Organocatalyzed Multicomponent Synthesis of Pyrazolidinones: the Meldrum's Acid Approach

Etienne Pair,^a Christophe Berini,^a Romain Noël,^a Morgane Sanselme,^b Vincent Levacher^a and Jean-François Brière^{*a}

^a Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan cedex, France.

^b Laboratoire SMS – EA3233 IMR 4114, Normandie Université-University of Rouen, 1 rue Tesnière, 76821 Mont Saint Aignan cedex, France.

I General information	3
II Optimization of reaction conditions	. 5
II-1 Solvent selection	. 5
II-2 Catalyst structure-activity relationship	.7
II-3 Evaluation of other types of catalysis	.9
II-4 Evaluation of a kinetic resolution approach	10
II-5 Pieces of Mechanism from ¹ H NMR and ESI/MS	11
II-6 Proposed catalytic cycle	14
II-7 Structure determination and X-Ray diffraction analyses	15
III Experimental procedures	16
III-1 Azomethine imine synthesis	16
III-2 Enantioselective synthesis of pyrazolidinones	18
III-3 Diastereoselective synthesis of pyrazolidinones	27
III-4 Reductive cleavage of bicyclopyrazolidinone N-N bond	29
IV NMR spectra	30
IV.1 1-Phenylpropylidene-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (4a)	30
IV.2 1-(Pent-4'en-1'-ylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (4e)	31
IV.3 (R)-3,3-Dimethyl-7-phenethyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6a)	32
IV.4 (R)-3,3-Dimethyl-7-(2'-(p-bromophenyl)ethyl)tetrahydropyrazolo[1,2-a]pyrazol	le-
1,5-dione (6b)	33
IV.5 (R)-3,3-Dimethyl-7-pentyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6c)	35
IV.6 (R)-3,3-Dimethyl-7-isobutyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6d)	36
IV.7 (R)-3,3-Dimethyl-7-(but-3'-en-1'-yl)-tetrahydropyrazolo[1,2-a]pyrazole-1,5-dio	ne
(6e)	37
IV.8 (R)-3,3-Dimethyl-7-cyclohexyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6f)	38
IV.9 (R)-3,3-Dimethyl-7-isopropyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6g)	39
IV.10 (R)-3,3-Dimethyl-7-cyclopropyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6h)	40
IV.11 (R)-3,3-Dimethyl-7-(2'-((benzyloxycarbonyl)amino)ethyl)-tetrahydropyrazolo[1,	,2-
a]pyrazole-1,5-dione (6i)	41
IV.12 (R)-3,3-Dimethyl-7-(2'-(benzyloxy)ehtyl)-tetrahydropyrazolo[1,2-a]pyrazol	le-
1,5-dione (6j)	42
IV.13 (R)-3,3-Dimethyl-7-(3'-oxobutyl)-tetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6	ik)
	43

IV.14 (R)-3,3-Dimethyl-7-phenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (61)	44
IV.15 (R)-3-Phenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6m)	45
IV.16 (R)-3-Cyclohexyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6n)	46
IV.17 cis-3,7-Diphenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (60)	47
IV.18 cis-3-Phenethyl-7-phenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6p)	48
IV.19 cis-3-(4-Bromophenethyl)-7-phenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dio	ne
(6q)	49
IV.20 (R)-4,4-Dimethyl-8-phenethyl-1,5-diazocane-2,6-dione (11)	50

I General information

Reactions were performed using oven dried glassware under inert atmosphere of dry argon or nitrogen and monitored by thin-layer chromatography with silica gel 60 F254 pre-coated aluminium plates (0.25 mm). Visualization was performed under UV light and phosphomolybdic acid or KMnO₄ oxidation. Chromatographic purification of compounds was achieved with 60 silica gel (40-63 μ m).¹

Solvents and reagents: Toluene and CH_2Cl_2 were dried by refluxing over CaH_2 and then distilled. Unless otherwise noted, all reagent-grade chemicals and solvents were used as supplied (analytical or HPLC grade) without prior purification.

Melting points were measured on a WME Köfler hot-stage with a precision of +/-2 °C and are uncorrected.

Infrared spectra (**IR**) were recorded on a PerkinElmer Spectrum 100 Series FT-IR spectrometer. Liquids and solids were applied on the Single Reflection Attenuated Total Reflectance (ATR) Accessories. Data are reported in cm^{-1} .

Optical rotations were determined with a Perkin-Elmer 341 polarimeter with a waterjacketed 10 cm cell. Specific rotations are reported in $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$ and concentrations in g per 100 mL.

¹H Spectra (300 or 400 MHz) and ¹³C NMR spectra (75 or 100 MHz) were recorded on either a Bruker Advance300 or Advance400 spectrometers. The field was locked by external referencing to the relevant deuteron resonance. Data appear in the following order: chemical shifts in ppm which were referenced to the internal solvent signal, number of protons, multiplicity (*s*, singlet; *d*, doublet; *t*, triplet; *dd*, doublet of doublet, *ddd*, doublet of doublet of doublet of doublet, *ddt*, doublet of triplet, *m*, multiplet) and coupling constant *J* in Hertz.

Low Resolution Mass Spectra (LRMS) were recorded on a Thermo Electron Corporation ion-trap spectrometer.

¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem., 1978, 43, 2923-2925.

Accurate Mass measurements (HRMS) were performed by the Mass Spectrometry Laboratory of the University of Rouen and were recorded with a Waters LCP 1er XR spectrometer.

Elemental analyses were performed by the microanalysis service of the University of Rouen and were recorded with a Thermo Scientific FLASH 2000 analyzer.

HPLC analyses were performed with Daicel Chiralpak[®] and Chiralcel[®] columns (4.6 mm \times 250 mm) and a mixture of heptane/*i*-PrOH solvents. A spectrosystem UV 1000 thermofisher detector and a chiral detector (polarimeter) JACSCO OR-1590 were used.

II Optimization of reaction conditions

II-1 Solvent selection

Me O Me O	$ \begin{array}{c} $	$\frac{AL (10 \text{ mol}\%)}{4 \text{ h}}$	Me 6a	
	MeO	N		(DHQ) ₂ PHAL
Entry	Solvent	T [°C]	Yield [%] ^[b]	er ^[c]
1	Tol/CH ₂ Cl ₂ (3/1)	40	96	86:14
2	Tol/CH ₂ Cl ₂ (3/1)	10	21	97:3
3	Tol/CH ₂ Cl ₂ (3/1)	20	74	92.5:7.5
4	THF	20	68	86:14
5	Dioxane	20	47	95.5:4.5
6	AcOEt	20	68	86:14
7	PhCF ₃	20	59	89:11
8	MeCN	20	23	90:10
9	DMF	20	0	-
10	t-BuOH	20	0	-
11	MeTHF	20	61	83:17
12	CHCl ₃	20	29	95.5:4.5
13	CH_2Cl_2	20	60	95:5

[a] Reaction conditions: Meldrum's acid 1 (0.1 mmol), azomethine imine 4a (1 equiv), $(DHQ)_2PHAL$ (0.1 equiv) in 1 mL of solvent during 24 hours. [b] Yield determined by ¹H NMR with an internal standard. [c] Enantiomeric ratios determined by chiral HPLC.

Remark: the use of toluene/CH₂Cl₂ mixture at 20 °C instead of toluene solvent was required to prevent precipitation events leading to erratic outcomes.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Me (DI H H MeO	$\frac{\mathbf{HQ}_{2}\mathbf{PHAL} (x \text{ mol}\%)}{24 \text{ h}, 20 ^{\circ}\text{C}}$	Ph N N 6a OMe (DHQ) ₂	Me Me	
Solvent	Conc. [M]	(DHQ) ₂ PHAL	Yield [%] ^[b]	<i>er</i> ^[c]	
Tol/CH ₂ Cl ₂ (3/1)	0.1	10	64	92.5:7.5	
Tol/CH ₂ Cl ₂ (3/1)	0.25	10	71	90.5:9.5	
Tol/CH ₂ Cl ₂ (3/1)	0.1	15	74	91:9	
Tol/CH ₂ Cl ₂ (1/1)	0.1	15	64	92:8	
Tol/CH ₂ Cl ₂ (1/3)	0.1	15	64	92:8	
Tol/CH ₂ Cl ₂ (3/1)	0.1	10	91 (48 h)	85:15	
CH_2Cl_2	0.1	10	53	94:6	
CH_2Cl_2	0.2	10	52	94.5:5.5	
CH_2Cl_2	0.2	15	70	92.5:7.5	
Dioxane	0.2	10	44	91:9	
DME	0.2	10	59	82:18	
acetone	0.2	10	65	75:25	
	Me + HN = HN	Me + f + f + f + f + f + f + f + f + f +	$\begin{array}{c} Me \\ Me \\ 1 \end{array} \\ 1 \end{array} \\ 1 \end{array} \\ \begin{array}{c} Me \\ 1 \end{array} \\ 1 \end{array} \\ 1 \end{array} \\ \begin{array}{c} Me \\ 1 \end{array} \\ 1 \end{array} \\ \begin{array}{c} HN \\ 8a \\ H \end{array} \\ 1 \end{array} \\ \begin{array}{c} HN \\ Me \\ 1 \end{array} \\ \begin{array}{c} HN \\ HN \\ He \\ HN \\ He \\ HN \\ HN \\ He \\ HN \\ HN$	$\begin{array}{c} \underset{Me}{Me} \leftarrow \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \end{array} \\ \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $	$\begin{array}{c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$

[a] Reaction conditions: Meldrum's acid **1** (0.1 mmol), aldehyde **7a** (1 equiv), pyrazolidinone **8a**, (DHQ)₂PHAL (0.1 equiv) in solvent (0.1-0.2 M) during 24 hours at 20 °C. [b] Isolated yield after column chromatography. [c] Enantiomeric ratios determined by chiral HPLC.

It was observed that CH_2Cl_2 as solvent provided slightly better enantiomeric ratio (*er*) than Tol/CH_2Cl_2 (3/1) but led to slower processes in many instances. Moreover, the yield could be nicely improved by running the reaction over 48 hours (entry 6), but a decreased in *er* was observed too.

II-2 Catalyst structure-activity relationship

The initial screening of catalyst revealed a unique catalytic behavior of dimeric Sharpless ligands.

