	1.421(12)
C14-C18	1.512(14)	C43-C44	1.386(12)
C15-H15	0.9500	C43-Ir1	2.025(8)
C16-O17	1.403(12)	C44-C45	1.390(12)
C16-H16M	0.9900	C44-H44	0.9500
C16-H16N	0.9900	C45-C46	1.385(12)
C18-C19	1.409(18)	C45-H45	0.9500
C18-C23	1.410(16)	C46-C47	1.380(11)
C19-C20	1.376(19)	C46-C50	1.506(11)
C19-C24	1.55(2)	C47-H47	0.9500
C20-C21	1.38(2)	C48-O50	1.26(2)
C20-H20	0.9500	C48-O49	1.26(2)
C21-C22	1 396(19)	C48-H48A	0.9900
C21-C27	1 550(18)	C48-H48B	0.9900
C_{22} - C_{23}	1 398(14)	C48-H48C	0.9900
C22-H22	0.9500	C48-H48D	0.9900
C_{22} - T_{22} - C_{30}	1 496(17)	C50-C51	1.394(12)
C24 C25	1.50(3)	C50 C55	1.374(12) 1.414(11)
$C_{24} - C_{25}$	1.50(5)	C51 C52	1.414(11) 1.414(12)
$C_{24} + C_{20}$	1.0000	C51 C56	1.414(12) 1.522(12)
C24-1124	0.0000	C52 C52	1.322(13) 1.282(12)
C25-H25A C25-H25B	0.9800	C52 U52	1.363(12)
C25-H25D	0.9800	C52-F152	0.9300
C25-H25C	0.9800	C53-C54	1.580(11)
C20-H20A	0.9800	C53-C59	1.528(12)
C26-H26B	0.9800	C54-C55	1.388(11)
C26-H26C	0.9800	C54-H54	0.9500
C27-C29	1.39(2)	C55-C62	1.537(11)
C27-C28	1.48(2)	C56-C57	1.476(17)
C27-H27	1.0000	C56-C58	1.517(15)
C28-H28A	0.9800	C56-H56	1.0000
C28-H28B	0.9800	С57-Н57А	0.9800
C28-H28C	0.9800	С57-Н57В	0.9800
С29-Н29А	0.9800	С57-Н57С	0.9800
C29-H29B	0.9800	C58-H58A	0.9800
C29-H29C	0.9800	C58-H58B	0.9800
C30-C32	1.48(2)	C58-H58C	0.9800
C30-C31	1.57(2)	C59-C61	1.499(15)

Table S3. Bond lengths [Å] and angles [°] for cat112_0m_sq.

C59-C60	1.502(14)	C107-O108	1.375(11)
C59-H59	1.0000	C109-N101	1.308(11)
C60-H60A	0.9800	C109-O108	1.355(9)
C60-H60B	0.9800	C109-C110	1.431(12)
C60-H60C	0.9800	C110-C115	1.379(12)
C61-H61A	0.9800	C110-C111	1.415(12)
C61-H61B	0.9800	C111-C112	1.385(11)
C61-H61C	0.9800	C111-Ir2	2.033(9)
C62-C64	1 513(12)	C112-C113	1390(12)
C62-C63	1.531(13)	C112-H112	0.9500
C62-H62	1.0000	C113-C114	1.400(12)
C63-H63A	0.9800	C113-H113	0.9500
C63-H63B	0.9800	C114-C115	1.375(12)
C63-H63C	0.9800	C114-C119	1.573(12)
C64-H64A	0.9800	C115-H115	0.9500
C64-H64B	0.9800	C116-O118	1.438(13)
C64 H64C	0.9800	C116 O117	1.450(15) 1.46(2)
C66 C70	1.331(13)	C116 H11A	1.40(2)
C66 N65	1.331(13) 1.303(10)	C116 H11R	0.9900
C66 C67	1.393(10) 1 404(11)	C116 H11C	0.9900
C67 N69	1.494(11) 1 402(11)	C116 H11D	0.9900
C67 II67 A	0.0000	C110-H11D C110 C124	1.401(15)
C0/-H0/A	0.9900	C119-C124 C110-C120	1.401(15)
С67-Н67В	0.9900	C119-C120 C120 C121	1.412(14)
C69-C70	1.4/7(12)		1.598(14)
C69-N68	1.500(13)	C120-C131	1.510(16)
С69-Н69А	0.9900		1.358(17)
C69-H69B	0.9900	C121-H121	0.9500
C/0-0/1	1.372(10)	C122-C123	1.38/(18)
C/2-N65	1.313(11)	C122-C128	1.545(17)
C72-O71	1.344(11)	C123-C124	1.417(16)
C72-C73	1.458(12)	C123-H123	0.9500
C/3-N/4	1.339(13)	C124-C125	1.532(18)
C/3-C/8	1.3/2(14)	C125-C126	1.49(2)
C75-N74	1.325(11)	C125-C127	1.513(19)
C75-C76	1.379(15)	C125-H125	1.0000
С75-Н75	0.9500	C126-H12A	0.9800
C76-C77	1.357(17)	C126-H12B	0.9800
С76-Н76	0.9500	C126-H12C	0.9800
C77-C78	1.385(14)	C127-H12D	0.9800
С77-Н77	0.9500	C127-H12E	0.9800
C78-H78	0.9500	C127-H12F	0.9800
N1-Ir1	2.032(8)	C128-C129	1.47(2)
N33-Ir1	2.053(8)	C128-C130	1.493(18)
N65-Ir1	2.118(7)	C128-H128	1.0000
N68-H68	0.781(10)	C129-H12G	0.9800
N74-Ir1	2.164(7)	С129-Н12Н	0.9800
O17-H17	0.8400	C129-H12I	0.9800
O49-H49	0.8400	C130-H13A	0.9800
O50-H50	0.8400	C130-H13B	0.9800
C102-C103	1.372(13)	C130-H13C	0.9800
C102-C107	1.379(13)	C131-C133	1.523(15)
C102-N101	1.397(10)	C131-C132	1.523(16)
C103-C104	1.406(12)	C131-H131	1.0000
C103-H103	0.9500	C132-H13D	0.9800
C104-C105	1.396(14)	C132-H13E	0.9800
C104-C116	1.522(14)	C132-H13F	0.9800
C105-C106	1.356(14)	C133-H13G	0.9800
C105-H105	0.9500	С133-Н13Н	0.9800
C106-C107	1.396(12)	C133-H13I	0.9800
C106-H106	0.9500	C135-C136	1.382(10)

C135-C140	1.400(10)	C163-C165	1.56(2)
C135-N134	1.408(9)	C163-H163	1.0000
C136-C137	1.377(10)	C164-H16G	0.9800
C136-H136	0.9500	C164-H16H	0.9800
C137-C138	1.401(10)	C164-H16I	0.9800
C137-C143	1.520(10)	C165-H16J	0.9800
C138-C139	1.383(10)	C165-H16K	0.9800
C138-H138	0.9500	C165-H16L	0.9800
C139-C140	1.358(10)	C166-C167	1.35(3)
С139-Н139	0.9500	C166-H166	0.9500
C140-O141	1.391(8)	C167-C168	1.33(4)
C142-N134	1.321(9)	C167-C169	1.60(4)
C142-O141	1.333(9)	C168-H168	0.9500
C142-C145	1.442(11)	C169-C170	1.35(2)
C143-O144	1.407(9)	C169-C171	1.38(2)
C143-H14A	0.9900	C169-H169	1.0000
C143-H14B	0.9900	C170-H17A	0.9800
C145-C150	1.393(11)	C170-H17B	0.9800
C145-C146	1.414(12)	C170-H17C	0.9800
C146-C147	1.410(11)	C171-H17X	0.9800
C146-Ir2	2.016(8)	C171-H17Y	0.9800
C147-C148	1.392(13)	C171-H17Z	0.9800
C147-H147	0.9500	C173-C177	1.363(15)
C148-C149	1.364(14)	C173-N172	1.369(12)
C148-H148	0.9500	C173-C174	1.473(15)
C149-C150	1.388(12)	C174-N175	1.497(15)
C149-C151	1.495(14)	C174-H17D	0.9900
C150-H150	0.9500	C174-H17E	0.9900
C151-C152	1.361(16)	C176-C177	1.474(15)
C151-C156	1.434(16)	C176-N175	1.492(17)
C152-C153	1.41(2)	C176-H17F	0.9900
C152-C157	1.479(18)	C176-H17G	0.9900
C152-C166	1.64(3)	C177-O178	1.369(13)
C153-C154	1.44(3)	C179-N172	1.330(12)
С153-Н153	0.9500	C179-O178	1.374(11)
C154-C155	1.39(3)	C179-C180	1.406(14)
C154-C160	1.56(3)	C180-N181	1.338(12)
C155-C156	1.41(3)	C180-C185	1.369(15)
С155-Н155	0.9500	C182-N181	1.362(13)
C156-C163	1.500(18)	C182-C183	1.380(15)
C156-C168	1.50(3)	C182-H182	0.9500
C157-C158	1.47(2)	C183-C184	1.379(17)
C157-C159	1.54(2)	C183-H183	0.9500
C157-H157	1.0000	C184-C185	1.3/8(17)
CI58-HI5A	0.9800	C184-H184	0.9500
С158-Н15В	0.9800	C185-H185	0.9500
CI58-HI5C	0.9800	N101-Ir2	2.056(6)
CI59-HI5D	0.9800	N134-Ir2	2.042(6)
C159-HI5E	0.9800	N1/2-II2 N175 11175	2.138(7)
	0.9800	NI/5-HI/5	0.783(10)
C160-C161	1.37(2) 1.204(10)	N181-IF2	2.108(8)
C160-C162	1.394(19)	O119 U119	0.8400
C100-F1100 C161 H16A	1.0000	0110-0110 0144 H144	0.8400
C101-110A C161 H16B	0.2000	C300 C12	0.0400
C161 H16C	0.9000	C300-C12	1.30(2) 1.64(3)
C162-H16D	0.9800	C300-H30A	0.000
C162-1110D C162 H16E	0.9000	C300 H30B	0.9900
C162-H16F	0.9800	C400-C13	1 54(3)
C163-C164	1 46(2)	C400-C14	1.5 + (5) 1.61(3)
0100 0107	1. TO(2)		1.01(3)

C400-H40A	0.9900	C500-C16	1.78(4)
C400-H40B	0.9900	C500-H50A	0.9900
C500-C15	1.71(4)	C500-H50B	0.9900
	1.71(1)		0.7700
C7 - C2 - C3	120.4(10)	C22-C21-C27	120 6(14)
C7 C2 N1	107 0(0)	C22-C21-C27	120.0(14) 120.7(13)
C_{1}^{2} C_{2}^{2} N_{1}^{1}	107.9(9) 121.5(0)	$C_{21} - C_{22} - C_{23}$	120.7(13)
C3-C2-N1	131.3(9)	C21-C22-H22	119.7
$C_2 - C_3 - C_4$	118.2(9)	C23-C22-H22	119.7
C2-C3-H3	120.9	C22-C23-C18	118.5(11)
C4-C3-H3	120.9	C22-C23-C30	120.5(11)
C3-C4-C5	118.9(10)	C18-C23-C30	121.0(9)
C3-C4-C16	120.8(9)	C25-C24-C26	109.3(19)
C5-C4-C16	120.2(9)	C25-C24-C19	108.2(17)
C6-C5-C4	122.6(11)	C26-C24-C19	108.8(19)
C6-C5-H5	118.7	C25-C24-H24	110.2
C4-C5-H5	118.7	C26-C24-H24	110.2
C7-C6-C5	117.1(11)	C19-C24-H24	110.2
С7-С6-Н6	121.5	C24-C25-H25A	109.5
С5-С6-Н6	121.5	C24-C25-H25B	109.5
C6-C7-C2	122.8(11)	H25A-C25-H25B	109.5
C6-C7-O8	122.0(11) 129.5(10)	C24-C25-H25C	109.5
$C_{2} C_{7} O_{8}$	127.5(10) 107.6(0)	H25 A C25 H25C	109.5
$N_1 = 0.08$	107.0(9) 112 7(0)	1125A-C25-1125C	109.5
NI-C9-08	112.7(9) 120.5(10)	П25D-С25-П25С С24 С26 Ц26А	109.5
NI-C9-C10	120.5(10)	C24-C20-H20A	109.5
08-09-010	126.7(9)	C24-C26-H26B	109.5
C15-C10-C11	122.5(10)	H26A-C26-H26B	109.5
C15-C10-C9	126.0(11)	С24-С26-Н26С	109.5
C11-C10-C9	111.5(9)	H26A-C26-H26C	109.5
C12-C11-C10	116.5(9)	H26B-C26-H26C	109.5
C12-C11-Ir1	128.9(9)	C29-C27-C28	115.3(18)
C10-C11-Ir1	114.6(7)	C29-C27-C21	112.6(15)
C13-C12-C11	122.1(12)	C28-C27-C21	111.0(13)
C13-C12-H12	118.9	C29-C27-H27	105.7
С11-С12-Н12	118.9	С28-С27-Н27	105.7
C12-C13-C14	120.2(12)	C21-C27-H27	105.7
C12-C13-H13	119.9	C27-C28-H28A	109.5
C14-C13-H13	119.9	C27-C28-H28B	109.5
C15-C14-C13	120.1(10)	H28A-C28-H28B	109.5
C15-C14-C18	118.5(12)	C27-C28-H28C	109.5
C13-C14-C18	121.3(11)	H28A-C28-H28C	109.5
C14-C15-C10	1185(12)	H28B-C28-H28C	109.5
C14-C15-H15	120.7	C27-C29-H29A	109.5
C10-C15-H15	120.7	C27-C29-H29B	109.5
017-C16-C4	110 5(8)	H29A-C29-H29B	109.5
017-C16-C4	100.5	C27 C20 H20C	109.5
C_{1} C_{1	109.5	$U_2 V_2 V_2 V_2 V_2 V_2 V_2 V_2 V_2 V_2 V$	109.5
$O_{17} O_{16} U_{16} N$	109.5	H29A-C29-H29C	109.5
OI/-CIO-HION	109.5	H29B-C29-H29C	109.5
C4-CI0-HION	109.5	C32-C30-C23	114.2(11)
H16M-C16-H16N	108.1	C32-C30-C31	108.5(12)
C19-C18-C23	120.4(11)	C23-C30-C31	110.9(13)
C19-C18-C14	120.2(11)	С32-С30-Н30	107.6
C23-C18-C14	119.3(10)	С23-С30-Н30	107.6
C20-C19-C18	119.4(14)	С31-С30-Н30	107.6
C20-C19-C24	118.7(15)	C30-C31-H31A	109.5
C18-C19-C24	121.8(13)	C30-C31-H31B	109.5
C19-C20-C21	121.2(15)	H31A-C31-H31B	109.5
С19-С20-Н20	119.4	C30-C31-H31C	109.5
С21-С20-Н20	119.4	H31A-C31-H31C	109.5
C20-C21-C22	119.8(12)	H31B-C31-H31C	109.5
C20-C21-C27	119.3(14)	C30-C32-H32A	109.5

