Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Chemical Communications

Hemicarceplex Formation Allows Ready Identification of the Isomers of the Metallofullerene Sc₃N@C₈₀ Using ¹H and ¹³C NMR Spectroscopy

Min-Yan Gu, Shou-Ling Huang, Shing-Jong Huang, Yi-Hung Liu, Chien-Chen Lai, Shie-Ming Peng and Sheng-Hsien Chiu*

Supplementary Material

Page Number

Syntheses of All New Compounds	\$2_\$4
Syntheses of An Ivew Compounds	02-04
¹ H and ¹³ C NMR Spectra of Compounds 4–6	S5–S10
¹ H and ¹³ C NMR Spectra of the Hemicarceplex C_{60} @2	S11–S12
¹ H and ¹³ C NMR Spectra of $C_{60}@[3]Cl_6$. S13–S14

Bis(4-bromobutyl) Succinate (4). A solution of succinic acid (1.88 g, 15.9 mmol), 4bromobutan-1-ol (5.00 g, 32.7 mmol), and *p*-toluenesulfonic acid (33 mg, 0.18 mmol) in toluene (53 mL) was heated under reflux in a Dean–Stark apparatus for 16 h. After cooling to room temperature, the mixture was neutralized with saturated NaHCO_{3(aq)} and then the solvents were evaporated under reduced pressure. The residue was partitioned between H₂O (50 mL) and CH₂Cl₂ (2 × 30 mL) and then the combined organic phases were dried (MgSO₄), concentrated, and purified (SiO₂; CH₂Cl₂/hexane, 2:1) to afford a yellow oil (5.83 g, 94%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta = 1.75-1.82$ (m, 4H), 1.89–1.96 (m, 4H), 2.61 (s, 4H), 3.42 (t, *J* = 6.8 Hz, 4H), 4.11 (t, *J* = 6.4 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 27.2$, 29.0, 29.2, 33.0, 63.7, 172.2; HR-MS (ESI): calcd for C₁₂H₂₁O₄Br₂⁺ [M + H]⁺, *m*/z 386.9807; found, *m*/z 386.9806.

Macrocycle 5. A mixture of the alcohol **3** (7.25 g, 16.3 mmol), the dibromide **4** (6.33 g, 16.3 mmol), and K₂CO₃ (13.5 g, 97.8 mmol) in DMF (1630 mL) was stirred at 50 °C for 7 days and then the solvent was evaporated under reduced pressure. The residue was partitioned between H₂O (700 mL) and CH₂Cl₂ (3 × 300 mL) and then the combined organic phases were dried (MgSO₄), concentrated, and purified (SiO₂; CH₃OH/CH₂Cl₂, 1:99) to afford a white solid (4.03 g, 37%). Mp: 125–127 °C; ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta = 1.21-1.41$ (m, 12H), 1.42–1.55 (m, 4H), 1.56–2.00 (m, 12H), 2.60 (s, 4H), 3.40–4.06 (m, 8H), 4.18–4.21 (m, 4H), 4.58 (s, 2H), 6.81–6.93 (m, 4H), 7.35 (d, *J* = 1.6 Hz, 1H), 7.40 (dd, *J* = 8.4, 1.8 Hz, 1H), 9.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 26.2$, 26.3, 29.2, 29.2, 29.4, 29.5, 29.5, 29.6, 29.6, 64.6, 64.7, 65.3, 68.7, 68.7, 69.0, 69.2, 110.9, 111.5, 113.1, 113.5, 119.8, 126.8, 129.6, 133.5, 148.7, 148.8, 149.0, 154.6, 171.9, 172.0, 190.7; HR-MS (ESI): calcd for C₃₈H₅₄O₁₀Na⁺ [M + Na]⁺, *m/z* 693.3615; found, *m/z* 693.3625.

Trialdehyde 6. Sc(OTf)₃ (0.40 g, 0.81 mmol) was added to a solution of the macrocycle **5** (10.9 g, 16.2 mmol) in CH₃NO₂ (71 mL) and CHCl₃ (91 mL) and then the mixture was stirred at 60 °C for 16 h. After cooling to room temperature, the organic solvents were evaporated under reduced pressure and the residue partitioned between H₂O (200 mL) and CH₂Cl₂ (2 × 150 mL). The combined organic phases were dried (MgSO₄), concentrated, and purified (SiO₂; acetone/CH₂Cl₂, 5:95) to afford a light-yellow oil (3.38 g, 32%). ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta = 1.16-1.52$ (m, 38H), 1.67–1.94 (m, 42H), 2.56 (s, 12H), 3.46 (d, *J* = 13.6 Hz, 3H), 3.78–4.00 (m, 12H),