This study was carried out mainly in dichloromethane in order to obtain homogeneous solutions, as long as ammonium salts tend to precipitate in other solvents. As depicted in scheme below, the two quinidine moieties of $(DHQ)_2PHAL$ are required to obtain both an optimal catalytic activity and enantiomeric ratios.^{2,3} The mono-protonated catalyst $(DHQ)_2PHAL \cdot CF_3CO_2H$ provided the closest results to $(DHQ)_2PHAL$ in terms of *er* and the best yield in comparison to the other catalytic promoters. Worthy of note, an ¹H NMR study of $(DHQ)_2PHAL$ in the presence of Meldrum's acid 1 demonstrated that the protonation steps are equilibrated and depend of the catalyst/Meldrum's acid ratio; on the

² For the synthesis of quaternary ammonium salts, see: Corey, E.J.; Noe, M. C.; S. Lin, S. *Tetrahedron Lett.* **1995**, *36*, 8741-8744.

³ For the synthesis of monomeric catalysts, see: Motorina, I.; Crudden, C. M. Org. Lett. 2001, 3, 2325-2328.

contrary of the mixture between $(DHQ)_2PHAL$ in the presence of CF_3CO_2H which showed a clear-cut protonation event.

II-3 Evaluation of other types of catalysis

Phase Transfer Catalytic conditions did not lead to significant transformation (see below for an example):

The use of stronger guanidine bases was not efficient to promote the transformation of azomethine imine 4a into bicyclopyrazolidinones 6. From ¹H NMR analyses, it seems that 40-60% of non-decarboxylated substrate was formed.

II-4 Evaluation of a kinetic resolution approach

Preliminary investigations of a kinetic resolution approach of either chiral racemic azomethine imine⁴ **5p** or by carrying out the multi-component reaction with chiral racemic pyrazolidinone **8b** shows that this catalytic system is unable to differentiate efficaciously the chiral substrates by means of $(DHQ)_2PHAL$ catalyst. During this reaction most of the azomethine imine was consumed.

Ph-	O ⊕ N N ⊖ Ph	+ 0		HQ)₂PHAL (10 mol%) Solvent 20 °C, time	Ph ^{uu} N O O
	5p , 1 equiv	0.5	equiv	dr > 98:2	6р
	Solvent	t	Time (h)	NMR yield (%) ^[a]	er ^[b]
	Tol/CH ₂ Cl ₂	(3/1)	12	9	64:36
	CH_2Cl_2	2	12	<5	-
	Tol/CH ₂ Cl ₂	(3/1)	24	13	59:41
	CH_2Cl_2	2	24	20	60:40

[a] Yield of **6p** was determined by ¹H NMR with respect to an internal standard and Meldrum's acid **1**. [b] Enantiomeric ratios were determined by chiral HPLC for pyrazolidinone **6p**.

Ph NH NH 1 equiv (8t	+ 0 + H R (0.5 equiv (1)	.) ₂ PHAL (X r Solvent nperature, ti	nol%) ┣━━━━ me	Ph ^{uu} N	2
	7a , R = (CH ₂)₂Ph 7l , R = Ph		dr > 98:2		6p , R = (CH ₂) ₂ 6o , R = Ph	Ph
R	Solvent	(DHQ) ₂ PHAL (mol %)	Temp (°C)	Time (days)	NMR yield ^[a] (%)	er ^[b]
Ph (60)	CH ₂ Cl ₂	10	0	4	100	64:36
$(CH_2)_2 Ph (6p)$	Tol/CH ₂ Cl ₂ (3/1)	15	10	2	44	60:40
$(CH_2)_2 Ph (6p)$	CH_2Cl_2	15	10	2	44	66.5:33.5

[a] Yields of **6p** or **6o** were determined by ¹H NMR with respect to an internal standard and Meldrum's acid **1**.

[b] Enantiomeric ratios were determined by chiral HPLC for pyrazolidinones $\mathbf{6p}$ and $\mathbf{6o}$.

⁴ For previous kinetic resolutions of azomethine imines, see: (a) A. Suárez, C. W. Downey, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11244. (b) M. Wang, Z. Huang, J. Xu, Y. R. Chi, J. Am. Chem. Soc. 2014, 136, 1214.

II-5 Pieces of Mechanism from ¹H NMR and ESI/MS

The formation of alkylidene Meldrum's acids C is accelerated upon Brønsted base catalysis and $(DHQ)_2PHAL$ is more competent than Hünig base in that respect.

Moreover, some representative test reactions also validated that $(DHQ)_2PHAL$ is a competence catalyst for the direct aza-Michael step to pre-formed benzylidene Meldrum's acid 10a.⁵ As a piece of mechanism, this reaction promoted by $(DHQ)_2PHAL$ in CH₂Cl₂ furnished product 6l with 71:29 *er*, which parallels the outcome of the multicomponent Knoevenagel-aza-Michael-Cyclocondensation (KMC) reaction (see Table 1, entry 14 in the paper, 72.5:27.5 *er*), albeit in lower yield (61% *versus* 80%)

⁵ For the synthesis of benzylidene Meldrum's acid, see: A. M. Dumas, A. Seed, A. K. Zorzitto and E. Fillion, *Tetrahedron Lett.*, 2007, **48**, 7072.