C30-C32-H32B	109.5	C50-C51-C56	121.1(8)
H32A-C32-H32B	109.5	C52-C51-C56	121.3(8)
C30-C32-H32C	109.5	C53-C52-C51	122.9(8)
H32A-C32-H32C	109.5	C53-C52-H52	118.5
H32B-C32-H32C	109.5	C51-C52-H52	118.5
C35-C34-C39	119.2(10)	C52-C53-C54	117.7(8)
C35-C34-N33	134.3(10)	C52-C53-C59	122.2(8)
C39-C34-N33	106.5(8)	C54-C53-C59	120.1(8)
C34-C35-C36	117 2(11)	C53-C54-C55	122.1(8)
C34-C35-H35	121.4	C53-C54-H54	119.0
C36-C35-H35	121.4	C55-C54-H54	119.0
C37-C36-C35	123 4(11)	C54-C55-C50	119 1(7)
C37-C36-C48	117 8(12)	C54-C55-C62	119.1(7) 119.1(7)
C35-C36-C48	118 8(13)	C50-C55-C62	119.1(7) 121.8(7)
$C_{36}C_{37}C_{38}$	121 1(11)	C57-C56-C58	121.0(7) 110 6(10)
$C_{36} C_{37} H_{37}$	110 4	C57 C56 C51	110.0(10) 111.0(10)
C38 C37 H37	119.4	C57-C50-C51	111.9(10)
$C_{30} C_{20} C_{27}$	119.4 114.6(11)	C50-C50-C51	115.0(9)
$C_{20} C_{20} U_{20} U_{20}$	114.0(11)	C57-C50-H50	100.8
C37-C30-H30	122.7	C50-C50-H50	100.8
C37-C38-H38	122.7	C51-C50-H50	100.8
C34-C39-C38	124.4(9)	C50-C57-H57A	109.5
C34-C39-O40	108.2(8)	C30-C57-H57B	109.5
C38-C39-O40	127.4(9)	H5/A-C5/-H5/B	109.5
N33-C41-O40	113.6(/)	C56-C57-H57C	109.5
N33-C41-C42	120.3(8)	H57A-C57-H57C	109.5
040-C41-C42	126.2(7)	H57B-C57-H57C	109.5
C47-C42-C43	122.4(8)	C56-C58-H58A	109.5
C47-C42-C41	125.1(8)	C56-C58-H58B	109.5
C43-C42-C41	112.4(7)	H58A-C58-H58B	109.5
C44-C43-C42	116.3(8)	C56-C58-H58C	109.5
C44-C43-Ir1	129.7(6)	H58A-C58-H58C	109.5
C42-C43-Ir1	113.9(6)	H58B-C58-H58C	109.5
C43-C44-C45	120.8(8)	C61-C59-C60	112.9(9)
C43-C44-H44	119.6	C61-C59-C53	110.3(8)
C45-C44-H44	119.6	C60-C59-C53	111.4(9)
C46-C45-C44	122.7(8)	C61-C59-H59	107.3
C46-C45-H45	118.7	C60-C59-H59	107.3
C44-C45-H45	118.7	С53-С59-Н59	107.3
C47-C46-C45	118.3(7)	C59-C60-H60A	109.5
C47-C46-C50	122.5(7)	C59-C60-H60B	109.5
C45-C46-C50	119.0(7)	H60A-C60-H60B	109.5
C46-C47-C42	119.5(8)	C59-C60-H60C	109.5
C46-C47-H47	120.3	H60A-C60-H60C	109.5
C42-C47-H47	120.3	H60B-C60-H60C	109.5
O50-C48-C36	122(3)	C59-C61-H61A	109.5
O49-C48-C36	116.8(15)	C59-C61-H61B	109.5
O49-C48-H48A	108.1	H61A-C61-H61B	109.5
C36-C48-H48A	108.1	C59-C61-H61C	109.5
O49-C48-H48B	108.1	H61A-C61-H61C	109.5
C36-C48-H48B	108.1	H61B-C61-H61C	109.5
H48A-C48-H48B	107.3	C64-C62-C63	112.1(7)
O50-C48-H48C	106.8	C64-C62-C55	110.9(7)
C36-C48-H48C	106.8	C63-C62-C55	110.0(7)
O50-C48-H48D	106.8	C64-C62-H62	107.9
C36-C48-H48D	106.8	C63-C62-H62	107.9
H48C-C48-H48D	106.7	C55-C62-H62	107.9
C51-C50-C55	120.5(7)	C62-C63-H63A	109.5
C51-C50-C46	121.4(7)	C62-C63-H63B	109.5
C55-C50-C46	118.0(7)	H63A-C63-H63B	109.5
C50-C51-C52	117.6(8)	C62-C63-H63C	109.5
	× /		

H63A-C63-H63C	109.5	C16-O17-H17	109.5
H63B-C63-H63C	109.5	C41-O40-C39	105.4(7)
C62-C64-H64A	109.5	C48-O49-H49	109.5
C62-C64-H64B	109.5	C48-O50-H50	109.5
H64A-C64-H64B	109.5	C72-O71-C70	103.4(7)
C62-C64-H64C	109.5	C11-Ir1-C43	90.3(3)
H64A-C64-H64C	109.5	C11-Ir1-N1	81.1(4)
H64B-C64-H64C	109.5	C43-Ir1-N1	91 6(3)
C70-C66-N65	107.7(7)	C11-Ir1-N33	931(4)
C70-C66-C67	111 6(7)	C43-Ir1-N33	80 3(3)
N65-C66-C67	140 6(8)	N1_Jr1_N33	170 1(3)
N68-C67-C66	101 2(7)	C11_Ir1_N65	171 3(3)
N68 C67 H67 A	111 5	C/3 Ir1 N65	080(3)
C66 C67 H67A	111.5	N1 I+1 N65	06.0(3)
N68 C67 H67P	111.5	$N_{23} I_{r1} N_{65}$	90.2(3)
C66 C67 H67P	111.5	$C_{11} I_{r1} N_{74}$	90.7(3)
	111.3	$C_{11} = 11 + 10.74$	93.4(3) 171 1(2)
H0/A-C0/-H0/D	109.5	C45-II I-IN/4	1/1.1(3)
C70 $Cc0$ $Lc0$	100.8(7)	IN1-IF1-IN/4	90.0(3)
C/0-C69-H69A	111.0	N33-IF1-N/4	92.6(3)
N68-C69-H69A	111.6	N65-Ir1-N/4	/6.6(3)
С/0-С69-Н69В	111.6	C103-C102-C10/	121.4(8)
N68-C69-H69B	111.6	C103-C102-N101	133.5(9)
Н69А-С69-Н69В	109.4	C107-C102-N101	105.1(8)
C66-C70-O71	110.2(7)	C102-C103-C104	116.0(9)
C66-C70-C69	112.7(8)	C102-C103-H103	122.0
O71-C70-C69	136.7(9)	C104-C103-H103	122.0
N65-C72-O71	114.0(7)	C105-C104-C103	121.2(9)
N65-C72-C73	121.3(8)	C105-C104-C116	121.5(8)
O71-C72-C73	124.6(8)	C103-C104-C116	117.3(9)
N74-C73-C78	123.9(9)	C106-C105-C104	123.0(9)
N74-C73-C72	112.4(8)	C106-C105-H105	118.5
C78-C73-C72	123.7(10)	C104-C105-H105	118.5
N74-C75-C76	123.0(11)	C105-C106-C107	115.0(9)
N74-C75-H75	118.5	C105-C106-H106	122.5
C76-C75-H75	118.5	C107-C106-H106	122.5
C77-C76-C75	119.3(10)	O108-C107-C102	110.8(7)
С77-С76-Н76	120.3	O108-C107-C106	125.8(8)
C75-C76-H76	120.3	C102-C107-C106	123.5(9)
C76-C77-C78	119.1(11)	N101-C109-O108	113.9(7)
С76-С77-Н77	120.5	N101-C109-C110	120.5(7)
C78-C77-H77	120.5	O108-C109-C110	125.6(8)
C73-C78-C77	117.7(11)	C115-C110-C111	124.5(8)
С73-С78-Н78	121.1	C115-C110-C109	124.6(8)
С77-С78-Н78	121.1	C111-C110-C109	110.8(8)
C9-N1-C2	106.0(8)	C112-C111-C110	114.7(8)
C9-N1-Ir1	112.3(7)	C112-C111-Ir2	129.6(6)
C2-N1-Ir1	141 0(6)	C110-C111-Ir2	115 6(6)
C41-N33-C34	106 4(8)	C111-C112-C113	121 8(8)
C41-N33-Ir1	113 1(6)	C111-C112-H112	119 1
C34-N33-Ir1	140 5(6)	C113-C112-H112	119.1
C72 N65 C66	104.7(7)	C112 C113 C114	121 6(8)
C72 N65 Ir1	104.7(7) 113.2(5)	C112 C113 U113	110.2
C66 N65 I+1	142.2(3)	C114 C112 U112	119.2
C00-IN03-II I C67 N68 C60	142.1(0) 110 1(7)	C114-C113-F1113 C115 C114 C112	119.2
C67 N68 U69	10.1(7)	C_{113} - C_{114} - C_{113}	122 1(0)
C60 N69 U29	100(9)	C113-C114-C119 C112 C114 C110	$122.1(\delta)$
CU7-IN00-II00	109(9)	C113-C114-C119	119.0(8)
C/3-N/4-C/3	117.0(9)	C114-C115-C110	119.3(8)
U/3-N/4-IfI	120./(/)	C114-C115-H115	120.3
C/3-N/4-IfI	115.3(0)	C110-C115-H115	120.5
C9-08-C7	105.8(8)	0118-C116-C104	108.2(9)

O117-C116-C104	110.6(14)	C128-C130-H13B	109.5
O117-C116-H11A	109.5	H13A-C130-H13B	109.5
C104-C116-H11A	109.5	C128-C130-H13C	109.5
O117-C116-H11B	109.5	H13A-C130-H13C	109.5
C104-C116-H11B	109.5	H13B-C130-H13C	109.5
H11A-C116-H11B	108.1	C120-C131-C133	113.4(9)
O118-C116-H11C	110.1	C120-C131-C132	110.8(11)
C104-C116-H11C	110.1	C133-C131-C132	110.2(10)
O118-C116-H11D	110.1	C120-C131-H131	107.4
C104-C116-H11D	110.1	C133-C131-H131	107.4
H11C-C116-H11D	108.4	C132-C131-H131	107.4
C124-C119-C120	120.9(10)	C131-C132-H13D	109.5
C124-C119-C114	121.9(9)	C131-C132-H13E	109.5
C120-C119-C114	117.1(9)	H13D-C132-H13E	109.5
C121-C120-C119	118.2(11)	C131-C132-H13F	109.5
C121-C120-C131	120.0(10)	H13D-C132-H13F	109.5
C119-C120-C131	121.8(9)	H13E-C132-H13F	109.5
C122-C121-C120	122.5(12)	C131-C133-H13G	109.5
C122-C121-H121	118.8	C131-C133-H13H	109.5
C120-C121-H121	118.8	H13G-C133-H13H	109.5
C121-C122-C123	118.9(11)	C131-C133-H13I	109.5
C121-C122-C128	122.1(13)	H13G-C133-H13I	109.5
C123-C122-C128	119.0(13)	H13H-C133-H13I	109.5
C122-C123-C124	121.9(12)	C136-C135-C140	120.1(7)
C122-C123-H123	119.1	C136-C135-N134	132.7(7)
C124-C123-H123	119.1	C140-C135-N134	107.2(6)
C119-C124-C123	117.5(11)	C137-C136-C135	117.7(7)
C119-C124-C125	120.0(10)	C137-C136-H136	121.2
C123-C124-C125	122.5(11)	C135-C136-H136	121.2
C126-C125-C127	111.5(15)	C136-C137-C138	120.8(7)
C126-C125-C124	113.5(13)	C136-C137-C143	118.9(6)
C127-C125-C124	111.4(13)	C138-C137-C143	120.3(6)
C126-C125-H125	106.6	C139-C138-C137	121.9(7)
C127-C125-H125	106.6	C139-C138-H138	119.0
C124-C125-H125	106.6	C137-C138-H138	119.0
C125-C126-H12A	109.5	C140-C139-C138	116.2(7)
C125-C126-H12B	109.5	C140-C139-H139	121.9
H12A-C126-H12B	109.5	C138-C139-H139	121.9
C125-C126-H12C	109.5	C139-C140-O141	129.2(7)
H12A-C126-H12C	109.5	C139-C140-C135	123.2(7)
H12B-C126-H12C	109.5	O141-C140-C135	107.6(6)
C125-C127-H12D	109.5	N134-C142-O141	114.8(6)
C125-C127-H12E	109.5	N134-C142-C145	119.2(7)
H12D-C127-H12E	109.5	0141-C142-C145	125.9(7)
C125-C127-H12F	109.5	O144-C143-C137	113.9(6)
H12D-C127-H12F	109.5	O144-C143-H14A	108.8
H12E-C127-H12F	109.5	C137-C143-H14A	108.8
C129-C128-C130	117.3(14)	O144-C143-H14B	108.8
C129-C128-C122	112.2(12)	C137-C143-H14B	108.8
C130-C128-C122	112.3(11)	H14A-C143-H14B	107.7
C129-C128-H128	104.5	C150-C145-C146	124.6(7)
C130-C128-H128	104.5	C150-C145-C142	124.2(8)
C122-C128-H128	104.5	C146-C145-C142	111.3(7)
C128-C129-H12G	109.5	C147-C146-C145	115.0(8)
U128-U129-H12H	109.5	C147 - C140 - Ir2	129.3(7)
П120-U129-H12H	109.3	C143-C140-If2	110.0(0)
U128-U129-H121	109.3 100 5	C140 - C147 - U140	119.8(9)
П120-0129-П121 Ц12Ц С120 Ц121	109.3	C146-C147-H147	120.1
1112П-U129-П121 С129 С120 Ц12 А	109.3	C140-C14/-H14/	120.1
C120-C150-H15A	109.3	U149-U148-U14/	123.7(8)

C149-C148-H148	118.1	C160-C162-H16D	109.5
C147-C148-H148	118.1	C160-C162-H16E	109.5
C148-C149-C150	118.7(9)	H16D-C162-H16E	109.5
C148-C149-C151	119.9(9)	C160-C162-H16F	109.5
C150-C149-C151	121.3(10)	H16D-C162-H16F	109.5
C149-C150-C145	118.2(9)	H16E-C162-H16F	109.5
C149-C150-H150	120.9	C164-C163-C156	115.7(12)
C145-C150-H150	120.9	C164-C163-C165	107.2(14)
C152-C151-C156	121.3(11)	C156-C163-C165	109.0(15)
C152-C151-C149	118.9(10)	C164-C163-H163	108.2
C156-C151-C149	119.7(10)	C156-C163-H163	108.2
C151-C152-C153	120.9(15)	C165-C163-H163	108.2
C151-C152-C157	123.8(11)	C163-C164-H16G	109.5
C153-C152-C157	112.1(15)	C163-C164-H16H	109.5
C151-C152-C166	114.3(14)	H16G-C164-H16H	109.5
C157-C152-C166	118.3(14)	C163-C164-H16I	109.5
C152-C153-C154	116(2)	H16G-C164-H16I	109.5
C152-C153-H153	122.1	H16H-C164-H16I	109.5
C154-C153-H153	122.1	C163-C165-H16J	109.5
C155-C154-C153	120(2)	C163-C165-H16K	109.5
C155-C154-C160	119(2)	H16J-C165-H16K	109.5
C153-C154-C160	120(2)	C163-C165-H16L	109.5
C154-C155-C156	122(2)	H16J-C165-H16L	109.5
C154-C155-H155	119.0	H16K-C165-H16L	109.5
C156-C155-H155	119.0	C167-C166-C152	121(2)
C155-C156-C151	114.3(15)	C167-C166-H166	119.6
C155-C156-C163	120.2(16)	C152-C166-H166	119.6
C151-C156-C163	122.2(10)	C168-C167-C166	119(2)
C151-C156-C168	117.0(15)	C168-C167-C169	121(3)
C163-C156-C168	117.5(15)	C166-C167-C169	119(2)
C158-C157-C152	111.8(11)	C167-C168-C156	124(2)
C158-C157-C159	108.0(13)	C167-C168-H168	118.2
C152-C157-C159	113.6(15)	C156-C168-H168	118.2
C158-C157-H157	107.7	C1/0-C169-C171	139(4)
C152-C157-H157	107.7	C1/0-C169-C16/	102(3)
C159-C157-H157	107.7	C1/I-C169-C16/	119(3)
C157-C158-H15A	109.5	C170-C169-H169	90.3
C157-C158-H15B	109.5	C1/1-C169-H169	90.3
HI5A-CI58-HI5B	109.5	C167-C169-H169	90.3
C157-C158-H15C	109.5	C169-C170-H17A	109.5
HI5A-CI58-HI5C	109.5	C169-C170-H17B	109.5
HI5B-CI58-HI5C	109.5	HI/A-CI/0-HI/B	109.5
C157-C159-H15D	109.5	C109-C170-H17C	109.5
UISD CISO UISE	109.5	HI/A-CI/0-HI/C	109.5
HI5D-CI59-HI5E	109.5	HI/B-CI/0-HI/C	109.5
U15D C150 U15E	109.5	С169-С171-П17А	109.5
HI5D-CI59-HI5F	109.5	С109-С171-П171 Ц17У С171-Ц17У	109.5
ПІЗЕ-СІЗ9-ПІЗГ СІєї СІєї СІєї	109.3	$\Pi / \Lambda - C I / I - \Pi / I$	109.5
C161 - C160 - C162	131(3) 117(2)	U109-U1/1-H1/Z	109.5
C161 - C160 - C154	$\frac{11}{(2)}$	H1/X - C1/1 - H1/Z	109.5
C162- $C160$ - $C154$	111.1(10)	$\Pi / I - C I / I - \Pi I / Z$	109.5
C161 - C160 - H160	95.2	C177 C172 C174	108.5(10)
C102-C100-H100 C154 C160 H160	93.2 02 2	U1/7-U1/3-U1/4 N172 C172 C174	110.1(9)
С134-С100-П100 С160 С161 Ш16А	93.2 100 5	1N1/2-U1/3-U1/4 C172 C174 N175	141.3(10)
С100-С101-П10А С160 С161 Ц16Р	109.5	C173 C174 H17D	105.0(10)
U16A C161 U16D	109.3	U1/3-U1/4-H1/D N175 C174 U17D	111.0
птод-Стот-птов Стер Стет птес	109.3	N1/J-U1/4-H1/D C172 C174 U17E	111.0
	109.3	С1/3-С1/4-П1/Е N175 С174 Ш7Е	111.0
П10А-U101-H10U	109.3	N1/3-U1/4-H1/E	111.0
110D-C101-H10C	109.5	п1/D-C1/4-H1/E	109.0
C177-C176-N175	102.2(9)		
----------------------	------------------------		
C177-C176-H17F	111.3		
N175-C176-H17F	111.3		
C177-C176-H17G	111.3		
N175-C176-H17G	111.3		
H17F-C176-H17G	109.2		
C173-C177-O178	109.3(9)		
C173 C177 C176	109.3(9) 112.7(11)		
$0179 \ 0177 \ 0176$	112.7(11) 127.4(10)		
N172 C170 O178	137.4(10) 112.4(0)		
N172 C179 C170	112.4(9) 122.2(0)		
N1/2-C1/9-C180	123.3(9)		
01/8-C1/9-C180	124.5(9)		
N181-C180-C185	121.5(10)		
N181-C180-C179	112.4(9)		
C185-C180-C179	126.1(10)		
N181-C182-C183	122.7(11)		
N181-C182-H182	118.7		
C183-C182-H182	118.7		
C184-C183-C182	119.3(12)		
C184-C183-H183	120.4		
C182-C183-H183	120.4		
C185-C184-C183	117.2(12)		
C185-C184-H184	121.4		
C183-C184-H184	121.4		
C180-C185-C184	121.7(12)		
C180-C185-H185	119.1		
C184-C185-H185	119.1		
C109-N101-C102	107.0(7)		
C109-N101-Ir2	113 8(5)		
C102-N101-Ir2	139 2(6)		
C1/2 - N13/2 - C1/35	105.1(6)		
C142-N134-Ir2	103.1(0) 114.0(5)		
C135-N134-Ir2	1/40.5(5)		
C170 N172 C173	140.0(3)		
C170 N172 Ir2	103.9(6)		
C172 N172 In2	111.0(0) 142.5(7)		
C176 N175 C174	142.5(7)		
C176-N175-C174	109.3(9)		
C1/6-N1/5-H1/5	100(10)		
CI/4-NI/5-HI/5	116(10)		
C180-N181-C182	117.6(9)		
C180-N181-Ir2	115.8(7)		
C182-N181-Ir2	126.1(7)		
C109-O108-C107	103.3(7)		
С116-О117-Н117	109.0		
C116-O118-H118	109.5		
C142-O141-C140	105.3(5)		
C143-O144-H144	109.5		
C177-O178-C179	104.0(8)		
C146-Ir2-C111	91.1(3)		
C146-Ir2-N134	79.9(3)		
C111-Ir2-N134	93.8(3)		
C146-Ir2-N101	93.5(3)		
C111-Ir2-N101	79.2(3)		
N134-Ir2-N101	170.3(3)		
C146-Ir2-N172	172.0(3)		
C111-Ir2-N172	96.6(3)		
N134-Ir2-N172	97.4(2)		
N101-Ir2-N172	90.0(3)		
C146-Ir2-N181	96 5(3)		
C111-Ir2-N181	169 9(3)		
	(-)		

