Supporting Information

Copper-promoted Oxidative -Fluorination of Arylphosphine under Mild Condition

Na Liu, ${ }^{\text {a }}$ Liu-Liang Mao, ${ }^{a}$ Bin Yang, ${ }^{\text {a }}$ Shang-Dong Yang ${ }^{* a . b}$

1. General information and materials

NMR spectra were obtained using a Brüker advance III 400 spectrometer. Chemical shifts are reported in units of parts per million (ppm) downfield from tetramethylsilane (TMS) and CDCl_{3}, and all coupling constants are reported in hertz. The infrared spectra were obtained with KBr plates using Nexus 670 FT-IR spectrometer and only major peaks are reported in cm^{-1}. Mass spectra were mearsured using Bruker microTOF-Q II MS and measured in EI or ESI mode. The starting materials were purchased from Aldrich, Acros Organics, J\&K Chemicals or TCI and used without further purification. DMF was purified and dried according to the procedure from "Purification of Laboratory Chemicals book". Column chromatography was carried out on silica gel (particle size 200-400 mesh ASTM). Substrates 1 were prepared according to the literature procedure, ${ }^{1-2} \mathbf{2 n}$ was described in previous report. ${ }^{3}$

2. Table S1 Optimization different Catalysts and Oxidant ${ }^{\text {bb }}$

26^{c}	$\mathrm{Zn}(\mathrm{OTf})_{2}(7.5)$	$\mathrm{NaF}(1.5)$	DDQ 1.5)	70
27^{c}	$\mathrm{ZnCl}_{2}(5.0)$	$\mathrm{NaF}(1.5)$	DDQ 1.5)	69

${ }^{a}$ All the reaction were carried out with Catalysts ($10 \mathrm{~mol} \%$) in the presence of $\mathbf{1 a}(0.3$ mmol), KF (1.5 eq) and DDQ (1.5 eq) in 2.0 mL DMF at $80^{\circ} \mathrm{C}$ under argon for $4 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{c}$ R.T.

3. Preliminary mechanistic studies.

3.1 Analytical data of ESI-MS:

In a reaction tube, diphosphine oxide 1a $(0.30 \mathrm{mmol})$, $\mathrm{NaF}(0.45 \mathrm{mmol}), \mathrm{DDQ}(0.45 \mathrm{mmol})$, and $\mathrm{CuBr}_{2}(0.015 \mathrm{mmol})$ were added and charged with Ar three times. Then, anhydrous DMF (1 mL) were added. The reaction mixture was stirred at RT for 10 min with vigorous stirring. The reaction was diluted with $\operatorname{DMF}(1 / 100)$ prior to the injection into the mass spectrometer.

The positive-ion mode of ESI-MS spectrum showed the signals corresponding to the A (m / z) $427.0441,428.0471,429.0481$. The signal might mean that DDQ can easily react with diphenylphosphine oxide to form the intermediate A. On the other hand, a signal of $\mathrm{m} / \mathrm{z} 219.0582$ may be the Diphenylphosphinic acid. The signal of $\mathrm{m} / \mathrm{z} 419.0986$ illustrated that intermediate A easily react with Diphenylphosphinic acid to generate the molecular B, which can react with NaF to the final products.

Figure S1. ESI-MS spectrum of the reaction solution.

We used $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right]_{2} \mathrm{O}$ as the substrate under the reaction conditions resulted in the yield of 95% at $60^{\circ} \mathrm{C}$, but in the absence of the DDQ,only obtained 11% yield at $60^{\circ} \mathrm{C}$ [Scheme S1, Eq. (1), (2)]. When the reactionwas degassed under conditions that the product was obtained in the yield of 85% [Scheme S1, Eq. (3)]. Chemical trapping of radicals using TEMPO (a well-known radical-trapping reagent) and AIBN under the reaction conditions [Scheme S1, Eq. (4), (5)]. As illustrated in Scheme S1, the addition of 3.0 equviallents of TEMPO and AIBN were performed under the standard condition. When TEMPO was added, the yield was decreased. Above all the reactions were carried out, the results were illustrated that the reaction was not go through the radical processure.