The formation of alkylidene Meldrum's acid **D** might also proceed simply by mixing the three components **A**, **B** and **C** whereby the pyrazolidinone **C** could act as an iminium catalyst following a regular Knoevenagel reaction mechanism through \mathbf{F} .⁶ Although the product **E** was hardly formed, we could also detect the formation of the non-decarboxylated precursor **G**. The structures of products **F** and **G** were proposed from the analyses of the crude mixture by means of both ESI/MS spectrometry and ¹H NMR.

In line of the aforementioned study, the possibility to conduct this reaction from the azomethine imines **A** flanked either by a CH_2 - CH_2Ph alkyl chain or a phenyl moiety was also validated:

 $^{^{6}}$ The formation of the aza-Michael adduct analogue of **F** but having a covalent bond with the amide nitrogen atom cannot be ruled out from our analyses.

34% (A) 41% (B) 28% (C) 23% (D) traces (E) 16% (F) 23% (G)

II-6 Proposed catalytic cycle

Based on the preliminary mechanistic investigation (Cf. § II-5), we propose a tandem catalytic cycle in action, upon either a Brønsted base catalytic regime or an iminium regime for the first cycle.

II-7 Structure determination and X-Ray diffraction analyses

The structure determination of bicyclic pyrazolidinones **6** by NMR was not straightforward due to the small size of long range carbon-proton coupling constants though nitrogen atoms by HMQC experiments, namely between C-H and C=O atoms. Then, the structure determination was achieved by a HMBC 1 H/ 15 N NMR spectra on compound **6b** and with a series of X-Ray structures; with ORTEP depicted below.

III Experimental procedures

III-1 Azomethine imine synthesis

Representative procedure for the preparation of 5,5-dimethylpyrazolidin-3-one derived azomethine imines 4a and 4e. To a stirred solution of 5,5-dimethylpyrazolidin-3-one (1.00 equiv) in methanol was added the aldehyde (1.05 equiv) at room temperature. After stirring at 40 °C for 18 hours, the mixture was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography (AcOEt to AcOEt/MeOH: 8/2). The product was then dissolved in CH₂Cl₂, filtered on Celite and evaporated under reduced pressure to afford the desired azomethine imine. Azomethine imines 4f,⁷ 4m-n⁸ and pyrazolidinone 8a⁷ were synthesized according to the literature.

1-Phenylpropylidene-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**4a**). Following the general procedure with 5,5-dimethylpyrazolidin-3-one **8a** (571 mg, 5.00 mmol) and 3-phenylpropionaldehyde **7a** (720 µL, 5.50 mmol) in methanol (5.0 mL), the title compound was obtained as a yellow solid (1.03 g, 4.47 mmol, 89%). R_f = 0.26 (AcOEt/MeOH: 8/2). m.p. 50-51 °C. IR (neat) v_{max} 3210, 3028, 2971, 2932, 1666, 1587, 1323, 1282, 1100, 746, 699 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) δ_{H} 7.32-7.18 (5H, m), 6.39 (1H, t, *J* = 5.9 Hz), 3.05-2.98 (4H, m), 2.69 (2H, s), 1.50 (3H, s), 1.30 (3H, s). ¹³C NMR (75 MHz; CDCl₃) δ_{C} 180.8 (C=O), 139.6 (C), 135.9 (CH), 128.8 (CH), 128.3 (CH), 126.8 (CH), 72.2 (C), 45.4 (CH₂), 31.2 (CH₂), 30.7 (CH₂), 28.9 (CH₃). HRMS (ESI⁺): calcd for C₁₄H₁₉N₂O [(M+H)⁺]: 231.1492; Found: 231.1497. Anal. Calcd for C₁₄H₁₈N₂O: C, 73.01; H, 7.88; N, 12.16. Found: C, 72.97; H, 7.99; N, 11.88.

⁷ M. Keller, A. S. Sido, P. Pale, J. Sommer, *Chem. Eur. J.* **2009**, *15*, 2810-2817.

⁸ R. Shintani, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 10778-10779.

1-(Pent-4'en-1'-ylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (**4e**). Following the general procedure with 5,5-dimethylpyrazolidin-3-one **8a** (459 mg, 4.00 mmol) and pent-4-enal **7e** (0.43 mL, 4.25 mmol), the title compound was obtained as a yellow oil (551 mg, 3.06 mmol, 76%). $R_f = 0.17$ (AcOEt/MeOH: 8/2). IR (neat) v_{max} 3404, 3076, 2974, 2932, 1665, 1588, 1327, 1135, 1054, 999, 913, 674, 645, 582, 556 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 6.50 (1H, t, J = 6.0 Hz), 5.83-5.70 (1H, m), 5.06-4.99 (2H, m), 2.79-2.72 (2H, m), 2.65 (2H, s), 2.38-2.31 (2H, m), 1.54 (6H, s). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 180.7 (C=O), 136.5 (CH), 136.1 (CH), 116.4 (CH₂), 72.1 (C), 45.4 (CH₂), 29.4 (CH₂), 28.9 (CH₃), 28.4 (CH₂). HRMS (ESI⁺): calcd for C₁₀H₁₇N₂O [(M+H)⁺]: 181.1335; Found: 181.1336.

III-2 Enantioselective synthesis of pyrazolidinones

Representative general procedures for the enantioselective synthesis of pyrazolidinones 6a-n.