N134-Ir2-N181	94.0(3)
N101-Ir2-N181	93.8(3)
N172-Ir2-N181	76.1(3)
Cl2-C300-Cl1	128.8(17)
Cl2-C300-H30A	105.1
Cl1-C300-H30A	105.1
Cl2-C300-H30B	105.1
Cl1-C300-H30B	105.1
H30A-C300-H30B	105.9
Cl3-C400-Cl4	140(4)
Cl3-C400-H40A	102.0
Cl4-C400-H40A	102.0
Cl3-C400-H40B	102.0
Cl4-C400-H40B	102.0
H40A-C400-H40B	104.8
Cl5-C500-Cl6	112(2)
Cl5-C500-H50A	109.3
Cl6-C500-H50A	109.3
Cl5-C500-H50B	109.3
Cl6-C500-H50B	109.3
H50A-C500-H50B	107.9

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C2	0.059(4)	0.016(3)	0.066(5)	0.012(3)	0.023(4)	0.004(3)
C3	0.047(4)	0.021(4)	0.060(5)	0.013(3)	0.017(4)	0.005(3)
C4	0.045(4)	0.035(4)	0.072(5)	0.026(4)	0.021(4)	0.005(3)
C5	0.050(5)	0.046(5)	0.092(6)	0.017(4)	0.015(4)	0.000(4)
C6	0.064(5)	0.038(5)	0.094(7)	0.005(5)	0.017(5)	-0.001(4)
C7	0.064(4)	0.031(4)	0.077(5)	0.004(4)	0.017(4)	0.005(3)
C9	0.071(5)	0.025(4)	0.061(5)	0.005(4)	0.020(4)	0.012(3)
C10	0.082(5)	0.030(4)	0.059(5)	0.015(3)	0.031(4)	0.027(4)
C11	0.079(5)	0.034(4)	0.055(5)	0.018(4)	0.034(4)	0.027(4)
C12	0.080(6)	0.044(5)	0.064(5)	0.023(4)	0.042(5)	0.025(4)
C13	0.101(7)	0.050(5)	0.076(6)	0.020(4)	0.050(5)	0.032(5)
C14	0.097(6)	0.045(5)	0.059(5)	0.019(4)	0.044(4)	0.033(4)
C15	0.091(6)	0.040(5)	0.060(5)	0.009(4)	0.033(5)	0.022(4)
C16	0.044(5)	0.048(5)	0.075(6)	0.028(4)	0.026(4)	0.010(4)
C18	0.100(9)	0.054(5)	0.068(5)	0.009(4)	0.045(5)	0.027(5)
C19	0.150(13)	0.082(6)	0.073(6)	0.018(5)	0.054(7)	0.026(7)
C20	0.128(13)	0.098(7)	0.074(7)	0.011(5)	0.037(7)	0.037(7)
C21	0.094(9)	0.092(6)	0.064(5)	-0.001(5)	0.025(6)	0.033(6)
C22	0.081(8)	0.065(6)	0.068(5)	-0.003(4)	0.024(5)	0.034(6)
C23	0.067(7)	0.044(4)	0.063(5)	0.001(4)	0.030(5)	0.015(4)
C24	0.211(16)	0.088(8)	0.103(11)	0.039(7)	0.053(10)	0.026(9)
C25	0.227(16)	0.098(13)	0.146(15)	0.040(12)	0.040(11)	0.047(11)
C26	0.224(18)	0.23(2)	0.21(2)	0.14(2)	0.075(15)	0.031(14)
C27	0.118(10)	0.114(9)	0.066(7)	-0.006(6)	0.022(7)	0.052(7)
C28	0.132(10)	0.145(14)	0.095(11)	0.011(10)	0.049(8)	0.070(9)
C29	0.162(13)	0.137(11)	0.133(15)	-0.049(10)	0.072(11)	0.008(10)
C30	0.119(9)	0.041(5)	0.072(6)	0.009(4)	0.045(6)	0.026(5)
C31	0.135(10)	0.101(11)	0.183(17)	0.073(12)	0.075(10)	0.029(8)
C32	0.141(11)	0.084(10)	0.107(10)	0.029(8)	0.033(8)	0.040(8)
C34	0.040(4)	0.061(5)	0.065(5)	0.033(4)	0.026(3)	0.033(3)
C35	0.054(5)	0.087(7)	0.105(8)	0.064(7)	0.025(5)	0.039(5)
C36	0.051(5)	0.104(8)	0.111(9)	0.061(7)	0.024(5)	0.043(5)
C37	0.047(5)	0.108(8)	0.088(8)	0.052(6)	0.027(5)	0.045(5)
C38	0.039(4)	0.076(6)	0.070(6)	0.030(5)	0.019(4)	0.028(4)
C39	0.041(4)	0.064(5)	0.052(5)	0.027(4)	0.023(3)	0.031(3)
C41	0.035(3)	0.033(4)	0.037(4)	0.010(3)	0.018(3)	0.018(3)
C42	0.036(3)	0.028(3)	0.034(4)	0.008(3)	0.016(3)	0.015(3)
C43	0.041(4)	0.024(4)	0.037(4)	0.004(3)	0.018(3)	0.013(3)
C44	0.047(4)	0.028(4)	0.042(4)	0.007(3)	0.017(3)	0.013(3)
C45	0.038(4)	0.030(4)	0.037(4)	0.007(3)	0.007(3)	0.010(3)
C46	0.038(4)	0.028(3)	0.031(4)	0.009(3)	0.007(3)	0.010(3)
C47	0.034(4)	0.029(4)	0.031(1) 0.033(4)	0.009(3)	0.012(3)	0.013(3)
C48	0.051(1) 0.068(9)	0.029(1) 0.204(18)	0.0227(19)	0.009(3)	0.012(9) 0.026(9)	0.018(0)
C50	0.025(4)	0.033(3)	0.032(3)	0.012(3)	0.020(3)	0.007(3)
C51	0.029(1) 0.049(5)	0.033(3) 0.040(4)	0.032(3)	0.012(3)	0.001(3)	0.007(3)
C52	0.045(5)	0.049(4)	0.033(4)	0.019(3)	0.000(3) 0.009(4)	0.010(1) 0.014(4)
C53	0.030(4)	0.042(4)	0.039(4)	0.020(3)	0.009(1)	0.014(3)
C54	0.030(4) 0.026(4)	0.042(4) 0.032(4)	0.035(4)	0.010(3)	0.000(3)	0.014(3) 0.012(3)
C55	0.028(4)	0.032(7)	0.030(3)	0.012(3)	0.007(3)	0.012(3)
C56	0.020(7)	0.05+(5)	0.037(3)	0.017(3)	0.007(3)	0.01+(3)
C57	0.00+(7)	0.031(3)	0.057(4)	-0.015(4)	0.010(4)	0.031(4)
C58	0.098(8)	0.060(7)	0.055(6)	0.015(0)	0.036(6)	0.002(0)
C50	0.050(0)	0.007(7)	0.033(0)	0.015(3)	0.030(0)	0.0+0(0)
C60	0.003(3)	0.052(5)	0.0+2(3)	0.023(4)	0.010(4)	0.029(4)
C61	0.000(0)	0.079(7) 0.052(6)	0.000(0)	0.041(3) 0.026(5)	0.012(4) 0.022(5)	0.030(3) 0.024(5)
C62	0.070(0)	0.032(0)	0.073(7)	0.030(3)	0.022(3)	0.024(3) 0.021(2)
C63	0.044(4)	0.039(4)	0.031(4) 0.032(4)	0.013(3) 0.012(4)	0.010(3)	0.021(3) 0.018(4)
CUJ	0.071(3)	0.000(0)	0.052(+)	0.012(+)	0.00-(3)	0.010(+)

Table S4. Anisotropic displacement parameters (Ų) for cat112_0m_sq.The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C64	0.047(5)	0.039(5)	0.035(4)	0.010(4)	0.015(4)	0.014(4)
C66	0.034(4)	0.028(3)	0.046(4)	0.008(3)	0.012(3)	0.013(3)
C67	0.041(5)	0.027(4)	0.042(4)	0.002(3)	0.004(3)	0.014(3)
C69	0.066(6)	0.038(4)	0.049(4)	0.007(3)	0.018(4)	0.021(4)
C70	0.050(5)	0.037(4)	0.046(4)	0.001(3)	0.016(3)	0.020(4)
C72	0.030(3)	0.037(4)	0.040(4)	0.011(3)	0.010(3)	0.020(4)
C72	0.030(+)	0.032(+)	0.049(4)	0.014(3)	0.013(3)	0.013(3)
C73	0.050(5)	0.046(4)	0.064(4)	0.030(3)	0.030(4)	0.029(4)
C/5	0.079(7)	0.048(5)	0.087(6)	0.039(4)	0.050(5)	0.041(5)
C76	0.084(7)	0.058(6)	0.101(6)	0.054(5)	0.052(5)	0.049(6)
C77	0.063(6)	0.064(6)	0.094(6)	0.054(5)	0.047(5)	0.036(5)
C78	0.058(6)	0.062(5)	0.075(5)	0.045(4)	0.033(5)	0.030(5)
N1	0.062(4)	0.020(3)	0.054(4)	0.010(3)	0.022(3)	0.014(3)
N33	0.041(4)	0.043(4)	0.054(4)	0.022(3)	0.025(3)	0.029(3)
N65	0.037(4)	0.027(3)	0.047(3)	0.013(3)	0.016(3)	0.014(3)
N68	0.044(4)	0.032(4)	0.048(4)	-0.001(3)	0.010(3)	0.012(3)
N74	0.064(5)	0.038(4)	0.064(4)	0.028(3)	0.032(4)	0.031(4)
08	0.00+(3)	0.030(4)	0.004(4)	0.020(3)	0.032(4)	0.031(4)
00	0.070(4)	0.033(3)	0.078(3)	0.000(3)	0.021(3)	0.014(3)
017	0.051(4)	0.051(4)	0.063(4)	0.017(3)	0.023(3)	0.021(3)
040	0.034(3)	0.048(3)	0.045(3)	0.019(3)	0.014(2)	0.018(2)
049	0.082(11)	0.36(3)	0.36(3)	0.30(3)	0.067(15)	0.099(15)
071	0.062(4)	0.043(3)	0.046(3)	0.017(3)	0.016(3)	0.027(3)
Ir1	0.0521(2)	0.02623(17)	0.0469(2)	0.01364(15)	0.02258(17)	0.02145(15)
C102	0.028(3)	0.054(4)	0.038(4)	0.026(3)	0.008(3)	0.011(3)
C103	0.029(4)	0.056(5)	0.052(5)	0.026(4)	0.007(3)	0.014(3)
C104	0.027(4)	0.062(4)	0.046(5)	0.024(4)	0.009(3)	0.014(3)
C105	0.024(4)	0.060(4)	0.058(5)	0.022(4)	0.008(4)	0.009(3)
C106	0.027(4)	0.053(5)	0.064(6)	0.024(4)	0.013(4)	0.008(3)
C107	0.027(1)	0.055(5)	0.001(0) 0.047(5)	0.021(1) 0.023(3)	0.013(1)	0.006(3)
C100	0.020(3)	0.030(4)	0.047(3)	0.023(3)	0.007(3)	0.000(3)
C109	0.020(3)	0.040(4)	0.043(4)	0.019(3)	0.002(3)	0.000(3)
C110	0.024(3)	0.040(4)	0.040(4)	0.024(3)	0.005(3)	0.008(3)
CIII	0.026(3)	0.045(4)	0.034(4)	0.024(3)	0.005(3)	0.012(3)
CI12	0.023(4)	0.045(4)	0.045(5)	0.021(3)	0.004(3)	0.010(3)
C113	0.025(4)	0.045(4)	0.041(4)	0.017(3)	0.002(3)	0.012(3)
C114	0.027(4)	0.045(4)	0.045(5)	0.019(3)	0.000(3)	0.009(3)
C115	0.030(4)	0.045(4)	0.034(4)	0.020(3)	-0.002(3)	0.003(3)
C116	0.042(5)	0.066(6)	0.073(7)	0.028(5)	0.022(5)	0.024(5)
C119	0.030(4)	0.041(4)	0.058(4)	0.009(3)	-0.006(3)	0.006(3)
C120	0.034(5)	0.045(4)	0.072(5)	0.022(3)	0.003(4)	0.007(4)
C121	0.048(6)	0.042(4)	0.085(6)	0.015(4)	-0.001(5)	0.011(4)
C122	0.058(6)	0.053(5)	0.080(6)	0.005(4)	-0.011(5)	0.012(4)
C122	0.030(0)	0.055(5)	0.000(0)	-0.005(4)	-0.000(5)	0.012(4)
C123	0.000(0)	0.050(5)	0.007(0)	-0.000(+)	-0.000(3)	0.010(5)
C124	0.038(0)	0.001(3)	0.033(4)	0.003(4)	-0.010(4)	0.019(3)
C125	0.107(9)	0.082(7)	0.055(6)	0.009(5)	-0.011(5)	0.030(0)
C126	0.133(11)	0.14/(14)	0.085(10)	0.043(10)	-0.005(8)	0.014(9)
C127	0.164(14)	0.147(14)	0.074(8)	0.023(8)	-0.041(9)	0.014(11)
C128	0.085(7)	0.051(5)	0.110(9)	-0.005(5)	-0.003(6)	0.021(5)
C129	0.093(8)	0.059(8)	0.133(13)	-0.005(8)	0.006(7)	0.031(6)
C130	0.108(9)	0.049(7)	0.133(12)	-0.007(7)	-0.019(8)	0.012(6)
C131	0.054(5)	0.059(6)	0.077(5)	0.035(4)	0.021(4)	0.029(4)
C132	0.056(6)	0.136(12)	0.131(11)	0.083(10)	0.035(6)	0.030(6)
C133	0.059(6)	0.056(6)	0.074(6)	0.037(5)	0.024(4)	0.027(5)
C135	0.019(3)	0.027(4)	0.023(3)	0.007(3)	0.003(2)	0.007(3)
C136	0.017(3)	0.029(4)	0.023(3)	0.007(3)	0.003(2)	0.007(3)
C137	0.021(3)	0.027(4)	0.021(3)	0.011(3)	0.007(2)	0.000(3)
C120	0.017(3)	0.023(3)	0.020(3)	0.001(3)	0.004(2)	0.003(2)
C130	0.018(3)	0.020(4)	0.027(3)	0.007(3)	0.004(3)	0.009(3)
C139	0.022(3)	0.029(4)	0.026(3)	0.009(3)	0.008(2)	0.004(3)
C140	0.025(3)	0.030(4)	0.020(3)	0.009(3)	0.006(2)	0.009(3)
C142	0.026(3)	0.032(4)	0.027(3)	0.013(3)	0.007(2)	0.010(3)
C143	0.027(4)	0.035(4)	0.028(3)	0.013(3)	0.002(3)	0.009(3)
C145	0.032(3)	0.040(4)	0.028(3)	0.012(3)	0.003(3)	0.012(3)