4.00–4.09 (m, 12H), 4.09–4.24 (m, 12H), 4.67 (d, J = 13.6, 3H), 6.79 (s, 3H), 6.80 (s, 3H), 6.91 (d, J = 8.0 Hz, 3H), 7.35 (d, J = 1.6 Hz, 3H), 7.39 (dd, J = 8.2, 1.8 Hz, 3H), 9.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 298 K): $\delta = 25.6, 25.7, 26.0, 26.1, 29.0, 29.2, 29.3, 29.3, 29.4, 29.4, 29.5, 36.3, 64.5, 68.5, 68.9, 69.2, 69.3 (four aliphatic signals missing, possibly because of signal overlap), 110.8, 111.5, 115.6, 116.4, 126.9, 130.0, 132.0, 132.5, 147.5, 148.0, 149.1, 154.7, 172.1, 190.8; HR-MS (ESI): calcd for C₁₁₄H₁₅₆O₂₇Na⁺ [M + Na]⁺,$ *m/z*1980.0732; found,*m/z*1980.0764.

Host 2: NaBH₄ (82 mg, 2.22 mmol) was added to a solution of the trialdehyde 6 (1.45 g, 0.74 mmol) in MeOH (25 mL) and CH₂Cl₂ (50 mL) at -15 °C and then the mixture was stirred at that temperature for 2.5 h. After evaporating the solvent under reduced pressure, the residue was partitioned between H₂O (100 mL) and CH₂Cl₂ (2×75 mL). The combined organic phases were dried (MgSO₄), concentrated, and purified (SiO₂; acetone/CH₂Cl₂, 2:8) to afford the desired triol as a white solid, which was dissolved in CHCl₃ (40 mL) and added to a solution of trifluoroacetic acid (5%, 43 mL) in CHCl₃ (410 mL) and CH₃NO₂ (440 mL) at 0 °C. The mixture was slowly warmed to room temperature, stirred for 48 h, and then poured into an aqueous solution of Na₂CO₃ (2.0 M, 300 mL). The separated organic phase was washed with H₂O (500 mL), dried (MgSO₄), and concentrated. The residue was purified (SiO₂; EtOAc/hexane, 4:6) to afford a white solid (0.25 g, 18%). Mp: 217–218 °C; ¹H NMR (400 MHz, CDCl₃, 298 K): $\delta = 1.13-1.45$ (m, 42H), 1.59–1.89 (m, 42H), 2.56 (s, 12H), 3.45 (d, J = 13.6 Hz, 6H), 3.75–3.91 (m, 12H), 3.91-4.05 (m, 12H), 4.06-4.21 (br, 12H), 4.67 (d, J = 14.0, 6H), 6.78 (s, 6H), 6.79 (s, 6H); ^{13}C NMR (100 MHz, CDCl₃, 298 K): δ = 25.7, 26.1, 26.1, 29.2, 29.5, 29.7, 29.7, 29.8, 36.4, 64.4, 69.0, 69.4, 115.9, 116.1, 132.2, 132.5, 147.7, 147.9, 172.0; HR-MS (ESI): calcd for $C_{114}H_{156}NaO_{24}^{+}$ [M + Na]⁺, m/z 1932.0884; found, m/z 1931.9346.

(Sc₃N@C₈₀)@1 (Solvent-Free Synthesis). A solid mixture of 1 (20.4 mg, 11.8 μ mol) and Sc₃N@C₈₀ (5.00 mg, 4.51 μ mol) was ball-milled at room temperature for 30 min and then the resulting solid was heated at 250 °C under Ar for 16 h. The resulting solid was purified chromatographically (SiO₂; CS₂ then CH₂Cl₂/hexane, 1:1) to afford a black solid (4.4 mg, 34%). Mp: >300 °C; ¹H NMR (800 MHz, CDCl₃, 298 K): $\delta = 1.20-1.47$ (m, 84H, $I_h + D_{5h}$), 1.59–1.67 (m, 12H, $I_h + D_{5h}$), 1.68–1.76 (m, 12H, $I_h + D_{5h}$), 1.77–1.87 (m, 12H, $I_h + D_{5h}$), 3.46 (d, J = 13.6 Hz, 1.08H, D_{5h}), 3.49 (d, J = 14.4 Hz, 4.92H, I_h), 3.72–3.81 (m, 12H, $I_h + D_{5h}$), 3.98–4.07 (m, 12H, $I_h + D_{5h}$), 4.70 (d, J = 13.6 Hz, 1.08H, D_{5h}), 4.73 (d, J = 14.4 Hz, 4.92H, I_h), 6.73 (s, 2.16H,

 D_{5h}), 6.75 (s, 9.84H, I_h); HR-MS (ESI): calcd for C₁₉₄H₁₆₉NO₁₂Sc₃⁺ [M + H]⁺, m/z 2839.1322; found, m/z 2839.1317.