<u>Conditions A:</u> Azomethine imine **4** (0.25 mmol, 1.0 equiv), Meldrum's acid **1** (36.0 mg, 0.25 mmol, 1.0 equiv) and (DHQ)₂PHAL (19.5 mg, 0.025 mmol, 0.1 equiv) were dissolved in a mixture of toluene/CH₂Cl₂ (3/1, 2.5 mL) and the reaction mixture was stirred at 20 °C for 24 hours. The crude mixture was then washed with Na₂CO₃ solution (10% w/w) and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by column chromatography on silica gel (AcOEt) to afford product **6**.

<u>Conditions B:</u> Pyrazolidinone **8a** (28.5 mg, 0.25 mmol, 1.0 equiv), Meldrum's acid **1** (36.0 mg, 0.25 mmol, 1.0 equiv) and (DHQ)₂PHAL (29.2 mg, 0.038 mmol, 0.15 equiv) were dissolved in a mixture of toluene/CH₂Cl₂ (3/1, 2.5 mL) or CH₂Cl₂ (1.25 mL). The appropriate aldehyde **7** (0.25 mmol, 1.0 equiv) was then added and the reaction mixture was stirred at 20 °C for 24 hours. The crude mixture was then washed with Na₂CO₃ solution (10% w/w) and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by column chromatography on silica gel (AcOEt) to afford product **6**.

Remark: all major ennatiomers turned out to be levo (-) isomers with regard to the chiral detector (polarimeter) during HPLC analyses.

(*R*)-3,3-Dimethyl-7-phenethyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6a). The title compound was prepared according to the above general procedures as a grey solid (53.8 mg, 0.20 mmol, 79% in 7.5:92.5 *er*) using conditions A from azomethine imine **4a** (57.6 mg, 0.25 mmol) and (50.3 mg, 0.19 mmol, 74% in 9:91 *er*) using conditions B from 3-phenylpropionaldehyde **7a** (35 µL, 0.25 mmol). Recrystallization in Et₂O increased the optical purity to 1:99 (38.7 mg, 0.14 mmol, 72%). $R_f = 0.24$ (AcOEt). m.p. 97-100 °C (Et₂O). $[\alpha]_D^{20} -112.7$ (*c* 1.00, CHCl₃). IR (neat) v_{max} 2926, 1661, 1287, 752, 701 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) δ_H 7.32-7.27 (2H, m), 7.22-7.20 (3H, m), 4.27 (1H, ddt, *J* = 10.3, 7.5, 5.3 Hz), 3.07 (1H, dd, *J* = 17.3, 10.0 Hz), 2.75-2.70 (4H, m), 2.59 (1H, dd, *J* = 17.3, 5.0 Hz), 2.40-2.28 (1H, m), 2.04-1.90 (1H, m), 1.64 (3H, s), 1.56 (3H, s). ¹³C NMR (75 MHz; CDCl₃) δ_C 164.4 (C=O), 164.1 (C=O), 140.4 (C), 128.7 (CH), 128.5 (CH), 126.5 (CH), 59.0 (C), 51.4 (CH), 50.1 (CH₂), 40.8 (CH₂), 35.3 (CH₂), 31.5 (CH₂), 26.6 (CH₃), 25.2 (CH₃). HRMS (ESI⁺): calcd for C₁₆H₂₁N₂O₂ [(M+H)⁺]: 273.1598; Found: 273.1592. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH: 90/10, flow rate 1 mL/min, UV 254 nm, *t_{mino}* = 11.2 min for *S* enantiomer; *t_{major}* = 12.5 min for *R* enantiomer).

(R)-3,3-Dimethyl-7-(2'-(p-bromophenyl)ethyl)tetrahydropyrazolo[1,2-a]pyrazole-

1,5-dione (6b). The title compound was prepared according to the above general procedures as a white solid (70.2 mg, 0.20 mmol, 80% in 10:90 *er*) using conditions B from 3-(4-bromophenyl)propanal **7b** (53.3 mg, 0.25 mmol). Recrystallization in *i*-PrOH afforded an enantiopur sample (35.0 mg, 0.10 mmol, 50%). m.p. 140-141 °C (*i*-PrOH). R_f = 0.15 (AcOEt/MeOH, 95/5). [α]_D²⁰ -82.3 (*c* 1.04, CHCl₃). IR (neat) v_{max} 2977, 2927, 1670, 1347, 1321, 1285, 820, 537 cm⁻¹. ¹H NMR (400 MHz; CDCl₃) $\delta_{\rm H}$ 7.41 (2H, d, *J* = 8.3 Hz), 7.09 (2H, d, *J* = 8.3 Hz), 4.25 (1H, dt, *J* = 11.6, 5.9 Hz), 3.07 (1H, dd, *J* = 17.2, 10.0 Hz), 2.75 (2H, s), 2.68 (2H, t, *J* = 7.93 Hz), 2.57 (1H, dd, *J* = 17.3, 4.9 Hz), 2.34-2.23 (1H, m),

1.98-1.86 (1H, m), 1.64 (3H, s), 1.55 (3H, s). ¹³C NMR (100 MHz; CDCl₃) $\delta_{\rm C}$ 164.4 (C=O), 163.9 (C=O), 139.2 (C), 131.6 (CH), 130.1 (CH), 120.1 (C), 58.9 (C), 51.0 (CH), 49.9 (CH₂), 40.6 (CH₂), 35.1 (CH₂), 30.8 (CH₂), 26.5 (CH₃), 25.0 (CH₃). MS (ESI⁺): *m/z* 351.1 and 353.1 [(M+H)⁺]. HRMS (ESI⁺): calcd for C₁₆H₂₀N₂O₂Br [(M+H)⁺]: 351.0708 and 353.0688; Found: 351.0701 and 353.0684. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH: 90/10, flow rate 1 mL/min, UV 254 nm, *t_{mino}* = 13.8 min for *S* enantiomer; *t_{major}* = 15.8 min for *R* enantiomer).