C146	0.030(4)	0.037(4)	0.031(4)	0.010(3)	0.001(3)	0.012(3)
C147	0.032(4)	0.046(5)	0.043(4)	0.012(4)	-0.005(3)	0.011(3)
C148	0.047(4)	0.056(5)	0.035(4)	0.014(4)	-0.008(3)	0.017(4)
C149	0.054(4)	0.048(5)	0.029(4)	0.010(3)	-0.005(3)	0.016(4)
C150	0.043(4)	0.036(4)	0.026(3)	0.011(3)	0.001(3)	0.009(3)
C151	0.079(7)	0.030(1)	0.020(3) 0.033(4)	0.020(4)	0.001(3)	0.009(5)
C152	0.079(7)	0.070(3) 0.127(8)	0.033(1)	0.020(1)	0.002(1)	0.020(3) 0.073(7)
C152	0.117(7)	0.127(0)	0.037(+)	0.03+(3)	0.013(3)	0.073(7)
C155	0.070(13)	0.066(11)	0.037(7)	0.023(7)	-0.007(7)	0.014(10)
C154	0.055(9)	0.000(10)	0.048(7)	0.022(0)	-0.014(0)	-0.013(7)
C155	0.079(14)	0.080(15)	0.032(7)	0.038(7)	0.002(7)	0.022(12)
C150	0.125(9)	0.083(0)	0.030(3)	0.034(4)	0.014(3)	0.032(7)
C15/	0.112(8)	0.128(8)	0.029(5)	0.023(5)	0.009(5)	0.076(7)
C158	0.125(11)	0.162(10)	0.088(10)	-0.012(8)	-0.014(8)	0.101(8)
C159	0.129(9)	0.213(16)	0.094(11)	0.082(11)	0.029(7)	0.095(9)
C163	0.155(10)	0.066(7)	0.060(6)	0.033(5)	0.035(6)	0.056(7)
C164	0.204(14)	0.123(13)	0.115(12)	0.058(10)	0.051(10)	0.104(12)
C165	0.205(14)	0.090(10)	0.107(10)	0.016(8)	0.016(9)	0.048(9)
C166	0.083(14)	0.098(11)	0.033(8)	0.024(8)	0.007(9)	0.048(10)
C167	0.093(15)	0.092(11)	0.039(9)	0.024(8)	0.004(9)	0.045(11)
C168	0.126(19)	0.086(12)	0.055(10)	0.036(10)	0.027(13)	0.056(13)
C173	0.030(5)	0.072(5)	0.060(4)	0.035(4)	0.011(4)	0.009(4)
C174	0.043(6)	0.077(6)	0.076(6)	0.043(5)	0.018(4)	0.019(5)
C176	0.058(7)	0.095(7)	0.070(6)	0.047(5)	0.011(5)	0.018(6)
C177	0.031(5)	0.072(5)	0.052(4)	0.030(4)	0.006(4)	0.002(4)
C179	0.018(4)	0.064(4)	0.041(4)	0.014(3)	0.002(3)	-0.004(3)
C180	0.022(4)	0.063(5)	0.052(4)	0.015(4)	0.006(3)	0.002(3)
C182	0.052(6)	0.063(5)	0.052(1)	0.012(1)	0.000(5)	0.002(5)
C183	0.032(0)	0.061(5)	0.005(0)	0.022(4)	0.012(5)	0.021(5)
C10J	0.049(0)	0.00+(0)	0.070(0)	0.010(3)	0.000(5)	0.022(5)
C104	0.030(7)	0.080(7)	0.072(0)	0.017(3)	0.013(3)	0.027(0)
C10J	0.034(3)	0.064(0)	0.007(0)	0.011(3)	0.012(4)	0.010(3)
NIUI N124	0.013(3)	0.048(3)	0.050(4)	0.021(3)	0.003(3)	0.005(2)
N134	0.014(3)	0.039(4)	0.028(3)	0.017(3)	0.002(2)	0.004(2)
N172	0.018(3)	0.063(4)	0.046(4)	0.024(3)	0.003(3)	0.000(3)
N1/5	0.048(5)	0.090(6)	0.074(5)	0.045(5)	0.008(4)	0.012(5)
N181	0.021(3)	0.052(4)	0.047(4)	0.013(3)	0.001(3)	0.003(3)
O108	0.021(3)	0.051(3)	0.054(4)	0.020(3)	0.006(2)	0.005(2)
0141	0.027(2)	0.033(3)	0.022(2)	0.012(2)	0.0035(19)	0.005(2)
0144	0.030(3)	0.036(3)	0.033(3)	0.008(2)	-0.002(2)	0.011(2)
O178	0.050(4)	0.077(4)	0.043(3)	0.022(3)	0.007(3)	0.008(3)
Ir2	0.01836(16)	0.0439(2)	0.03618(18)	0.01902(15)	0.00422(12)	0.00798(13)
I1	0.063(3)	0.122(4)	0.091(3)	0.068(3)	0.035(2)	0.019(2)
I2	0.094(3)	0.090(4)	0.055(2)	0.029(2)	0.0188(19)	0.001(2)
I3	0.144(5)	0.121(5)	0.096(4)	0.040(3)	0.056(3)	-0.010(3)
I4	0.036(2)	0.053(3)	0.052(3)	0.0075(19)	0.0153(18)	0.0004(17)
I5	0.0361(8)	0.0452(14)	0.0448(10)	0.0129(8)	0.0138(6)	0.0075(7)
I6	0.058(3)	0.049(3)	0.068(4)	0.022(3)	0.006(3)	-0.006(2)
17	0.054(5)	0.079(8)	0.069(9)	0.007(7)	0.043(6)	-0.017(5)
18	0.121(4)	0.082(4)	0.095(3)	0.031(3)	0.021(3)	-0.039(3)
19	0.098(2)	0.0767(18)	0.095(3) 0.115(3)	0.0612(19)	-0.0467(17)	-0.0441(15)
110	0.098(2) 0.128(3)	0.0707(10)	0.113(3) 0.131(4)	0.0012(1))	0.0407(17)	0.0441(13) 0.0022(19)
I10 I11	0.120(5) 0.171(6)	0.030(2) 0.075(3)	0.131(+) 0.124(5)	0.047(2)	0.013(3)	0.0022(1))
111	0.171(0) 0.168(5)	0.075(3)	0.124(3)	0.007(4)	-0.03+(3)	-0.044(4)
112 112	0.100(3)	0.114(4)	0.094(3)	0.033(2)	0.021(3)	0.000(3)
115 114	0.100(10)	0.084(9)	0.110(11)	0.033(7)	0.029(7)	0.02/(7)
114	0.3/(2)	0.330(18)	0.243(14)	0.096(12)	0.039(13)	-0.040(15)
115	0.29(2)	0.131(13)	0.165(16)	0.01/(11)	-0.011(14)	0.049(13)
117	0.132(5)	0.176(7)	0.068(5)	-0.008(4)	0.025(4)	0.073(5)
118	0.0576(6)	0.0483(7)	0.0798(12)	0.0237(6)	0.0285(6)	0.0290(5)
O400	0.089(9)	0.088(8)	0.203(15)	0.111(10)	0.066(9)	0.036(7)
C300	0.14(2)	0.14(2)	0.15(2)	0.08(2)	0.10(2)	0.06(2)
Cl1	0.055(3)	0.129(5)	0.069(3)	0.032(3)	0.019(2)	0.032(3)

Cl2	0.264(12)	0.153(7)	0.220(10)	0.118(7)	0.178(10)	0.127(8)
C400	0.24(5)	0.059(19)	0.26(5)	-0.05(3)	0.20(5)	-0.05(2)
Cl3	0.076(5)	0.077(4)	0.154(7)	0.041(5)	0.043(5)	0.040(4)
Cl4	0.124(8)	0.145(9)	0.139(8)	-0.004(7)	0.069(7)	-0.045(7)
C500	0.06(2)	0.08(3)	0.08(3)	0.02(2)	-0.006(19)	-0.001(19)
C15	0.075(8)	0.065(7)	0.196(15)	-0.028(8)	-0.015(8)	0.012(6)
Cl6	0.085(8)	0.147(11)	0.084(7)	0.041(8)	0.030(6)	0.019(7)