4. General Procedure for the Copper-promoted Oxidative-Fluorination of Arylphosphine.

Method A: In a reaction tube, arylphosphine oxides $1(0.30 \mathrm{mmol}), \mathrm{NaF}(0.45 \mathrm{mmol}), \mathrm{DDQ}$ (0.45 mmol), and CuBr_{2} ($0.015 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$) were added and charged with Ar three times. Then, anhydrous DMF (1 mL) were added. The mixture was stirred at room temperature for 4 h , until the reaction was completed. DMF was distilled under reduced pressure. The crude product was purified by flash chromatography on silica gel to give the desired products ($\mathrm{PE}: \mathrm{EA}=4: 1$).

Method B: In a reaction tube, arylphosphine oxides $1(0.30 \mathrm{mmol})$, DDQ (0.45 mmol), and $\mathrm{CuBr}_{2}(0.015 \mathrm{mmol}, 5.0 \mathrm{~mol} \%)$ were added and charged with Ar three times. Then, anhydrous DMF (1 mL) were added. The mixture was stirred at room temperature for 20 min , the nuleciliphilice was added slowly, the mixture was stirred until the reaction was completed. DMF was distilled under reduced pressure, The crude product was purified by flash chromatography on silica gel to give the desired products ($\mathrm{PE}: \mathrm{EA}=2: 1$).

References:

1. S. Montel, T. Jia, P. J. Walsh. Org. Lett. 2014, 16, 130-133.
2. Q. Xu, C.-Q. Zhao, L.-B. Han. J. Am. Chem. Soc. 2008, 130, 12648-12655.
3. H. D. Durst, D. K. Rohrbaugh, P. Smith, J. M. Nilles, T. Connell , J. A. Laramee, S. Munavalli. Phosphorus, Sulfur and Silicon. 2008, 183, 2655-2668.

5. Characterization of new compounds.

2a Yeld: 90\%, pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.57(\mathrm{~m} 42 \mathrm{H})$, $7.51(\mathrm{~m}, 4 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 40.94(\mathrm{~d}, J=1019.7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $-75.17(\mathrm{~d}, J=1019.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.35,133.33,131.45,131.43,131.34$, 131.32, 129.38 (d, $J=22.3 \mathrm{~Hz}$), 128.87, $128.73,127.97$ ($\mathrm{d}, J=22.3 \mathrm{~Hz}$). MS : m/z (M+H): 221.

2b Yeld: 95%, faint orange solid. 1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.41(\mathrm{~d}, J=1008.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $72.64(\mathrm{~d}, J=1008.4 \mathrm{~Hz}) . \quad{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.34,163.31,133.34,133.32,133.21$, 133.19 , $120.89\left(\mathrm{~d}, J=23.9 \mathrm{~Hz}\right.$), $119.40(\mathrm{~d}, J=23.9 \mathrm{~Hz}) .114 .31$, 114.16 , 55.31 . $\mathrm{IR}\left(\mathrm{film} / \mathrm{cm}^{-1}\right) \mathrm{v}_{\max }$: 3393, 2935, 2842, 1599, 1505, 1299, 1255, 1135, 1183. MS : m/z (M+H): 281.

2c Yeld: 93%, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{31} \mathrm{P} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 42.11(\mathrm{~d}, J=1014.1 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-74.33(\mathrm{~d}, J=$ $1014.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.97,143.94,131.37,131.35,131.25,131.23,129.48$, $129.34,126.47(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 125.04(\mathrm{~d}, J=22.8 \mathrm{~Hz}) .21 .63$. IR(film/cm ${ }^{-1}$) $\mathrm{v}_{\max }: 3392,2923,2866$, 1604, 1449, 1261, 1214, 1180, 1132, 1113. MS : m/z (M+H): 249.