(*R*)-3,3-Dimethyl-7-pentyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6c). The title compound was prepared according to the above general procedures as a colorless oil (42.9 mg, 0.18 mmol, 72% in 6.5:93.5 *er*) using conditions B from hexanal 7c (31 µL, 0.25 mmol). $R_f = 0.20$ (AcOEt). IR (neat) v_{max} 2929, 2860, 1678, 1459, 1315, 1290, 539 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 4.25-4.16 (1H, m), 3.04 (1H, dd, J = 17.2, 10.0 Hz), 2.75 (2H, s), 2.54 (1H, dd, J = 17.2, 4.9 Hz), 1.97-1.90 (1H, m), 1.64-1.54 (1H, m), 1.61 (3H, s), 1.54 (3H, s), 1.30-1.22 (6H, m), 0.88-0.84 (3H, m). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 164.0 (C=O), 163.9 (C=O), 58.8 (C), 51.7 (CH), 50.1 (CH₂), 40.6 (CH₂), 33.4 (CH₂), 31.5 (CH₂), 26.5 (CH₃), 25.2 (CH₃), 24.5 (CH₂), 22.5 (CH₂), 14.0 (CH₃). HRMS (ESI⁺): calcd for C₁₃H₂₃N₂O₂ [(M+H)⁺]: 239.1754; Found: 239.1760. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH: 95:5, flow rate 1 mL/min, UV 254 nm, $t_{mino} = 11.8$ min for *S* enantiomer; $t_{majo} = 13.1$ min for *R* enantiomer).

(*R*)-3,3-Dimethyl-7-isobutyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6d). The title compound was prepared according to the above general procedures as a white solid (38.7 mg, 0.17 mmol, 69% in 96:4 *er*) using conditions B from isovaleraldehyde **7d** (27 µL, 0.25 mmol). $R_f = 0.25$ (AcOEt). m.p. 72-76 °C. IR (neat) v_{max} 2957, 2930, 2871, 1670, 1334, 1290 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) δ_{H} 4.34-4.24 (1H, m), 3.06 (1H, dd, J = 17.1,

9.9 Hz), 2.76 (2H, s), 2.54 (1H, dd, J = 17.2, 4.8 Hz), 2.01-1.92 (1H, m), 1.74-1.64 (4H, m), 1.56 (3H, s), 1.48-1.25 (1H, m), 0.99 (3H, d, J = 6.6 Hz), 0.94 (3H, d, J = 6.6 Hz). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 164.4 (C=O), 164.3 (C=O), 59.0 (C), 50.5 (CH), 50.2 (CH₂), 42.7 (CH₂), 41.1 (CH₂), 26.6 (CH₃), 25.2 (CH₃), 25.0 (CH), 23.0 (CH₃), 22.2 (CH₃). HRMS (ESI⁺): calcd for C₁₂H₂₁N₂O₂ [(M+H)⁺]: 225.1598; Found: 225.1603. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH 95/5, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 12.4$ min for *R* enantiomer; $t_{mino} = 13.4$ min for *S* enantiomer).

(*R*)-3,3-Dimethyl-7-(but-3'-en-1'-yl)-tetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6e). The title compound was prepared according to the above general procedures as a colorless oil (64.0 mg, 0.29 mmol, 72% in 91.5:8.5 *er*) using conditions A from azomethine imine **4e** (72.1 mg, 0.40 mmol) and (28.9 mg, 0.13 mmol, 52% in 91:9 *er*) using conditions B from 4-pentenal **7a** (25 µL, 0.25 mmol). $R_f = 0.17$ (AcOEt). IR (neat) v_{max} 3528, 2976, 2932, 1675, 1315, 1288, 911, 539 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) δ_H 5.85-5.72 (1H, m), 5.09-4.98 (2H, m), 4.29-4.20 (1H, m), 3.05 (1H, dd, J = 17.3, 10.0 Hz), 2.75 (2H, s), 2.56 (1H, dd, J = 17.3, 5.0 Hz), 2.18-2.03 (3H, m), 1.78-1.66 (1H, m), 1.62 (3H, s), 1.55 (3H, s). ¹³C NMR (75 MHz; CDCl₃) δ_C 164.2 (C=O), 164.0 (C=O), 136.7 (CH), 116.0 (CH₂), 58.9 (C), 51.2 (CH), 50.1 (CH₂), 40.6 (CH₂), 32.7 (CH₂), 29.3 (CH₂), 26.6 (CH₃), 25.1 (CH₃). HRMS (ESI⁺): calcd for C₁₂H₁₉N₂O₂ [(M+H)⁺]: 223.1441; Found: 223.1447. HPLC analysis: chiral column IC (heptane/*i*-PrOH: 70/30, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 11.9$ min for *R* enantiomer; $t_{mino} = 43.1$ min for *S* enantiomer).