H3 0.6718 0.4233 0.1027 0.051 1 H5 0.9344 0.5309 0.1902 0.078 1 H6 0.8762 0.5981 0.2562 0.084 1 H13 0.2944 0.5652 0.2854 0.068 1 H15 0.5746 0.6394 0.3185 0.074 1 H16M 0.8992 0.4095 0.01781 0.063 1 H16N 0.8992 0.4095 0.0188 0.121 1 H20 0.4205 0.7018 0.4863 0.121 1 H24 0.4250 0.7018 0.4863 0.234 1 H25 0.5716 0.6186 0.4463 0.234 1 H25C 0.5177 0.6181 0.4936 0.234 1 H26B 0.2975 0.5842 0.4295 0.310 1 H26C 0.3696 0.5789 0.4810 0.310 1 H26C		Х	У	Z	U(eq)	Occupancy
L5 0.0310 0.22.03 0.102 0.073 1 H5 0.9344 0.5509 0.1902 0.078 1 H6 0.8762 0.5981 0.2562 0.084 1 H13 0.2944 0.5652 0.2854 0.068 1 H15 0.5746 0.6394 0.3185 0.074 1 H16M 0.8794 0.4550 0.0781 0.663 1 H16M 0.8792 0.4095 0.1181 0.063 1 H20 0.4254 0.5030 0.3810 0.157 1 H23A 0.5716 0.6186 0.4463 0.234 1 H25A 0.5376 0.5472 0.4556 0.234 1 H25A 0.3272 0.5130 0.4275 0.310 1 H26A 0.3272 0.5130 0.4275 0.310 1 H26C 0.3796 0.5842 0.4295 0.310 1 H27		0.6718	0 4233	0 1027	0.051	1
1D 0.2347 0.2362 0.035 1 H6 0.8762 0.5981 0.2252 0.034 1 H12 0.2997 0.4780 0.2103 0.068 1 H13 0.2744 0.5552 0.2854 0.084 1 H15 0.5746 0.6394 0.3185 0.074 1 H16N 0.8992 0.4095 0.1181 0.063 1 H20 0.4205 0.7018 0.4863 0.121 1 H24 0.4254 0.5303 0.3810 0.157 1 H25A 0.5716 0.6186 0.4463 0.234 1 H25B 0.5306 0.5472 0.4275 0.310 1 H26A 0.3027 0.5130 0.4275 0.310 1 H26A 0.3028 0.8598 0.4567 0.183 1 H26C 0.3720 0.7964 0.4786 0.183 1 H28A 0.3028	H5	0.0710	0.5309	0.1027	0.078	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H6	0.9344	0.5981	0.1902	0.078	1
III: 0.270 0.765 0.203 0.003 1 H13 0.2744 0.6552 0.2854 0.003 1 H16M 0.8794 0.4550 0.0781 0.063 1 H16N 0.8992 0.4095 0.1181 0.063 1 H20 0.4205 0.7018 0.4863 0.121 1 H22 0.4277 0.8320 0.3952 0.088 1 H24 0.4254 0.5503 0.3810 0.157 1 H25A 0.5716 0.6186 0.4463 0.234 1 H26A 0.3272 0.5130 0.4275 0.310 1 H26A 0.3028 0.8481 0.4275 0.310 1 H27 0.4218 0.8143 0.5266 0.183 1 H27 0.4218 0.8731 0.5206 0.183 1 H28 0.3074 0.7987 0	H12	0.3702	0.3780	0.2302	0.004	1
Ints 0.224 0.202 0.204 0.004 1 H15 0.5746 0.6394 0.3185 0.0731 0.063 1 H16N 0.8794 0.4550 0.0781 0.063 1 H20 0.4205 0.7018 0.4863 0.121 1 H22 0.4277 0.8320 0.3952 0.088 1 H24 0.4277 0.8320 0.3952 0.088 1 H25A 0.5716 0.6186 0.4463 0.234 1 H25B 0.5306 0.5472 0.4556 0.234 1 H26B 0.2975 0.5842 0.4295 0.310 1 H26C 0.3696 0.5789 0.4810 0.310 1 H28A 0.3074 0.8731 0.5206 0.183 1 H28A 0.3074 0.8731 0.242 1 H28A 0.3074 0.8731 0.242 1 H28A 0.3074	н12 H13	0.2997	0.4780	0.2103	0.008	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ш5 Ц15	0.2944	0.5052	0.2004	0.034	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HIS HI6M	0.3740	0.0394	0.3185	0.074	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	LIIONI LIION	0.8794	0.4330	0.0781	0.003	1
H2D 0.4200 0.0168 0.121 1 H22 0.4277 0.8320 0.3952 0.088 1 H24 0.4254 0.5503 0.3310 0.157 1 H25A 0.5716 0.6186 0.4463 0.234 1 H25B 0.5306 0.5472 0.4356 0.234 1 H26A 0.3272 0.5130 0.4275 0.310 1 H26B 0.2975 0.5842 0.4295 0.310 1 H27 0.4218 0.8143 0.5289 0.124 1 H28A 0.3074 0.8731 0.5206 0.183 1 H28C 0.2074 0.990 1 1 H29A 0.4731 0.9147 0.4831 0.242 1 H29C 0.4731 0.9147 0.4831 0.242 1 H31A 0.5464 0.7987 0.2649 0.193 1 H31A 0.5761 0.7618 0.03050		0.8992	0.4095	0.1101	0.005	1
1122 0.4277 0.6320 0.5322 0.0685 1 124 0.4224 0.5503 0.3810 0.157 1 125A 0.5716 0.6186 0.4463 0.234 1 125B 0.5306 0.5472 0.4556 0.234 1 126A 0.3272 0.5130 0.4275 0.310 1 126B 0.2975 0.5842 0.4295 0.310 1 126C 0.3696 0.5789 0.4810 0.310 1 127 0.4218 0.8143 0.5289 0.124 1 128A 0.3028 0.8598 0.4567 0.183 1 128A 0.3024 0.4786 0.183 1 129A 0.4713 0.9147 0.4831 0.242 1 129A 0.4773 0.9240 0.5464 0.242 1 129C 0.4773 0.9240 0.5464 0.242 1 131A 0.5264 0.7987 0.2649	1120 1122	0.4203	0.8320	0.4803	0.121	1
H24 $0.42.94$ 0.5030 0.5310 0.137 1 H25A 0.5316 0.6186 0.4433 0.234 1 H25C 0.5317 0.6181 0.4936 0.234 1 H26A 0.3272 0.5130 0.4275 0.310 1 H26A 0.3272 0.5130 0.4275 0.310 1 H26C 0.3696 0.5789 0.4810 0.310 1 H27 0.4218 0.8143 0.5289 0.124 1 H28B 0.3074 0.8731 0.5206 0.183 1 H28B 0.3074 0.8731 0.5260 0.183 1 H29B 0.5431 0.8161 0.5167 0.242 1 H29B 0.5431 0.8161 0.5164 0.242 1 H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5264 0.7987 0.2649 0.193 1 H31C 0.5761	H22 H24	0.4277	0.8520	0.3932	0.088	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	П24 Ц25 Л	0.4234	0.5505	0.3610	0.137	1
1250 0.300 0.3472 0.4300 0.234 1 $125C$ 0.5177 0.6181 0.4336 0.234 1 $126A$ 0.3272 0.5130 0.4275 0.310 1 $126C$ 0.3696 0.5789 0.4810 0.310 1 127 0.4218 0.8143 0.5289 0.124 1 $128E$ 0.3074 0.8731 0.5206 0.183 1 $128E$ 0.2720 0.7964 0.4786 0.183 1 $129E$ 0.4731 0.9147 0.4831 0.242 1 $129B$ 0.5431 0.8816 0.5167 0.242 1 $129E$ 0.4773 0.9240 0.5464 0.242 1 130 0.4184 0.7008 0.2704 0.090 1 $131A$ 0.5264 0.7987 0.2649 0.193 1 $131C$ 0.5761 0.7618 0.3050 0.193 1 $132C$ 0.2980 0.7578 0.2816 0.163 1 132 0.2304 0.4478 0.0597 0.086 1 133 0.0441 0.2528 0.0893 0.069 1 144 0.6203 0.4125 0.0431 1 147 0.3502 0.2348 0.2011 0.037 1 148 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ 148 0.0213 0.4616 1 1444 1 <	H23A H25D	0.5710	0.0180	0.4405	0.234	1
H25C $0.317/$ 0.0181 0.4930 0.234 1 $H26A$ 0.3272 0.5130 0.4275 0.310 1 $H26B$ 0.2975 0.5842 0.4295 0.310 1 $H26C$ 0.3696 0.5789 0.4810 0.310 1 $H27$ 0.4218 0.8143 0.5289 0.124 1 $H28A$ 0.3028 0.8598 0.4567 0.183 1 $H28C$ 0.2720 0.7964 0.4786 0.183 1 $H29A$ 0.4731 0.9147 0.4831 0.242 1 $H29C$ 0.5431 0.9147 0.4831 0.242 1 $H29C$ 0.4773 0.9240 0.5464 0.242 1 $H30$ 0.4184 0.7008 0.2704 0.090 1 $H31B$ 0.5264 0.7987 0.2649 0.193 1 $H31B$ 0.5264 0.7987 0.2649 0.193 1 $H32A$ 0.3596 0.7855 0.2448 0.163 1 $H32B$ 0.3735 0.8298 0.3075 0.163 1 $H32C$ 0.2304 0.4478 0.0597 0.086 1 $H33$ 0.0441 0.2598 0.0893 0.069 1 $H44$ 0.6203 0.4311 0.2257 0.046 1 $H45$ 0.6268 0.3126 0.0211 0.037 1 $H38$ 0.0018 0.3914 -0.0241 0.173 <td>H25D</td> <td>0.5500</td> <td>0.5472</td> <td>0.4330</td> <td>0.234</td> <td>1</td>	H25D	0.5500	0.5472	0.4330	0.234	1
H26R 0.372 0.310 0.4273 0.310 1 H26B 0.2975 0.5842 0.4295 0.310 1 H26C 0.3696 0.5789 0.4810 0.310 1 H27 0.4218 0.8143 0.5289 0.124 1 H28A 0.3028 0.8598 0.4567 0.183 1 H28B 0.3074 0.8731 0.5206 0.183 1 H28B 0.3074 0.8731 0.5206 0.183 1 H29A 0.4731 0.9147 0.4831 0.2422 1 H29B 0.5431 0.8166 0.5167 0.242 1 H29C 0.4773 0.9240 0.5464 0.242 1 H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H31C 0.5761 0.7618 0.3050 0.193 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H34 0.0441 0.2598 0.0893 0.069 1 H37 -0.0210 0.3226 0.0342 0.087 1 H38 0.0441 0.2598 0.0257 0.046 1 H44 0.6203 0.4314 0.0279 0.173 $0.26(2)$ H48D	H25C	0.3177	0.0181	0.4930	0.234	1
H26b 0.2975 0.3842 0.4295 0.310 1H26C 0.3696 0.5789 0.4810 0.310 1H27 0.4218 0.8143 0.5289 0.124 1H28A 0.3028 0.8598 0.4567 0.183 1H28B 0.3074 0.8731 0.5206 0.183 1H28B 0.3774 0.8731 0.5206 0.183 1H29A 0.4731 0.9147 0.4831 0.2422 1H29B 0.5431 0.8816 0.5167 0.2422 1H30 0.4184 0.7008 0.2704 0.090 1H31B 0.5264 0.7987 0.2649 0.193 1H31C 0.5761 0.7618 0.3050 0.193 1H32A 0.3596 0.7855 0.2448 0.163 1H32B 0.3735 0.8298 0.3075 0.163 1H32C 0.2980 0.7878 0.2816 0.163 1H32B 0.3735 0.8298 0.3075 0.163 1H32C 0.2980 0.7878 0.2816 0.163 1H33 0.2304 0.4478 0.0597 0.086 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.0433 1H47 0.3502 0.2348 0.2011 0.037 1H48B 0.0223 0.4844 0.27	H20A	0.3272	0.5150	0.4275	0.310	1
H20c 0.3690 0.5789 0.4810 0.3101 1H27 0.4218 0.8143 0.5289 0.124 1H28A 0.3028 0.8598 0.4567 0.183 1H28B 0.3074 0.8731 0.5206 0.183 1H28C 0.2720 0.7964 0.4786 0.183 1H29A 0.4731 0.9147 0.4831 0.242 1H29B 0.5431 0.8816 0.5167 0.242 1H30 0.4184 0.7008 0.2704 0.0900 1H31A 0.5264 0.7987 0.2649 0.193 1H31B 0.5264 0.7987 0.2649 0.193 1H31C 0.5761 0.7618 0.3050 0.193 1H32A 0.3596 0.7855 0.2448 0.163 1H32C 0.2980 0.7578 0.2816 0.163 1H32C 0.2304 0.4478 0.0597 0.086 1H37 -0.0210 0.3226 0.0342 0.087 1H48 0.0223 0.4584 0.2027 0.173 $0.74(2)$ H48 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48 0.0755 0.415		0.2973	0.5842	0.4293	0.310	1
H27 0.4218 0.6143 0.529 0.124 1 $H28A$ 0.3028 0.8598 0.4567 0.183 1 $H28B$ 0.3074 0.8731 0.5206 0.183 1 $H28C$ 0.2720 0.7964 0.4786 0.183 1 $H29A$ 0.4731 0.9147 0.4831 0.242 1 $H29B$ 0.5431 0.8816 0.5167 0.242 1 $H29C$ 0.4773 0.9240 0.5464 0.242 1 $H30$ 0.4184 0.7008 0.2704 0.090 1 $H31A$ 0.5470 0.8323 0.3301 0.193 1 $H31B$ 0.5264 0.7987 0.2649 0.193 1 $H32B$ 0.3756 0.7618 0.3050 0.193 1 $H32B$ 0.3735 0.8298 0.3075 0.163 1 $H32B$ 0.3735 0.8298 0.3075 0.163 1 $H32C$ 0.2980 0.7578 0.2816 0.163 1 $H35$ 0.2304 0.4478 0.0597 0.086 1 $H37$ -0.0210 0.3226 0.0342 0.087 1 $H38$ 0.0441 0.2598 0.0893 0.069 1 $H44$ 0.6203 0.4031 0.2257 0.046 1 $H45$ 0.6268 0.3126 0.2029 0.173 $0.74(2)$ $H48D$ 0.0755 0.4155 -0.0279 0.173	H20C	0.3090	0.5789	0.4810	0.310	1
H28A 0.3028 0.3074 0.8731 0.5206 0.183 1 $H28B$ 0.2720 0.7964 0.4786 0.183 1 $H29A$ 0.4731 0.9147 0.4831 0.242 1 $H29B$ 0.5431 0.8816 0.5167 0.242 1 $H29C$ 0.4773 0.9240 0.5464 0.242 1 $H30$ 0.4184 0.7008 0.2704 0.090 1 $H31A$ 0.5761 0.7818 0.3050 0.193 1 $H31B$ 0.5264 0.7987 0.2649 0.193 1 $H32A$ 0.3596 0.7855 0.2448 0.163 1 $H32A$ 0.3596 0.7878 0.2816 0.163 1 $H32B$ 0.3735 0.8298 0.3075 0.163 1 $H32$ 0.2304 0.4478 0.0597 0.086 1 $H37$ -0.0210 0.3226 0.0342 0.087 1 $H38$ 0.0441 0.2598 0.0893 0.069 1 $H44$ 0.6203 0.4031 0.2257 0.046 1 $H45$ 0.0279 0.173 $0.74(2)$ $H48A$ 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ $H48A$ 0.0018 0.3914 -0.0241 0.173 $0.26(2)$ $H48D$ 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ $H48D$ 0.0755 0.4155 0.0279	H2/	0.4218	0.8143	0.5289	0.124	1
H28B $0.30/4$ 0.871 0.5206 0.183 1 H28C 0.2720 0.7964 0.4786 0.183 1 H29A 0.4731 0.9147 0.4831 0.242 1 H29B 0.5431 0.8816 0.5167 0.242 1 H29C 0.4773 0.9240 0.5464 0.242 1 H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H32A 0.3596 0.7855 0.2448 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H38 0.0441 0.2598 0.0893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2615 0.043 1 H47 0.3502 0.2348 0.2011 0.037 1 H48A 0.0018 0.3914 -0.0250 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H47 0.504 0.3360 0.3550 0.166 1 <	H28A	0.3028	0.8598	0.4567	0.183	1
H28C $0.2/20$ 0.7964 0.4786 0.183 1 H29A 0.4731 0.9147 0.4831 0.242 1 H29B 0.5431 0.8816 0.5167 0.242 1 H29C 0.4773 0.9240 0.5464 0.242 1 H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H32A 0.5566 0.7855 0.2448 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32C 0.2980 0.7578 0.2816 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H37 -0.0210 0.3226 0.0342 0.087 1 H38 0.0441 0.2598 0.893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2211 0.173 $0.74(2)$ H48D 0.0275 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H54 0.504 0.3599 0.4021 0.144 1 <td>H28B</td> <td>0.3074</td> <td>0.8/31</td> <td>0.5206</td> <td>0.183</td> <td>1</td>	H28B	0.3074	0.8/31	0.5206	0.183	1
H29A $0.4/31$ 0.9147 0.4831 0.242 1H29B 0.5431 0.8816 0.5167 0.242 1H29C 0.4773 0.9240 0.5464 0.242 1H30 0.4184 0.7008 0.2704 0.090 1H31A 0.5470 0.8323 0.3301 0.193 1H31B 0.5264 0.7987 0.2649 0.193 1H32A 0.3596 0.7855 0.2448 0.163 1H32B 0.37561 0.7618 0.3050 0.193 1H32B 0.3735 0.8298 0.3075 0.163 1H32C 0.2980 0.7578 0.2816 0.163 1H35 0.2304 0.4478 0.0597 0.086 1H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.0446 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48B	H28C	0.2720	0.7964	0.4786	0.183	l
H29B 0.5431 0.8816 0.5167 0.242 1 H29C 0.4773 0.9240 0.5464 0.242 1 H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H31C 0.5761 0.7618 0.3050 0.193 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32C 0.2980 0.7578 0.2816 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H37 -0.0210 0.3226 0.0342 0.087 1 H48 0.6203 0.4031 0.2257 0.046 1 H47 0.502 0.2348 0.2011 0.037 1 H48 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4468 0.2093 0.036 1 H57A 0.5504 0.3559 0.3250 0.0666 1 H57A 0.5504 0.2588 0.3654 0.105 1 H57B 0.4069 0.2093 0.036 1 H57A<	H29A	0.4731	0.9147	0.4831	0.242	l
H29C 0.4773 0.9240 0.5464 0.242 1 H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H31C 0.5761 0.7618 0.3050 0.193 1 H32A 0.3596 0.7855 0.2448 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H37 -0.0210 0.3226 0.0342 0.087 1 H38 0.0441 0.2598 0.0893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2615 0.043 1 H47 0.3502 0.2348 0.2011 0.037 1 H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48A 0.5011 0.1505 0.3616 0.049 1 H54 0.5416 0.0496 0.2093 0.0366 1 H57A 0.5504 0.3599 0.4021 0.144 1 <	H29B	0.5431	0.8816	0.5167	0.242	1
H30 0.4184 0.7008 0.2704 0.090 1 H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H31C 0.5761 0.7618 0.3050 0.193 1 H32A 0.3596 0.7855 0.2448 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32C 0.2980 0.7578 0.2816 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H38 0.0441 0.2598 0.0893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2615 0.043 1 H47 0.3502 0.2348 0.2011 0.037 1 H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H54 0.5416 0.0496 0.2093 0.036 1 H57A 0.5504 0.3599 0.4021 0.144 1 H57B 0.6001 0.3360 0.3535 0.144 1	H29C	0.4773	0.9240	0.5464	0.242	1
H31A 0.5470 0.8323 0.3301 0.193 1 H31B 0.5264 0.7987 0.2649 0.193 1 H31C 0.5761 0.7618 0.3050 0.193 1 H32A 0.3596 0.7855 0.2448 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32C 0.2980 0.7578 0.2816 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H37 -0.0210 0.3226 0.0342 0.087 1 H38 0.0441 0.2598 0.0893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2615 0.043 1 H47 0.3502 0.2348 0.2011 0.037 1 H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H54 0.5416 0.0496 0.2093 0.036 1 H57A 0.5504 0.3599 0.4021 0.144 1 H57B 0.6001 0.3360 0.3535 0.144 1 H57B 0.6001 0.3360 0.3555 0.144 1 <	H30	0.4184	0.7008	0.2704	0.090	1
H31B 0.5264 0.7987 0.2649 0.193 1H31C 0.5761 0.7618 0.3050 0.193 1H32A 0.3596 0.7855 0.2448 0.163 1H32B 0.3735 0.8298 0.3075 0.163 1H32C 0.2980 0.7578 0.2816 0.163 1H35 0.2304 0.4478 0.0597 0.086 1H37 -0.0210 0.3226 0.0342 0.087 1H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1H54 0.5504 0.3599 0.4021 0.144 1 <t< td=""><td>H31A</td><td>0.5470</td><td>0.8323</td><td>0.3301</td><td>0.193</td><td>1</td></t<>	H31A	0.5470	0.8323	0.3301	0.193	1
H31C 0.5761 0.7618 0.3050 0.193 1 H32A 0.3596 0.7855 0.2448 0.163 1 H32B 0.3735 0.8298 0.3075 0.163 1 H32C 0.2980 0.7578 0.2816 0.163 1 H35 0.2304 0.4478 0.0597 0.086 1 H37 -0.0210 0.3226 0.0342 0.087 1 H38 0.0441 0.2598 0.0893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2615 0.043 1 H47 0.3502 0.2348 0.2011 0.037 1 H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48D 0.0756 0.4757 0.0250 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1 H54 0.5416 0.0496 0.2093 0.036 1 H54 0.5416 0.0496 0.2093 0.144 1 H57A 0.5504 0.3599 0.4021 0.144 1 H57B 0.6001 0.3360 0.3535 0.144 1 H57B 0.6001 0.3360 0.3654 0.105 1 H58A 0.3763 0.2058 0.3654 0.105 1 H	H31B	0.5264	0.7987	0.2649	0.193	1
H32A 0.3596 0.7855 0.2448 0.163 1H32B 0.3735 0.8298 0.3075 0.163 1H32C 0.2980 0.7578 0.2816 0.163 1H35 0.2304 0.4478 0.0597 0.086 1H37 -0.0210 0.3226 0.0342 0.087 1H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1H54 0.5416 0.0496 0.2093 0.036 1H57A 0.5504 0.3599 0.4021 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H58A 0.3763 0.2058 0.3654 0.105 1H58B 0.4048 0.2839 0.4048 0.105 1H58B 0.4048 0.2839 0.4048 0.105 1H58B 0.4048	H31C	0.5761	0.7618	0.3050	0.193	1
H32B 0.3735 0.8298 0.3075 0.163 1H32C 0.2980 0.7578 0.2816 0.163 1H35 0.2304 0.4478 0.0597 0.086 1H37 -0.0210 0.3226 0.0342 0.087 1H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1H54 0.5416 0.0496 0.2093 0.0366 1H57A 0.5504 0.3599 0.4021 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H58B 0.4048 0.2839 0.4048 0.105 1H58B 0.4048 0.2839 0.4048 0.105 1H58B 0.4048 0.2320 0.4139 0.105 1H58B 0.4048 0.2320 0.4139 0.105 1H58B 0.4048	H32A	0.3596	0.7855	0.2448	0.163	1
H32C 0.2980 0.7578 0.2816 0.163 1H35 0.2304 0.4478 0.0597 0.086 1H37 -0.0210 0.3226 0.0342 0.087 1H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1H54 0.5416 0.0496 0.2093 0.0366 1H57A 0.5504 0.3599 0.4021 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H58B 0.4048 0.2839 0.4048 0.105 1H58B <t< td=""><td>H32B</td><td>0.3735</td><td>0.8298</td><td>0.3075</td><td>0.163</td><td>1</td></t<>	H32B	0.3735	0.8298	0.3075	0.163	1
H35 0.2304 0.4478 0.0597 0.086 1 H37 -0.0210 0.3226 0.0342 0.087 1 H38 0.0441 0.2598 0.0893 0.069 1 H44 0.6203 0.4031 0.2257 0.046 1 H45 0.6268 0.3126 0.2615 0.043 1 H47 0.3502 0.2348 0.2011 0.037 1 H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1 H54 0.5416 0.0496 0.2093 0.036 1 H57A 0.5504 0.3599 0.4021 0.144 1 H57B 0.6001 0.3360 0.3535 0.144 1 H57B 0.6001 0.3360 0.3535 0.144 1 H58A 0.3763 0.2058 0.3654 0.105 1 H58B 0.4048 0.2839 0.4048 0.091 1 H58C 0.4696 0.2320 0.4139 0.105 1 H59 0.5775 -0.0025 0.2753 0.058 1 H59 0.5775 -0.0025 0.2753 0.058 1 </td <td>H32C</td> <td>0.2980</td> <td>0.7578</td> <td>0.2816</td> <td>0.163</td> <td>1</td>	H32C	0.2980	0.7578	0.2816	0.163	1
H37 -0.0210 0.3226 0.0342 0.087 1H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.26(2)$ H48D 0.0766 0.4757 0.0250 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1H54 0.5416 0.0496 0.2093 0.036 1H56 0.4428 0.2869 0.3250 0.066 1H57A 0.5504 0.3599 0.4021 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H57C 0.6098 0.3026 0.4023 0.144 1H58B 0.4048 0.2839 0.4048 0.105 1H58 0.4696 0.2320 0.4139 0.105 1H59 0.5775 -0.0025 0.2753 0.058 1H60A 0.6706 0.0135 0.3610 0.091 1H60C 0.7046 0.0777 0.3406 0.091 1H61A 0.4297 </td <td>H35</td> <td>0.2304</td> <td>0.4478</td> <td>0.0597</td> <td>0.086</td> <td>1</td>	H35	0.2304	0.4478	0.0597	0.086	1
H38 0.0441 0.2598 0.0893 0.069 1H44 0.6203 0.4031 0.2257 0.046 1H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.74(2)$ H48C 0.0766 0.4757 0.0250 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H42 0.5416 0.0496 0.2093 0.036 1H54 0.5416 0.0496 0.2093 0.036 1H56 0.4428 0.2869 0.3250 0.066 1H57A 0.5504 0.3599 0.4021 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H58A 0.3763 0.2058 0.3654 0.105 1H58B 0.4048 0.2839 0.4048 0.105 1H58B 0.4696 0.2320 0.4139 0.105 1H60A 0.6706 0.0135 0.3610 0.091 1H60B 0.6441 0.0854 0.3854 0.091 1H60C 0.7046 0.777 0.3406 0.091 1	H37	-0.0210	0.3226	0.0342	0.087	1
H440.62030.40310.22570.0461H450.62680.31260.26150.0431H470.35020.23480.20110.0371H48A0.00180.3914-0.02410.1730.74(2)H48B0.02230.45840.02790.1730.26(2)H48D0.07660.47570.02500.1730.26(2)H48D0.07550.4155-0.02790.1730.26(2)H520.53010.15050.36160.0491H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58B0.40480.28390.40480.1051H58B0.40480.28390.40480.1051H58B0.46960.23200.41390.1051H5000.67060.01350.36100.0911H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H38	0.0441	0.2598	0.0893	0.069	1
H45 0.6268 0.3126 0.2615 0.043 1H47 0.3502 0.2348 0.2011 0.037 1H48A 0.0018 0.3914 -0.0241 0.173 $0.74(2)$ H48B 0.0223 0.4584 0.0279 0.173 $0.74(2)$ H48C 0.0766 0.4757 0.0250 0.173 $0.26(2)$ H48D 0.0755 0.4155 -0.0279 0.173 $0.26(2)$ H52 0.5301 0.1505 0.3616 0.049 1H54 0.5416 0.0496 0.2093 0.036 1H56 0.4428 0.2869 0.3250 0.066 1H57A 0.5504 0.3599 0.4021 0.144 1H57B 0.6001 0.3360 0.3535 0.144 1H57C 0.6098 0.3026 0.4023 0.144 1H58B 0.4048 0.2839 0.4048 0.105 1H58D 0.4066 0.2320 0.4139 0.105 1H58D 0.6706 0.0135 0.3610 0.091 1H60A 0.6706 0.0135 0.3610 0.091 1H60B 0.6441 0.0854 0.3854 0.091 1H60C 0.7046 0.0777 0.3406 0.091 1H61A 0.4297 -0.0205 0.2913 0.090 1	H44	0.6203	0.4031	0.2257	0.046	1
H470.35020.23480.20110.0371H48A0.00180.3914-0.02410.1730.74(2)H48B0.02230.45840.02790.1730.74(2)H48C0.07660.47570.02500.1730.26(2)H48D0.07550.4155-0.02790.1730.26(2)H520.53010.15050.36160.0491H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58B0.40480.28390.40480.1051H58D0.40480.28390.40480.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H45	0.6268	0.3126	0.2615	0.043	1
H48A0.00180.3914-0.02410.1730.74(2)H48B0.02230.45840.02790.1730.74(2)H48C0.07660.47570.02500.1730.26(2)H48D0.07550.4155-0.02790.1730.26(2)H520.53010.15050.36160.0491H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H47	0.3502	0.2348	0.2011	0.037	1
H48B0.02230.45840.02790.1730.74(2)H48C0.07660.47570.02500.1730.26(2)H48D0.07550.4155-0.02790.1730.26(2)H520.53010.15050.36160.0491H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H48A	0.0018	0.3914	-0.0241	0.173	0.74(2)
H48C0.07660.47570.02500.1730.26(2)H48D0.07550.4155-0.02790.1730.26(2)H520.53010.15050.36160.0491H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H48B	0.0223	0.4584	0.0279	0.173	0.74(2)
H48D0.07550.4155-0.02790.1730.26(2)H520.53010.15050.36160.0491H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H48C	0.0766	0.4757	0.0250	0.173	0.26(2)
H52 0.5301 0.1505 0.3616 0.049 1 H54 0.5416 0.0496 0.2093 0.036 1 H56 0.4428 0.2869 0.3250 0.066 1 H57A 0.5504 0.3599 0.4021 0.144 1 H57B 0.6001 0.3360 0.3535 0.144 1 H57C 0.6098 0.3026 0.4023 0.144 1 H58A 0.3763 0.2058 0.3654 0.105 1 H58B 0.4048 0.2839 0.4048 0.105 1 H58C 0.4696 0.2320 0.4139 0.105 1 H59 0.5775 -0.0025 0.2753 0.058 1 H60A 0.6706 0.0135 0.3610 0.091 1 H60B 0.6441 0.0854 0.3854 0.091 1 H60C 0.7046 0.0777 0.3406 0.091 1 H61A 0.4297 -0.0205 0.2913 0.090 1	H48D	0.0755	0.4155	-0.0279	0.173	0.26(2)
H540.54160.04960.20930.0361H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H52	0.5301	0.1505	0.3616	0.049	1
H560.44280.28690.32500.0661H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60A0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H54	0.5416	0.0496	0.2093	0.036	1
H57A0.55040.35990.40210.1441H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H56	0.4428	0.2869	0.3250	0.066	1
H57B0.60010.33600.35350.1441H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H57A	0.5504	0.3599	0.4021	0.144	1
H57C0.60980.30260.40230.1441H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H57B	0.6001	0.3360	0.3535	0.144	1
H58A0.37630.20580.36540.1051H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H57C	0.6098	0.3026	0.4023	0.144	1
H58B0.40480.28390.40480.1051H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H58A	0.3763	0.2058	0.3654	0.105	1
H58C0.46960.23200.41390.1051H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H58B	0.4048	0.2839	0.4048	0.105	1
H590.5775-0.00250.27530.0581H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H58C	0.4696	0.2320	0.4139	0.105	1
H60A0.67060.01350.36100.0911H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H59	0.5775	-0.0025	0.2753	0.058	1
H60B0.64410.08540.38540.0911H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H60A	0.6706	0.0135	0.3610	0.091	1
H60C0.70460.07770.34060.0911H61A0.4297-0.02050.29130.0901	H60B	0.6441	0.0854	0.3854	0.091	1
H61A 0.4297 -0.0205 0.2913 0.090 1	H60C	0.7046	0.0777	0.3406	0.091	1
	H61A	0.4297	-0.0205	0.2913	0.090	1