2e Yeld:75\%, pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 43.10(\mathrm{~d}, J=1018.4 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-74.57(\mathrm{~d}, J=1018.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.75,141.63,133.30$, 133.27, 132.94, 132.91, 132.83, 132.79, 131.58, 131.45, 128.26 ($\mathrm{d}, J=19.1 \mathrm{~Hz}$), 126.91 (d, $J=19.1$ Hz) $125.83,125.69,21.11,21.07,21.06$. $\operatorname{IR}\left(f i 1 m / \mathrm{cm}^{-1}\right) \mathrm{v}_{\max } 3555,3488,3061,2968,2928,1595,1476$, 1454, 1284, 1256, 1147, 758. MS : m/z (M+H): 249.

2f Yeld: 18%, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{dt}, J=16.0,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{tt}, J=8.9,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dq}, J=13.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{dd}, J$ $=12.3,6.7 \mathrm{~Hz}, 12 \mathrm{H}) \cdot{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 43.50(\mathrm{~d}, J=1017.2 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-71.19(\mathrm{~d}, J=1017.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.20,153.07,133.57$, 133.54, $132.61,132.57,132.49,132.45,128.15(\mathrm{~d}, J=18.5 \mathrm{~Hz}) 126.95,126.88,126.82,126.79(\mathrm{~d}, J=18.5$ $\mathrm{Hz}) 125.95$, 125.81, 31.61, 31.56, 23.83, 23.77. IR(film/cm ${ }^{-1}$) $\mathrm{v}_{\text {max }} 3404,2967,2929,1594,1442,1251$, 1134, 830, 769. MS : m/z (M+H): 305.

2g Yeld: 80%, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 4 \mathrm{H}), 2.40$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.71(\mathrm{~d}, J=1019.7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-75.51$ $(\mathrm{d}, J=1022.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.81,138.67$, 134.09, 134.06, 131.81, 131.79, $131.70,131.68,129.31(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 128.73,128.58,128.49,128.47,128.38,128.36,127.91(\mathrm{~d}, J$ $=22.0 \mathrm{~Hz}), 21.29$. IR(film/cm ${ }^{-1}$) $\mathrm{v}_{\max } 3052,2924,2857,1599,1480,1262,1228,1124.705,567 . \mathrm{MS}:$ m/z (M+H): 249.

2h Yeld:55\%, white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2), 7.67(\mathrm{~s}, 4), 1.33(\mathrm{~s}, 36)$ ${ }^{31} \mathrm{P}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 43.64(\mathrm{~d}, J=1017.0 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(400 \mathrm{MHz} \mathrm{Cl}_{3}\right) \delta-72.41(\mathrm{~d}, J=$ $1017.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.45,151.32,128.76(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 127.43,127.40$, $127.38(\mathrm{~d}, J=21.8 \mathrm{~Hz}) 125.61,125.60,125.49,125.48,35.02,31.22 . \operatorname{IR}\left(f i l m / \mathrm{cm}^{-1}\right) \mathrm{v}_{\max } 3057,2959$, 905, 2870, 1594, 1477, 1427, 1364, 1255, 1154, 916, 878, 603. MS : m/z (M+H): 445.

2i Yeld: 73%, yellow oil ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.47$ $(\mathrm{m}, 4 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 39.56(\mathrm{~d}, J=1022.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.31(\mathrm{~d}, J=1022.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.65,133.54$, $133.14,133.11,133.06,133.02,131.49,131.44,131.43,131.33,131.31,130.56(\mathrm{~d}, ~ J=19.4 \mathrm{~Hz}$), $129.68(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 128.89,128.56,128.42,128.24,128.10,127.97,126.25,126.15,122.15,96.49$, 86.82, 86.76. IR(film/ cm^{-1}) $\mathrm{v}_{\max } 3402,3060,2925,2855,1588,1492,1440,1257,1140,757,692,532$. MS : m/z (M+H): 321.