(*R*)-3,3-Dimethyl-7-cyclohexyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6f). The title compound was prepared according to the above general procedures as a pale yellow oil (75.1 mg, 0.30 mmol, 75% in 89:11 *er*) using conditions A from azomethine imine 4f (83.3 mg, 0.40 mmol) and (30.0 mg, 0.12 mmol, 48% in 87:13 *er*) using conditions B from

cyclohexanecarboxaldehyde **7f** (30 µL, 0.25 mmol). $R_f = 0.17$ (AcOEt). IR (neat) v_{max} 3488, 2925, 2853, 1677, 1449, 1318, 539 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 4.15-4.09 (1H, m), 2.95 (1H, dd, J = 17.5, 10.5 Hz), 2.78 (2H, s), 2.64 (1H, dd, J = 17.5, 4.3 Hz), 1.81-1.56 (5H, m), 1.65 (3H, s), 1.56 (3H, s), 1.28-1.08 (6H, m). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 164.9 (C=O), 164.5 (C=O), 58.9 (C), 55.8 (CH), 49.9 (CH₂), 40.8 (CH), 37.4 (CH₂), 28.4 (CH₂), 27.2 (CH₂), 27.1 (CH₃), 26.2 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 25.0 (CH₃). HRMS (ESI⁺): calcd for C₁₄H₂₃N₂O₂ [(M+H)⁺]: 251.1754; Found: 251.1760. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH: 90/10, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 10.1$ min for *R* enantiomer; $t_{mino} = 11.4$ min for *S* enantiomer).

(*R*)-3,3-Dimethyl-7-isopropyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6g). The title compound was prepared according to the above general procedures as a white solid (35.2 mg, 0.17 mmol, 67% in 11.5:88.5 *er*) using conditions B from isobutyraldehyde **7g** (23 µL, 0.25 mmol). Recrystallization in AcOEt/heptane afforded an enantiopur sample (24.6 mg, 0.12 mmol, 70%). $R_f = 0.30$ (AcOEt). m.p. 130-131 °C (AcOEt/Hept). $[\alpha]_D^{20}$ –182.3 (*c* 0.92, CHCl₃). IR (neat) v_{max} 2971, 2927, 2882, 1667, 1380, 1332, 786 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 4.14-4.07 (1H, m), 2.91 (1H, dd, *J* = 10.7, 4.8 Hz), 2.74 (2H, s), 2.57 (1H, dd, *J* = 10.7, 4.8 Hz), 2.29-2.18 (1H, m), 1.62 (3H, s), 1.52 (3H, s), 0.93 (3H, d, *J* = 4.8 Hz), 0.90 (3H, d, *J* = 4.8 Hz). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 164.8 (C=O), 164.2 (C=O), 58.7 (C), 56.2 (CH), 49.8 (CH₂), 36.7 (CH₂), 30.7 (CH), 26.9 (CH₃), 24.9 (CH₃), 17.8 (CH₃), 16.5 (CH₃). HRMS (ESI⁺): calcd for C₁₁H₁₉N₂O₂ [(M+H)⁺]: 211.1441; Found: 211.1441. Anal. Calcd for C₁₁H₁₈N₂O₂: C, 62.83; H, 8.63; N, 13.32. Found: C, 62.69; H, 8.66; N, 13.13. HPLC analysis: chiral column IB (heptane/*i*-PrOH: 80/20, flow rate 1 mL/min, UV 254 nm, *t_{majo}* = 8.9 min for *R* enantiomer; *t_{mino}* = 22.6 min for *S* enantiomer).

(R)-3,3-Dimethyl-7-cyclopropyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6h). The title compound was prepared according to the above general procedures as a colorless oil (30.1 mg, 0.14 mmol, 58% in 92:8 er) using conditions B from cyclopropanecarboxaldehyde **7h** (19 μ L, 0.25 mmol). $R_f = 0.30$ (AcOEt). IR (neat) v_{max} 3552, 2977, 2934, 1674, 1312, 1021, 539 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 3.80 (1H, ddd, J = 10.1, 7.7, 4.3 Hz), 3.09 (1H, dd, J = 17.3, 10.1 Hz), 2.75 (2H, s), 2.64 (1H, dd, J = 17.3, 4.3 Hz), 1.62 (3H, s), 1.56 (3H, s), 1.17-1.09 (1H, m), 0.69-0.51 (3H, m), 0.35-0.27 (1H, m). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 164.5 (C=O), 164.3 (C=O), 59.1 (C), 55.4 (CH), 50.1 (CH₂), 40.9 (CH₂), 26.8 (CH₃), 25.0 (CH₃), 15.1 (CH), 3.8 (CH₂), 2.1 (CH₂). HRMS (ESI⁺): calcd for C₁₁H₁₇N₂O₂ Found: 209.1289. HPLC $[(M+H)^{+}]$ 209.1285; analysis: chiral column IB (heptane/*i*-PrOH: 80/20, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 10.5$ min for R enantiomer; $t_{mino} = 20.6 \text{ min for } S \text{ enantiomer}$).