Table S5. Hydrogen coordinates and isotropic displacement parameters (Å²) for cat112_0m_sq.

H61B	0.4708	0.0266	0.3539	0.090	1
H61C	0.4994	-0.0451	0.3325	0.090	1
H62	0.4931	0.1813	0.1499	0.042	1
H63A	0.4216	0.0360	0 1249	0.070	1
H63R	0.4059	0.0380	0.0820	0.070	1
H63C	0.3599	0.0923	0.1333	0.070	1
1103C	0.5059	0.0923	0.1335	0.070	1
1104A	0.5901	0.0707	0.1580	0.039	1
H04B	0.0435	0.1570	0.1012	0.059	1
H64C	0.5828	0.1234	0.0991	0.059	1
H6/A	0.6151	0.2969	0.0943	0.046	1
H67B	0.5147	0.2428	0.0709	0.046	1
H69A	0.5762	0.2774	-0.0585	0.061	1
H69B	0.4808	0.2276	-0.0586	0.061	1
H75	0.3858	0.5784	0.1435	0.072	1
H76	0.3162	0.6223	0.0776	0.080	1
H77	0.3027	0.5671	-0.0144	0.074	1
H78	0.3663	0.4697	-0.0385	0.067	1
H68	0.6404(19)	0.261(5)	0.017(5)	0.066	1
H17	0.8039	0.3369	0.0516	0.078	1
H49	0 1524	0 4434	-0.0165	0.327	0.74(2)
H50	-0.0604	0.3892	0.0105	0.153	0.7(2) 0.26(2)
H103	0.1043	0.0537	0.0055	0.155	1
L105	-0.1045	0.0337	-0.1802	0.052	1
H105	-0.3393	-0.0609	-0.2371	0.056	1
П100	-0.2908	-0.1728	-0.2759	0.030	1
HII2	0.2768	-0.0705	-0.2406	0.043	1
HII3	0.2805	-0.1839	-0.2812	0.044	1
H115	0.0017	-0.2440	-0.3038	0.044	1
H11A	-0.2731	0.0883	-0.1998	0.067	0.25
H11B	-0.3480	0.0349	-0.1857	0.067	0.25
H11C	-0.3485	0.0357	-0.1868	0.067	0.75
H11D	-0.2514	0.0705	-0.1414	0.067	0.75
H121	0.1761	-0.4285	-0.2684	0.074	1
H123	0.1705	-0.4209	-0.4204	0.092	1
H125	0.1067	-0.2548	-0.3966	0.105	1
H12A	0.2471	-0.2966	-0.4467	0.191	1
H12B	0.2698	-0.2365	-0.3894	0.191	1
H12C	0.2100	-0.2280	-0.4439	0.191	1
H12D	0.0907	-0.3780	-0.4821	0.215	1
H12E	0.0536	-0.3125	-0.4904	0.215	1
	0.0000	0.3567	-0.4564	0.215	1
П12Г 11129	0.0072	-0.5307	-0.4304	0.213	1
П126	0.1997	-0.3224	-0.3299	0.110	1
HI2G	0.3036	-0.4853	-0.3998	0.155	1
HI2H	0.3084	-0.5492	-0.3/6/	0.155	1
HIZI	0.3408	-0.4720	-0.3354	0.155	1
HI3A	0.1266	-0.5490	-0.4424	0.167	1
H13B	0.0633	-0.5514	-0.3997	0.167	1
H13C	0.1301	-0.6038	-0.4094	0.167	1
H131	0.1427	-0.2576	-0.2152	0.070	1
H13D	0.0028	-0.3345	-0.2346	0.144	1
H13E	0.0549	-0.3283	-0.1735	0.144	1
H13F	0.0521	-0.3940	-0.2236	0.144	1
H13G	0.2217	-0.2808	-0.1393	0.085	1
H13H	0.2871	-0.2824	-0.1812	0.085	1
H13I	0.2316	-0.3531	-0 1768	0.085	1
H136	0 3293	0.0402	-0.0941	0.027	1
H138	0.5937	0.0702	-0.0941	0.027	1
Ц120	0.5757	0.1200	0.0202	0.029	1
111.J7 111.J7	0.5400	0.141/	-0.1000	0.031	1
п14А U14D	0.4380	0.0777	-0.0103	0.030	1
П14D 11147	0.3037	0.0182	-0.0404	0.050	1
H147	-0.0340	-0.0032	-0.3172	0.051	1

H148	-0.0250	0.0420	-0.3887	0.058	1
H150	0.2497	0.1247	-0.3269	0.043	1
H153	0.1231	0.0546	-0.5393	0.081	0.5
H155	-0.0019	0.2062	-0.4727	0.085	0.5
H157	0.1931	0.0160	-0.4187	0.102	1
H15A	0.0788	-0.0540	-0.4923	0.199	1
H15B	0.1751	-0.0743	-0.4994	0.199	1
H15C	0.1311	-0.0292	-0.5341	0.199	1
H15D	0.3297	0.0822	-0.4301	0.197	1
H15E	0.2939	0.0481	-0.4953	0.197	1
H15F	0.3207	0.0015	-0.4574	0.197	1
H160	0.0336	0.2016	-0.5507	0.095	0.5
H16A	0.1247	0.1307	-0.6113	0.116	0.5
H16B	0.1581	0.2047	-0.5653	0.116	0.5
H16C	0.0802	0.1931	-0.6202	0.116	0.5
H16D	-0.0797	0.0812	-0.5948	0.072	0.5
H16E	-0.0788	0.1412	-0.6228	0.072	0.5
H16F	-0.0909	0.1553	-0.5614	0.072	0.5
H163	0.0040	0.1741	-0.3521	0.103	1
H16G	-0.0657	0.2610	-0.3518	0.200	1
H16H	-0.0837	0.2182	-0.4153	0.200	1
H16I	-0.0053	0.2887	-0.3891	0.200	1
H16J	0.1716	0.2429	-0.3209	0.208	1
H16K	0.0996	0.2689	-0.2866	0.208	1
H16L	0.1273	0.3052	-0.3301	0.208	1
H166	0 2077	0 1167	-0 5188	0.082	0.5
H168	0.0814	0 2548	-0 4482	0.098	0.5
H169	0 1739	0.1877	-0 5575	0.123	0.5
H17A	0.0554	0.1662	-0 5893	0.185	0.5
H17B	0.0787	0.2424	-0 5941	0.185	0.5
H17C	0.0288	0.2424	-0 5479	0.185	0.5
H17X	0.0200	0.2201	-0.4916	0.105	0.5
H17Y	0.2000	0.2025	-0 5199	0.248	0.5
H177	0.2400	0.2482	-0 5564	0.248	0.5
H17D	0.2746	-0 1132	-0.3304	0.072	0.5
H17E	0.1308	0.1533	0.1207	0.072	1
H17E	0.1398	0.1555	0.0043	0.072	1
	0.1155	-0.0908	-0.0043	0.084	1
П170 Ц197	0.2190	0.1500	0.0231	0.034	1
L1102	0.0003	0.1300	-0.2103	0.070	1
П105 Ц194	-0.0103	0.2279	-0.1007	0.077	1
L195	-0.0190	0.2270	-0.0710	0.000	1
П105 Ц175	0.0373	0.1438 0.107(7)	-0.0391	0.077	1
П175 Ц117	0.203(3)	-0.107(7)	-0.032(3)	0.103	0.25
ПП/ ПП/	-0.1619	0.1081	-0.1193	0.098	0.23
ПП П110 П114	-0.2302	0.1422	-0.1822	0.105	0.75
11144 1120 A	0.3902	0.149/	0.0039	0.052	1
ПЭ0А 1120Р	0.7080	0.0394	-0.5258	0.147	0.00/
HOUR	0.8129	0.063/	-0.2969	0.14/	0.667
H40A	0.0426	0.345/	-0.1/00	0.235	0.5
H40B	0.9436	0.3/48	-0.1433	0.235	0.5
HOUA	0.2822	0.18/5	-0.4392	0.093	0.333
HOOR	0.3874	0.2324	-0.4216	0.093	0.333

 Table S6. Torsion angles [°] for cat112_0m_sq.