2j Yeld: 84%, pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.68(\mathrm{~m}, 5 \mathrm{H}), 7.63-7.54(\mathrm{~m}, 1 \mathrm{H})$, $7.49(\mathrm{td}, J=7.6,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 41.64(\mathrm{~d}, J=1014.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.90(\mathrm{~d}, J=1014.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.57,163.54,133.58,133.56,133.45,133.43,133.12,133.10,131.29,131.27$, $128.79,128.65,120.30(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 118.82(\mathrm{~d}, J=22.9 \mathrm{~Hz}) 114.44,114.29,55.39 . \operatorname{IR}\left(\mathrm{film} / \mathrm{cm}^{-1}\right)$ $\mathrm{v}_{\max }: 3396,2925,1597,1253,1133,534 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 251$.

2k Yeld: 83%, pale yellow oil ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.78(\mathrm{~m}, 2), 7.72(\mathrm{dd}, J=12.9,8.0$ $\mathrm{Hz}, 2), 7.66-7.56(\mathrm{~m}, 2), 7.51(\mathrm{td}, J=7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=7.8,3.5 \mathrm{~Hz}, 2 \mathrm{H}) .2 .42(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{31} \mathrm{P}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.45(\mathrm{~d}, J=1016.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-74.76(\mathrm{~d}, J=$ 1017.1 Hz). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.21,133.19,133.17,131.54,131.52,131.43,131.40$, 131.38, 131.29, 131.27, 129.82 (d, $J=22.8 \mathrm{~Hz}$), 129.61, 129.47, 128.81, 128.67, 128.42 (d, $J=22.7$ Hz), 21.73. $\operatorname{IR}\left(\right.$ film $\left./ \mathrm{cm}^{-1}\right) \mathrm{v}_{\max } 3408,2924,1604,1439,1258,1135,536$. MS : m/z (M+H): 235

21 Yeld: 47%, pale yellow oil ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~m}$, $2 \mathrm{H}), 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{mz}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 38.72(\mathrm{~d}, J=1025.3$ $\mathrm{Hz}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.44,-75.17(\mathrm{~d}, J=1025.6 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.14,134.84,133.89,133.87,133.62,132.48,132.24,132.02,132.00,131.90,131.88,131.66$, $131.54,131.52,131.42,131.40,131.22,131.12,129.14,129.00,128.59,128.48,128.26,127.05$, $126.84,125.86,125.82,125.78,125.75,125.72,125.68,125.64,125.61,124.60,121.89 . \operatorname{IR}\left(f i l m / \mathrm{cm}^{-1}\right)$ $\mathrm{v}_{\max } 3373,3061,2927,2857,2588,1678,1439,1399,1324,1170,1131,965,739,567 . \mathrm{MS}: \mathrm{m} / \mathrm{z}$ $(\mathrm{M}+\mathrm{H}): 289$.

2mj Yeld:78\%, pale yellow oil ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~m}$, 2H), $4.60-4.47(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H})$, $1.53-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.81(\mathrm{~m}, 6 \mathrm{H}), 0.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2H). ${ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.18(\mathrm{~d}, J=106.1 \mathrm{~Hz}), 12.74(\mathrm{~d}, J=103.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.22(\mathrm{~d}, J=919.0 \mathrm{~Hz}),-62.00(\mathrm{~d}, J=916.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $133.30,131.48,131.38,128.65,128.64,128.49,128.48,126.60(\mathrm{dd}, J=45.9,31.2 \mathrm{~Hz}), 124.58(\mathrm{dd}, J=$ $46.4,31.3 \mathrm{~Hz}), 80.43,80.36,80.05,79.98,48.28,48.22,48.15,42.92,42.83,33.82,31.52,31.48,25.81$, $25.75,22.84,21.82,21.73,20.78,20.67,15.47 . \operatorname{IR}\left(f i l m / \mathrm{cm}^{-1}\right) \mathrm{v}_{\max } 3365,2956,2930,2871,1595,1457$, 1442, 1292, 1136, 1014, 996, 847. MS : m/z (M+H): 299