 $(Sc_3N@C_{80})@2$ (Synthesis in Solution). A solution of the host 2 (11.6 mg, 6.07 μ mol) and $Sc_3N@C_{80}$ (11.6 mg, 10.5 μ mol) in CHCl₂CHCl₂ (2 mL) was stirred at 50 °C for 50 h and then the organic solvent was evaporated under reduced pressure. The residue was purified chromatographically (SiO₂; CS₂ then EtOAc/hexane, 3:7) to afford a black solid (3.0 mg, 16%).

 $(Sc_3N@C_{80})@2$ (Solvent-Free Synthesis). A solution of Sc_3N@C_{80} (5.20 mg, 4.69 μ mol) in CS_2 (2 mL) was added to a solution of the host 2 (20.1 mg, 10.5 μ mol) in CH₂Cl₂ (2 mL) and then the mixture was concentrated under reduced pressure. The resulting solid was heated under vacuum at 180 °C for 12 h and then purified chromatographically (SiO₂; CS₂ then EtOAc/hexane, 3:7) to afford a black solid (3.9 mg, 28%). Mp: >300 °C; ¹H NMR (800 MHz, CDCl₃, 298 K): δ = 1.20-1.42 (m, 42H, $I_h + D_{5h}$), 1.51-1.58 (m, 6H, $I_h + D_{5h}$), 1.67-1.74 (m, 6H, $I_h + D_{5h}$), 1.77-1.741.87 (m, 24H, $I_h + D_{5h}$), 1.87–1.96 (m, 6H, $I_h + D_{5h}$), 2.57–2.66 (m, 12H, $I_h + D_{5h}$), 3.47 (d, J =14.4 Hz, 1.20H, D_{5h}), 3.49 (d, J = 13.6 Hz, 4.80H, I_h), 3.72–3.78 (m, 6H), 3.85–3.90 (m, 6H), 3.95-4.03 (m, 12H), 4.22-4.29 (m, 6H), 4.29-4.35 (m, 6H), 4.71 (d, J = 14.4 Hz, 1.20H, D_{5h}), 4.74 (d, J = 13.6 Hz, 4.80H, I_h), 6.72 (s, 1.20H, D_{5h}), 6.72 (s, 1.20H, D_{5h}) 6.74 (s, 9.60H, I_h); ¹³C NMR (200 MHz, CDCl₃, 298 K): δ = 25.8, 26.7, 27.1, 27.1, 29.9, 29.9, 30.4, 30.5, 30.7, 36.9, $37.0, 64.9, 68.7, 68.8, 114.0, 114.0, 114.3, 114.4, 131.5, 131.5, 132.0, 132.0, 134.2 (D_{5h}), 136.1$ (I_h) , 137.4 (D_{5h}) , 138.1 (D_{5h}) , 142.7 (D_{5h}) , 143.3 (I_h) , 143.6 (D_{5h}) , 147.1, 147.2, 147.4 (D_{5h}) , 147.6, 147.7, 171.9 (one aromatic and ten aliphatic signals were missing, possibly because of signal overlap); HR-MS (ESI): calcd for $C_{194}H_{156}NO_{24}Sc_3^+$ [M]⁺, m/z 3017.9695; found, m/z3018.0253.

0

ANDARD 1H OBSER

S8

S9

— 190.828	— 172.069	154.674 149.078 147.991 147.488	132.540 131.973 129.664 126.851	116.399 115.629 111.503 111.824	77.318	/ 6. 682 69.285 69.208 68.880 68.529 64.460	36.308 29.467 29.467 29.441 29.346 29.346 28.950 28.950 28.950 26.043 25.711
		6					
in a second second second second second	na da neta na la da da da da da a parteción da da cando				an dawa ka wa panai mbaka ka casa kuka ana mak	terrine total	
190 1	180 170	160 150 1 [,]	40 130 :	120 110 1	. 00 90 80 S10	70 60	50 40 30 20 ppm

S11