C7-C2-C3-C4	-1.6(14)	C20-C21-C27-C28	-100(2)
N1-C2-C3-C4	-176.4(9)	C22-C21-C27-C28	74(2)
C2-C3-C4-C5	1.7(14)	C22-C23-C30-C32	-46.6(18)
C2-C3-C4-C16	178.6(9)	C18-C23-C30-C32	131.2(13)
C3-C4-C5-C6	-0.9(17)	C22-C23-C30-C31	76.5(15)
C16-C4-C5-C6	-177.8(11)	C18-C23-C30-C31	-105.8(14)
C4-C5-C6-C7	-0.1(19)	C39-C34-C35-C36	-0.5(18)
C5-C6-C7-C2	0.3(19)	N33-C34-C35-C36	179.6(12)
C5-C6-C7-O8	176.6(11)	C34-C35-C36-C37	1(2)
C3-C2-C7-C6	0.6(17)	C34-C35-C36-C48	-179.5(15)
N1-C2-C7-C6	176.5(11)	C35-C36-C37-C38	-1(2)
C3-C2-C7-O8	-176.4(9)	C48-C36-C37-C38	179.5(15)
N1-C2-C7-O8	-0.5(11)	C36-C37-C38-C39	0.6(18)
N1-C9-C10-C15	-174.9(10)	C35-C34-C39-C38	0.1(16)
08-C9-C10-C15	8 6(17)	N33-C34-C39-C38	-180 0(9)
N1-C9-C10-C11	26(13)	C_{35} - C_{34} - C_{39} - O_{40}	179 7(10)
08-C9-C10-C11	-173 9(10)	N33-C34-C39-O40	-0 3(10)
$C_{15}-C_{10}-C_{11}-C_{12}$	-0.8(15)	$C_{37}C_{38}C_{39}C_{34}$	-0.1(16)
$C_{10} = C_{10} = C_{11} = C_{12}$	-178 4(9)	$C_{37}C_{38}C_{39}O_{40}$	-179 7(10)
$C_{15} = C_{10} = C_{11} = I_r I_r$	176.4(3)	N33-C41-C42-C47	-17/ 8(8)
$C_{10} C_{10} C_{11} I_{r1}$	0.8(11)	040 C41 C42 C47	-1/4.8(8)
$C_{10} C_{11} C_{12} C_{13}$	-0.8(11)	$N_{23} C_{41} C_{42} C_{43}$	0.0(13)
$L_{10} = C_{11} = C_{12} = C_{13}$	2.0(13) 174 6(9)	040 C41 C42 C43	2.1(11) 176 5(7)
111-011-012-013	-1/4.0(8)	C_{40} - C_{41} - C_{42} - C_{43}	-1/0.3(7)
C11-C12-C13-C14	-3.1(17)	C47-C42-C43-C44	-1.0(11)
$C_{12} C_{13} C_{14} C_{15}$	1./(1/)	C41-C42-C43-C44	-1/0.0(7)
C12 - C13 - C14 - C18	0.1(16)	C47-C42-C43-II1	1/3.4(0)
C13-C14-C15-C10	0.1(10)	C41-C42-C43-If1	-1.3(8)
	-1/6.2(10)		2.3(11)
CII-CI0-CI5-CI4	-0.5(16)	Ir1-C43-C44-C45	-1/4.4(6)
C9-C10-C15-C14	1/6./(10)	C43-C44-C45-C46	-0.9(13)
C3-C4-C16-O17	-7.6(13)	C44-C45-C46-C47	-1.2(12)
C5-C4-C16-O17	169.3(9)	C44-C45-C46-C50	173.5(8)
C15-C14-C18-C19	-104.1(16)	C45-C46-C47-C42	1.8(11)
C13-C14-C18-C19	79.7(18)	C50-C46-C47-C42	-172.8(7)
C15-C14-C18-C23	79.5(16)	C43-C42-C47-C46	-0.2(12)
C13-C14-C18-C23	-96.7(14)	C41-C42-C47-C46	176.3(7)
C23-C18-C19-C20	-3(2)	C37-C36-C48-O50	11(4)
C14-C18-C19-C20	-178.9(15)	C35-C36-C48-O50	-169(3)
C23-C18-C19-C24	-178.8(16)	C37-C36-C48-O49	-158(3)
C14-C18-C19-C24	5(3)	C35-C36-C48-O49	23(4)
C18-C19-C20-C21	1(3)	C47-C46-C50-C51	-100.5(10)
C24-C19-C20-C21	177.3(18)	C45-C46-C50-C51	85.0(10)
C19-C20-C21-C22	1(3)	C47-C46-C50-C55	82.2(10)
C19-C20-C21-C27	175.0(16)	C45-C46-C50-C55	-92.3(9)
C20-C21-C22-C23	-1(2)	C55-C50-C51-C52	3.6(13)
C27-C21-C22-C23	-175.1(13)	C46-C50-C51-C52	-173.7(8)
C21-C22-C23-C18	-0.4(19)	C55-C50-C51-C56	-173.4(9)
C21-C22-C23-C30	177.4(13)	C46-C50-C51-C56	9.4(13)
C19-C18-C23-C22	2(2)	C50-C51-C52-C53	-0.7(14)
C14-C18-C23-C22	178.7(12)	C56-C51-C52-C53	176.2(9)
C19-C18-C23-C30	-175.5(14)	C51-C52-C53-C54	-2.2(13)
C14-C18-C23-C30	0.9(19)	C51-C52-C53-C59	179.1(9)
C20-C19-C24-C25	-66(2)	C52-C53-C54-C55	2.3(12)
C18-C19-C24-C25	111(2)	C59-C53-C54-C55	-178.9(8)
C20-C19-C24-C26	53(3)	C53-C54-C55-C50	0.4(12)
C18-C19-C24-C26	-131(2)	C53-C54-C55-C62	-178.1(8)
C20-C21-C27-C29	129(2)	C51-C50-C55-C54	-3.5(12)
C22-C21-C27-C29	-57(2)	C46-C50-C55-C54	173.9(7)
	- · _/		

C51-C50-C55-C62	175.0(8)	C72-C73-N74-C75	-179.6(9)
C46-C50-C55-C62	-7.7(11)	C78-C73-N74-Ir1	167.9(8)
C50-C51-C56-C57	-92.8(12)	C72-C73-N74-Ir1	-10.1(11)
C52-C51-C56-C57	90.3(13)	N1-C9-O8-C7	-1.9(12)
C50-C51-C56-C58	141.0(10)	C10-C9-O8-C7	174.8(10)
C52-C51-C56-C58	-35.8(14)	C6-C7-O8-C9	-175.3(12)
C52-C53-C59-C61	66.6(12)	C2-C7-O8-C9	1.4(12)
C54-C53-C59-C61	-112.1(10)	N33-C41-O40-C39	1.3(9)
C52-C53-C59-C60	-59.6(12)	C42-C41-O40-C39	-180.0(8)
C54-C53-C59-C60	121.8(9)	C34-C39-O40-C41	-0.5(10)
C54-C55-C62-C64	-57.5(10)	C38-C39-O40-C41	179.1(10)
C50-C55-C62-C64	124.0(8)	N65-C72-O71-C70	-1.7(10)
C54-C55-C62-C63	67.1(10)	C73-C72-O71-C70	175.1(9)
C50-C55-C62-C63	-111.4(9)	C66-C70-O71-C72	1.6(10)
C70-C66-C67-N68	9.0(10)	C69-C70-O71-C72	172.9(12)
N65-C66-C67-N68	-174.8(10)	C107-C102-C103-C104	0.5(13)
N65-C66-C70-O71	-0.9(11)	N101-C102-C103-C104	-178.5(9)
C67-C66-C70-O71	176.6(7)	C102-C103-C104-C105	-0.5(13)
N65-C66-C70-C69	-174.5(8)	C102-C103-C104-C116	177.8(8)
C67-C66-C70-C69	3.0(12)	C103-C104-C105-C106	1.2(15)
N68-C69-C70-C66	-13.4(11)	C116-C104-C105-C106	-177.1(9)
N68-C69-C70-O71	175.4(11)	C104-C105-C106-C107	-1.7(15)
N65-C72-C73-N74	4.3(13)	C103-C102-C107-O108	-179.8(8)
O71-C72-C73-N74	-172.3(9)	N101-C102-C107-O108	-0.5(10)
N65-C72-C73-C78	-173.7(9)	C103-C102-C107-C106	-1.3(14)
O71-C72-C73-C78	9.7(15)	N101-C102-C107-C106	178.0(8)
N74-C75-C76-C77	0.1(18)	C105-C106-C107-O108	-179.9(9)
C75-C76-C77-C78	-1.4(18)	C105-C106-C107-C102	1.8(14)
N74-C73-C78-C77	0.4(16)	N101-C109-C110-C115	176.9(8)
C72-C73-C78-C77	178.2(10)	O108-C109-C110-C115	-4.9(14)
C76-C77-C78-C73	1.2(16)	N101-C109-C110-C111	-0.8(11)
08-C9-N1-C2	1.6(11)	O108-C109-C110-C111	177.5(8)
C10-C9-N1-C2	-175.3(9)	C115-C110-C111-C112	0.8(12)
O8-C9-N1-Ir1	173.9(6)	C109-C110-C111-C112	178.4(7)
C10-C9-N1-Ir1	-3.0(12)	C115-C110-C111-Ir2	-175.4(7)
C7-C2-N1-C9	-0.7(11)	C109-C110-C111-Ir2	2.3(9)
C3-C2-N1-C9	174.6(10)	C110-C111-C112-C113	-1.0(12)
C7-C2-N1-Ir1	-169.3(8)	Ir2-C111-C112-C113	174.5(6)
C3-C2-N1-Ir1	6.0(18)	C111-C112-C113-C114	-0.2(13)
O40-C41-N33-C34	-1.5(10)	C112-C113-C114-C115	1.6(13)
C42-C41-N33-C34	179.7(7)	C112-C113-C114-C119	-173.2(8)
O40-C41-N33-Ir1	177.2(5)	C113-C114-C115-C110	-1.8(13)
C42-C41-N33-Ir1	-1.6(9)	C119-C114-C115-C110	172.8(8)
C35-C34-N33-C41	-1/9.0(12)	CIII-CII0-CII5-CII4	0.7(13)
C39-C34-N33-C41	1.1(10)	C109-C110-C115-C114	-1/6.6(8)
C35-C34-N33-Ir1	2.9(19)	C105-C104-C116-O118	-121./(10)
C39-C34-N33-Ir1	-1//.1(/)	C103-C104-C116-O118	60.0(12)
0/1-C/2-N65-C66	1.2(10)	C105-C104-C116-O117	121.6(17)
C/3-C/2-N65-C66	-1/5.8(8)	C103-C104-C116-O117	-56./(18)
0/1-C/2-N05-If1	-1/9.3(6)	C113-C114-C119-C124	100.1(12)
C73-C72-N05-IF1	3.8(11)	C115-C114-C119-C124	-85.3(12)
C_{10} -C00-IN03-C/2 C67 C66 N65 C72	-U.1(1U) 176 5(11)	C113-C114-C119-C120 C112 C114 C110 C120	$-\delta 2.3(11)$
CU/-CUU-INUJ-C/2 C70 C66 N65 I+1	-1/0.3(11) 170 $A(7)$	C113-C114-C119-C120 C124 C110 C120 C121	92.3(11)
C / U-CUU-INUJ-II I C 67 C 66 N 65 I+1	-1/7.4(/) / 7(18)	C124-C119-C120-C121 C114 C110 C120 C121	2.0(14)
C66 C67 N68 C60	4.2(10) 17 5(0)	C124 $C120$ $C121C124$ $C120$ $C121$	-1/4.0(9) 175 2(10)
C70_C69_N68_C67	-17.3(9) 10 0(10)	C114-C110 C120-C121	-1/3.3(10) 7 1(12)
C76-C75-N74.C73	1 3(16)	$C119_C120_C121 C122$	/.1(13) 0.8(16)
C76-C75-N74-Ir1	-166 8(0)	C131_C120_C121_C122	178 Q(10)
C78-C73-N74-C75	-1 6(16)	C120-C121-C122-C122	_3 7(18)
010 013 111-013	-1.0(10)	C120 $C121$ $C122$ - $C123$	-5.7(10)

C120-C121-C122-C128	177.1(11)	C149-C151-C152-C157	-5(2)
C121-C122-C123-C124	3.1(19)	C156-C151-C152-C166	19(2)
C128-C122-C123-C124	-177.6(12)	C149-C151-C152-C166	-163.1(14)
C120-C119-C124-C123	-3.2(16)	C151-C152-C153-C154	19(3)
C114-C119-C124-C123	174.3(10)	C157-C152-C153-C154	179.3(18)
C120-C119-C124-C125	174.9(11)	C166-C152-C153-C154	-72(3)
C114-C119-C124-C125	-7.6(16)	C152-C153-C154-C155	-13(3)
C122-C123-C124-C119	0.3(18)	C152-C153-C154-C160	175.4(18)
C122-C123-C124-C125	-177.8(13)	C153-C154-C155-C156	13(4)
C119-C124-C125-C126	101.5(16)	C160-C154-C155-C156	-176(2)
C123-C124-C125-C126	-80.5(17)	C154-C155-C156-C151	-16(3)
C119-C124-C125-C127	-131.6(15)	C154-C155-C156-C163	-176(2)
C123-C124-C125-C127	46(2)	C154-C155-C156-C168	87(4)
C121-C122-C128-C129	-107.8(17)	C152-C151-C156-C155	22(2)
C123-C122-C128-C129	73.0(17)	C149-C151-C156-C155	-155.7(16)
C121-C122-C128-C130	117.5(16)	C152-C151-C156-C163	-178.5(15)
C123-C122-C128-C130	-61.7(19)	C149-C151-C156-C163	4(2)
C121-C120-C131-C133	56.2(13)	C152-C151-C156-C168	-20(2)
C119-C120-C131-C133	-125.7(10)	C149-C151-C156-C168	162.8(17)
C121-C120-C131-C132	-68.3(12)	C151-C152-C157-C158	116.6(18)
C119-C120-C131-C132	109.8(11)	C153-C152-C157-C158	-43(2)
C140-C135-C136-C137	-1.9(10)	C166-C152-C157-C158	-86(2)
N134-C135-C136-C137	178.6(7)	C151-C152-C157-C159	-120.9(17)
C135-C136-C137-C138	0.4(10)	C153-C152-C157-C159	80(2)
C135-C136-C137-C143	179.7(7)	C166-C152-C157-C159	36.5(19)
C136-C137-C138-C139	0.8(11)	C155-C154-C160-C161	125(3)
C143-C137-C138-C139	-178.6(7)	C153-C154-C160-C161	-63(3)
C137-C138-C139-C140	-0.3(11)	C155-C154-C160-C162	-65(3)
C138-C139-C140-O141	-179.8(7)	C153-C154-C160-C162	107(3)
C138-C139-C140-C135	-1.4(11)	C155-C156-C163-C164	1(3)
C136-C135-C140-C139	2.6(11)	C151-C156-C163-C164	-157.4(16)
N134-C135-C140-C139	-177.9(7)	C168-C156-C163-C164	44(3)
C136-C135-C140-O141	-178.7(6)	C155-C156-C163-C165	-120(2)
N134-C135-C140-O141	0.9(8)	C151-C156-C163-C165	81.8(17)
C136-C137-C143-O144	-159.6(7)	C168-C156-C163-C165	-77(2)
C138-C137-C143-O144	19.8(10)	C151-C152-C166-C167	-15(3)
N134-C142-C145-C150	175.2(8)	C153-C152-C166-C167	95(3)
O141-C142-C145-C150	-7.8(13)	C157-C152-C166-C167	-174(2)
N134-C142-C145-C146	-3.8(11)	C152-C166-C167-C168	10(4)
O141-C142-C145-C146	173.1(7)	C152-C166-C167-C169	-178(2)
C150-C145-C146-C147	0.8(12)	C166-C167-C168-C156	-10(5)
C142-C145-C146-C147	179.8(7)	C169-C167-C168-C156	178(2)
C150-C145-C146-Ir2	-176.3(7)	C155-C156-C168-C167	-81(4)
C142-C145-C146-Ir2	2.7(9)	C151-C156-C168-C167	14(4)
C145-C146-C147-C148	-0.8(12)	C163-C156-C168-C167	174(3)
Ir2-C146-C147-C148	175.8(7)	C168-C167-C169-C170	-78(4)
C146-C147-C148-C149	0.8(15)	C166-C167-C169-C170	110(3)
C147-C148-C149-C150	-0.6(15)	C168-C167-C169-C171	101(4)
C147-C148-C149-C151	-179.0(9)	C166-C167-C169-C171	-71(5)
C148-C149-C150-C145	0.5(13)	C177-C173-C174-N175	-8.7(11)
C151-C149-C150-C145	178.9(9)	N172-C173-C174-N175	179.3(12)
C146-C145-C150-C149	-0.6(13)	N172-C173-C177-O178	1.5(11)
C142-C145-C150-C149	-179.6(8)	C174-C173-C177-O178	-173.3(8)
C148-C149-C151-C152	-104.7(14)	N1/2-C1/3-C1//-C1/6	174.6(8)
C150-C149-C151-C152	77.0(15)	C1/4-C1/3-C1//-C1/6	-0.2(12)
C148-C149-C151-C156	73.0(15)	N1/5-C1/6-C17/-C1/3	8.9(12)
C150-C149-C151-C156	-105.3(14)	N175-C176-C177-O178	179.3(11)
C156-C151-C152-C153	-25(3)	N172-C179-C180-N181	-6.6(12)
C149-C151-C152-C153	153.0(18)	01/8-C1/9-C180-N181	1/4./(8)
C156-C151-C152-C157	177.4(15)	N1/2-C1/9-C180-C185	174.4(9)