2n Yeld:44\%, pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{~m}, 1 \mathrm{H})$, $7.51(\mathrm{dd}, J=12.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.07-4.92(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.2 \mathrm{~Hz}$,

3H). ${ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.92(\mathrm{~d}, J=1041.3 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-61.69$ $(\mathrm{d}, J=1041.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.43,133.40,131.62,131.52,128.69,128.53$, $126.31(\mathrm{~d}, J=30.7 \mathrm{~Hz}), 124.31(\mathrm{~d}, J=30.7 \mathrm{~Hz}), 73.47,73.41,30.88,23.89,23.85,23.77,23.73$. IR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}_{\text {max }} 3494,3063,2984,2932,1595,1441,1287,1137,1011,995,848 . \mathrm{MS}(\mathrm{M}+\mathrm{H}): 203$

20 Yeld: 65\%, pale yellow oil ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~m}$, $2 \mathrm{H}), 2.16-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.62(\mathrm{~d}, J=1021.4 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-75.55(\mathrm{~d}, J=1021.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.31,133.29,131.01,130.99,129.07(\mathrm{~d}, J=19.4 \mathrm{~Hz}), 127.77(\mathrm{~d}, J=$ 19.2 Hz), 28.93 (d, $J=17.2 \mathrm{~Hz}$), 27.97 (d, $J=17.2 \mathrm{~Hz}$), 23.59, 23.43, 23.29, 23.25, 13.35. IR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}_{\max } 3404,2958,2931,2870,1594,1439,1165,1128,965,741 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 201$.

2pYeld:75\%, pale yellow solid ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.00-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.73(\mathrm{~m}, 8 \mathrm{H})$, $1.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.11(\mathrm{~m}, 6 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 70.75$ (d, $J=1036.4 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-94.88\left(\mathrm{~d}, J=1036.7 \mathrm{~Hz}\right.$). ${ }^{13} \mathrm{C}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 35.29(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 34.43(\mathrm{~d}, J=13.3 \mathrm{~Hz}) .25 .90,25.87,25.76,25.74,25.53,25.51,24.61$, 24.58, 24.54. IR (film $/ \mathrm{cm}^{-1}$) $\mathrm{v}_{\max } 3453,2930,2854,1448,1279,1245,1202,858 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 233$.

3aYeld: 88%, pale yellow solid ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H})$, $7.44(\mathrm{~m}, 4 \mathrm{H}), 3.76(3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.22 .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 132.16, 132.13, 131.63, 131.53, 130.26, 128.56, 128.43, 51.49, 51.43. MS : m/z (M+H): 233

3b Yeld:81\%, pale yellow solid ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.44(\mathrm{dm}, 4 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 5.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.32. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.29,136.22,132.13,132.10,131.65,131.55,131.26(\mathrm{~d}, J=$ $136.7 \mathrm{~Hz}), 128.51,128.43,128.38,128.16,127.74,66.20,66.15 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 309$

3d Yeld: 46%, pale yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H})$, $7.46(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
30.72. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.34,144.14,144.05,132.47,132.44,131.82,131.71,130.59$ (d, $J=138.5 \mathrm{~Hz}$), 128.61, 128.48, 121.58, 121.54, 114.53, $55.45 . \mathrm{MS}: \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H}): 325$.

3e Yeld: 81%, white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO) $\delta 7.86-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H})$, $7.57-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}) .{ }^{31} \mathrm{P}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 39.58$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 134.66,134.62,132.41,132.39,132.34$ (d, $J=106.0 \mathrm{~Hz}$), 131.04, 130.94, 129.19, 129.03, 129.02, 128.85, 128.84, 128.74, 128.61, 127.04, 125.96, 125.91. MS: m/z (M +H): 311.
6. Charts

目目

$\sqrt[r]{98}$

\square

100	50	0	1	1	1	1	-150
100	-50	-100	-150				

-898

ing ing
in mig
sig

\qquad