O178-C179-C180-C185	-4.3(15)
N181-C182-C183-C184	4.7(17)
C182-C183-C184-C185	-1.6(18)
N181-C180-C185-C184	2.1(16)
C179-C180-C185-C184	-178.9(10)
C183-C184-C185-C180	-1.7(17)
O108-C109-N101-C102	1.4(10)
C110-C109-N101-C102	179.8(7)
O108-C109-N101-Ir2	-179.5(5)
C110-C109-N101-Ir2	-1.1(10)
C103-C102-N101-C109	178.7(10)
C107-C102-N101-C109	-0.5(9)
C103-C102-N101-Ir2	0.0(16)
C107-C102-N101-Ir2	-179.2(7)
O141-C142-N134-C135	0.0(9)
C145-C142-N134-C135	177.3(7)
O141-C142-N134-Ir2	-174.2(5)
C145-C142-N134-Ir2	3.0(9)
C136-C135-N134-C142	178.9(8)
C140-C135-N134-C142	-0.6(8)
C136-C135-N134-Ir2	-9.4(14)
C140-C135-N134-Ir2	171.1(6)
O178-C179-N172-C173	-1.7(10)
C180-C179-N172-C173	179.4(8)
O178-C179-N172-Ir2	178.9(5)
C180-C179-N172-Ir2	0.0(10)
C177-C173-N172-C179	0.1(10)
C174-C173-N172-C179	172.3(12)
C177-C173-N172-Ir2	179.2(7)
C174-C173-N172-Ir2	-9(2)
C177-C176-N175-C174	-14.1(12)
C173-C174-N175-C176	14.3(12)
C185-C180-N181-C182	0.8(13)
C179-C180-N181-C182	-178.2(8)
C185-C180-N181-Ir2	-171.3(7)
C179-C180-N181-Ir2	9.6(9)
C183-C182-N181-C180	-4.3(15)
C183-C182-N181-Ir2	167.0(8)
N101-C109-O108-C107	-1.7(9)
C110-C109-O108-C107	180.0(8)
C102-C107-O108-C109	1.3(9)
C106-C107-O108-C109	-177.2(9)
N134-C142-O141-C140	0.5(8)
C145-C142-O141-C140	-176.5(7)
C139-C140-O141-C142	177.8(8)
C135-C140-O141-C142	-0.9(8)
C173-C177-O178-C179	-2.4(10)
C176-C177-O178-C179	-173.1(12)
N172-C179-O178-C177	2.6(9)
C180-C179-O178-C177	-178.6(8

Table S7. Hydrogen bonds for cat112_0m_sq [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N68-H68O17	0.781(10)	2.64(6)	3.327(10)	148(11)
N68-H68I17	0.781(10)	3.29(9)	3.859(12)	132(10)
O17-H17I17	0.84	2.96	3.467(11)	121.0
O17-H17O400	0.84	1.96	2.778(14)	164.4
N175-H175O144#1	0.783(10)	2.18(5)	2.939(11)	162(15)
O117-H117I17#2	0.84	3.33	3.59(3)	101.3
O117-H117I18#2	0.84	3.12	3.38(3)	101.1
O118-H118I18#2	0.84	2.66	3.382(11)	145.1
O144-H144N68	0.84	1.96	2.780(9)	165.2

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y,-z #2 x-1,y,z

8. Investigation of an Analogous Thiazole Iridium Catalyst

Scheme S8. Synthesis of the thiazole ligand S8.

Compound S6

The compound $\mathbf{S5}^{S11}$ (0.500 g, 1.57 mmol) and pyridine-2-carbothioamide (0.22 g, 1.57 mmol) were dissolved in DMF (5.0 mL). The mixture was stirred at 60 °C for 6 h, then cooled to room temperature. The solvent was concentrated under a reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: hexane/EtOAc = 2:1) to give compound **S6** (0.421g, 71%) as a white solid.

¹H NMR (300 MHz, DMSO) δ 8.70–8.64 (m, 1H), 8.03 (dt, J = 7.9, 1.3 Hz, 1H), 8.00-7.93 (m, 1H), 7.66 (d, J = 8.1 Hz, 2H), 7.63–7.57 (m, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.02 (s, 1H), 3.93 (dd, J = 7.4, 3.9 Hz, 1H), 3.55 (dd, J = 10.8, 7.5 Hz, 1H), 3.49 (d, J = 10.3 Hz, 1H), 3.22 (dd, J = 10.8, 3.9 Hz, 1H), 3.14 (d, J = 10.1 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (75 MHz, DMSO) δ 169.2, 149.4, 143.9, 137.3, 130.9, 129.8, 127.8, 126.6, 121.7, 117.0, 116.9, 59.5, 56.3, 53.9, 21.0.

IR (film) v_{max} : 3673, 3406, 3098, 3057, 2924, 2874, 1660 1516, 1498,1465,1337, 1298, 1156, 1071, 1031, 1002, 798, 711, 623, 591, 540, 504 cm⁻¹.

To a solution of **S6** (0.420 g, 1.12 mmol) in CH₂Cl₂ (4.0 mL) at 0 °C was added MsCl (0.17 mL, 2.24 mmol), and then Et₃N (1.30 mL, 9.30 mmol) was gradually added at the same temperature. After being stirred at room temperature for 2 h, water (1.0 mL) was added, and the mixture was extracted with CH₂Cl₂ (4 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (eluent: hexane/EtOAc = 1:1) to afford compound **S7** (0.360 g, 90%) as a white solid.

¹H NMR (300 MHz, DMSO-d₆) δ 8.59 (d, J = 4.5 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.97–7.88 (m, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.50–7.45 (m, 1H), 7.43 (d, J = 8.1 Hz, 2H), 4.70–4.62 (m, 2H), 4.59–4.51 (m, 2H), 2.36 (s, 3H).

¹³C NMR (75 MHz, DMSO-d₆) δ 173.8, 155.4, 150.1, 150.0, 144.0, 137.8, 133.2, 130.4, 130.1, 127.4, 125.4, 118.9, 50.2, 49.5, 20.9.

IR (film) v_{max} : 3055, 2945, 2863, 1584, 1533, 1336, 1153, 1095, 1035, 855, 713, 672, 599, 538 cm⁻¹.

2-(Pyridin-2-yl)-5,6-dihydro-4*H*-pyrrolo[3,4-*d*]thiazole hydrobromide (S8)

To a solution of **S7** (0.300 g, 0.84 mmol) in HBr (48%, 3mL) was added thiophenol (0.26 mL, 2.52 mmol). After being stirred at 100 °C for 1 h, the mixture was cooled to room temperature and concentrated under a reduced pressure. To the residue, 1 mL of water and 2 mL of ether were added and the mixture was stirred for 0.5 h. The organic layer was separated, and the water layer was concentrated under a reduced pressure. MeCN (10 mL) was added, and the formed solid was filtered, and washed with MeCN (5 mL \times 2) to give **S8** (0.180 g, 76%) as a yellow solid.

¹H NMR (300 MHz, DMSO-d₆) δ 10.00 (br s, 1H), 8.64 (d, J = 4.8 Hz, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.93 (td, J = 7.6, 1.7 Hz, 1H), 7.57–7.48 (m, 1H), 7.35 (br s, 1H), 4.69–4.57 (m, 2H), 4.53–4.42 (m, 2H).

¹³C NMR (75 MHz, DMSO-d₆) δ 175.3, 155.3, 150.0, 149.8, 138.0, 130.4, 125.7, 119.1, 47.3, 45.9.

IR (film) v_{max} : 3374, 3069, 2934, 2706, 1606, 1516, 1449, 1363, 1296, 1155, 979, 885, 780, 604, 542 cm⁻¹.

HRMS (ESI, m/z) calcd for C₁₀H₁₀N₃S₁ [M+H]⁺: 204.0590, found: 204.0592.

Scheme S9. Synthesis of the analogous thiazole iridium catalyst Λ -Ir6.

Preparation of an analogous thiazole iridium catalyst A-Ir6. A suspension of the iridium auxiliary complex Λ -(*S*)-**7d** (127.3 mg, 0.10 mmol), ligand **S8** (56.6 mg, 0.20 mmol), and NH₄PF₆ (815.0 mg, 0.50 mmol) in acetonitrile (10 mL) was stirred at 60 °C for 12 h under argon in the dark. Then, the reaction mixture was concentrated to dryness and subjected to a flash silica gel chromatography (eluent: MeOH/CH₂Cl₂ = 1:30) to give the pure yellow solid as a hexafluorophosphate salt (103.0 mg, 0.074 mmol, yield: 74%). The product was directly suspended in CH₂Cl₂. Sodium tetrakis[(3,5-di-trifluoromethyl)phenyl]borate (NaBArF₂₄) (62.3 mg, 0.070 mmol) was added in one portion and the mixture was stirred at room temperature for 10 min. After removal of the CH₂Cl₂ in vacuo, the residue was taken up in Et₂O (about 2.0 mL) twice and centrifuged. The combined organic layers were dried and concentrated in vacuo to give the pure product Λ -**Ir6** (140.6 mg, yield: 90%) as an organge solid.

¹H NMR (300 MHz, CD₂Cl₂) δ 8.37 (d, J = 5.4 Hz, 1H), 8.17 (m, 2H), 7.76 (m, 10H), 7.62 (dd, J = 8.5, 4.0 Hz, 2H), 7.58 (dd, J = 5.6, 2.1 Hz, 1H), 7.54 (s, 4H), 7.33 (dd, J = 8.7, 1.6 Hz, 1H), 7.27 (dd, J = 8.7, 1.5 Hz, 1H), 7.15–7.04 (m, 4H), 6.92 (dd, J = 7.8, 1.8 Hz, 1H), 6.86 (dd, J = 7.8, 1.8 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.64 (d, J = 7.8 Hz, 1H), 6.20 (d, J = 0.8 Hz, 1H), 5.88 (d, J = 0.8 Hz, 1H), 4.73 (d, J = 14.0 Hz, 1H), 4.65 (d, J = 14.0 Hz, 1H), 4.59 (d, J = 13.7 Hz, 1H), 4.54 (d, J = 13.7 Hz, 1H), 4.45 (dt, J = 15.5, 2.8 Hz, 1H), 4.29 (dt, J = 15.6, 2.6 Hz, 1H), 3.75 (dt, J = 14.9, 2.8 Hz, 1H), 3.12 (dt, J = 14.7, 2.9 Hz, 1H), 2.93 (hept, J = 6.5 Hz, 1H), 2.84–2.68 (m, 2H), 2.62–2.46 (m, 2H), 2.25 (br s, 3H), 1.31–1.26 (m, 12H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 14.0 Hz, 1H), 1.20–1.12 (m, 9H), 1.08 (d, J = 6.9 Hz, 3H), 1.07 (d, J = 0.9 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz, 1.9 Hz, 1.9

J = 6.9 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CD₂Cl₂) δ 178.2, 178.1, 173.0, 164.6, 163.1, 162.5, 161.8, 161.2, 153.6, 153.0, 149.8, 149.7, 149.1, 149.0, 147.3, 147.2, 146.9, 146.8, 145.3, 142.7, 141.6, 141.3, 140.8, 140.2, 138.1, 138.0, 136.4, 136.4, 135.7, 135.26, 135.24, 135.1, 133.6, 133.1, 130.4, 129.7, 129.58, 129.54, 129.50, 129.4, 129.3, 129.16, 129.12, 129.08, 129.04, 128.29, 128.26, 128.0, 126.8, 124.7, 124.3, 123.5, 123.2, 121.1, 121.0, 120.8, 118.0, 117.96, 117.91, 117.86, 117.80, 112.5, 112.3, 111.6, 64.2, 64.0, 54.2, 53.8, 53.4, 48.7, 47.7, 34.8, 31.0, 30.9, 30.8, 30.7, 24.4, 24.3, 24.2.

IR (film) v_{max} : 3361, 3042, 2960, 2871, 1604, 1516, 1449, 1354, 1274, 1122, 1039, 885, 780, 673, 600 cm⁻¹.

HRMS (ESI, m/z) calcd for C₆₈H₇₃IrN₅O₄S₁ [M–BArF₂₄]⁺: 1248.5020, found: 1248.5012. CD (MeOH): λ , nm ($\Delta \varepsilon$, M⁻¹cm⁻¹) 416 (–11), 362 (+42), 339 (+46), 272 (–23), 241 (–26).

Iridium-Catalyzed Model Reaction with Catalyst Λ -Ir6.

Scheme S10. The aymmetric α -amination of aldehydes 1a with A-Ir6.

Azodicarboxylate **2a** (60.0 mg, 0.20 mmol) and A-**Ir6** (1 mol%) were mixed in a brown glass vial in anhydrous toluene (200.0 µL, 1.0 M), followed by the addition of 3,3-dimethylbutyraldehyde **1a** (37.6 µL, 0.30 mmol) at 0 °C. While being stirred at room temperature under argon atmosphere for 12 h, the addition product precipitated. MeOH (200.0 µL) was added followed by a careful addition of NaBH₄ (10.0 mg, 0.26 mmol) at 0 °C. After 15 min, NaOH (0.5 M, 0.52 mL) was added and after an additional 2 h, the mixtures were diluted with water. The aqueous phase was extracted with EtOAc (4 × 2 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc:hexane = 1:4→1:1) to provide **3a** (54.8 mg, yield: 94%) as a white solid. Enantiomeric excess established by HPLC analysis using a Daicel Chiralpak IC column, ee = 98% (HPLC: IC, 254 nm, 40 °C, hexane/ isopropanol = 70/ 30, flow rate 0.5 mL/ min, t_r(minor)= 14.8 min, t_r(major) = 33.8 min); $[\alpha]_D^{20}$ –10.3 (*c* 1.0, CHCl₃).

Figure S36. HPLC traces of *rac*-**3a** and (*S*)-**3a** (Λ -**Ir6** catalyzed reaction). Area integration = 98.8:1.1 (98% ee, Daicel Chiralpak IC, hexane/isopropanol = 70:30, flow rate = 0.5 mL/min).

Figure S37. ¹H-NMR and ¹³C-NMR spectrum of Λ -**Ir6**.

Figure S38. CD spectrum of catalyst Λ -Ir6 recorded in CH₃OH (0.2 mM).

9. References

(S1) G. Mercey, D. Bregeon, A.-C. Gaumont, J. Levillain, M. Gulea, *Tetrahedron Lett.* **2008**, *49*, 6553.

(S2) L.-A. Chen, W. Xu, B. Huang, J. Ma,; L. Wang, J. Xi, K. Harms, L. Gong, E. Meggers, *J. Am. Chem. Soc.* **2013**, *135*, 10598.

(S3) S. Ueda, H. Nagasawa, J. Org. Chem. 2009, 74, 4272.

(S4) Y. X. Chen, L. F. Qian, W. Zhang, B. Han, Angew. Chem. Int. Ed. 2008, 47, 9330.

(S5) N. Negoro, S. Sasaki, M. Ito, S. Kitamura, Y. Tsujihata, R. Ito, M. Suzuki, K. Takeuchi, N. Suzuki, J. Miyazaki, T. Santou, T. Odani, N. Kanzaki, M. Funami, T. Tanaka, T. Yasuma, Y. Momose, *J. Med. Chem.* **2012**, *55*, 1538.

(S6) T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 4685.

(S7) D. F. Burdi, R. Hunt, L. Fan, T. Hu, J. Wang, Z. Guo, Z. Huang, C. Wu, L. Hardy, M. Detheux, M. A. Orsini, M. S. Quinton, R. Lew, K. Spear, *J. Med. Chem.* 2010, 53, 7107.

(S8) M. Helms, Z. Lin, L. Gong, K. Harms, E. Meggers, Eur. J. Inorg. Chem. 2013, 4164.

(S9) G. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767.

(S10) L. Gong, M. Wenzel, E. Meggers, Acc. Chem. Res. 2013, 46, 2635-2644.

(S11) F. Denonne, S. Celanire, B. Christophe, S. Defays, C. Delaunoy, M. L. Delporte, E. Detrait, V. Durieu, M. Gillard, Y. Lamberty, G. Lorent, J. M. Nicolas, A. Vanbellinghen, N. Van Houtvin, L. Provins, *ChemMedChem* 2011, 6, 1559.

(S12) J. S. Yadav, S. Aravind, G. M. Kumar, B. V. S. Reddy, Tetrahedron Lett. 2012, 53, 6163.

(S13) (a) A. Bogevig, K. Juhl, N. Kumaragurubaran, W. Zhuang, K. A. Jørgensen, *Angew. Chem. Int. Ed.* 2002, *41*, 1790. (b) T. B. Poulsen, C. Alemparte, K. A. Jørgensen, *J. Am. Chem. Soc.* 2005, *127*, 11614.