(R)-3,3-Dimethyl-7-(2'-((benzyloxycarbonyl)amino)ethyl)-tetrahydropyrazolo[1,2-

a]pyrazole-1,5-dione (6i). The title compound was prepared according to the above general procedures as a pale yellow oil (52.6 mg, 0.15 mmol, 61% in 91:9 *er*) using conditions B from 3-((benzyloxycarbonyl)amino)propionaldehyde **7i** (51.8 mg, 0.25 mmol). $R_f = 0.10$ (AcOEt). IR (neat) v_{max} 3328, 2935, 1668, 1529, 1322, 1246, 1135, 1014, 730, 598, 538 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 7.35-7.29 (5H, m), 5.78-5.74 (1H, m), 5.08 (2H, m), 4.34-4.28 (1H, m), 3.55-3.44 (1H, m), 3.17-3.05 (2H, m), 2.74 (2H, s), 2.51 (1H, dd, J = 17.4, 4.3 Hz), 1.93-1.86 (2H, m), 1.63 (3H, s), 1.52 (3H, s). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 165.5 (C=O), 164.5 (C=O), 156.6 (C=O), 136.6 (C), 128.6 (CH), 128.2 (CH), 128.2 (CH), 66.7 (CH₂), 59.3 (C), 49.8 (CH₂), 49.0 (CH), 41.0 (CH₂), 37.6 (CH₂), 35.0 (CH₂), 27.0 (CH₃), 24.8 (CH₃). HRMS (ESI⁺): calcd for C₁₈H₂₄N₃O₄ [(M+H)⁺]: 346.1761; Found: 346.1768. HPLC analysis: chiral column IC (heptane/*i*-PrOH: 50/50, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 26.2$ min for *R* enantiomer; $t_{mino} = 57.4$ min for *S* enantiomer).

(R)-3,3-Dimethyl-7-(2'-(benzyloxy)ethyl)-tetrahydropyrazolo[1,2-a]pyrazole-1,5-dione

(6j). The title compound was prepared according to the above general procedures as a pale yellow oil (19.5 mg, 0.06 mmol, 26% in 8.5:91.5 er) using conditions B from 3-benzyloxy)propanal **7**j (41.1 mg, 0.25 mmol). $R_f = 0.19$ (AcOEt). IR (neat) v_{max} 3110, 3080, 3028, 2971, 2930, 2864, 1680, 1317, 1100, 740, 700 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 7.39-7.28 (5H, m), 4.54-4.36 (3H, m), 3.65-3.58 (2H, m), 3.06 (1H, dd, J = 17.3, 10.1 Hz), 2.74 (2H, s), 2.73 (1H, dd, J = 17.3, 5.2 Hz), 2.34-2.24 (1H, m), 2.03-1.90 (1H, m), 1.63 (3H, s), 1.54 (3H, s). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 164.4 (C=O), 164.3 (C=O), 138.1 (C), 128.6 (CH), 127.9 (CH), 127.9 (CH), 73.4 (CH₂), 66.6 (CH₂), 58.9 (C), 50.2 (CH), 50.1 (CH₂), 41.1 (CH₂), 33.7 (CH₂), 26.6 (CH₃), 25.2 (CH₃). HRMS (ESI⁺): calcd for C₁₇H₂₃N₂O₃ analysis: $[(M+H)^+]$: 303.1703; Found: 303.1710. HPLC chiral column IB (heptane/*i*-PrOH: 80/20, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 13.0$ min for R enantiomer; $t_{mino} = 31.8 \text{ min for } S \text{ enantiomer}$).

(*R*)-3,3-Dimethyl-7-(3'-oxobutyl)-tetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6k). The title compound was prepared according to the above general procedures as a colorless oil (20.8 mg, 0.09 mmol, 35% in 92:8 *er*) using conditions B from 4-oxopentanal **7k** (25.0 mg, 0.25 mmol). $R_f = 0.07$ (AcOEt). IR (neat) v_{max} 2973, 2934, 2864, 1674, 1320, 1289, 1167, 540 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 4.30-4.21 (1H, m), 3.09 (1H, dd, J = 17.3, 10.1 Hz), 2.72 (2H, s), 2.69-2.61 (2H, m), 2.48 (1H, dd, J = 17.3, 4.4 Hz), 2.16 (3H, s), 2.08-1.85 (2H, m), 1.63 (3H, s), 1.55 (3H, s). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 207.3 (C=O), 165.2 (C=O), 164.4 (C=O), 59.1 (C), 50.9 (CH), 49.9 (CH₂), 41.2 (CH₂), 39.5 (CH₂), 30.1 (CH₃), 28.8 (CH₂), 27.0 (CH₃), 24.9 (CH₃). HRMS (ESI⁺): calcd for C₁₂H₁₉N₂O₃ [(M+H)⁺]: 239.1390; Found: 239.1388. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH: 95/5, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 35.5$ min for *R* enantiomer; $t_{mino} = 39.3$ min for *S* enantiomer).

(*R*)-3,3-Dimethyl-7-phenyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6]). The title compound was prepared according to the above general procedures as a white solid (37.8 mg, 0.15 mol, 62% in 8.5:91.5 *er*) using conditions B at 0 °C for 4 days from benzaldehyde **71** (25 µL, 0.25 mmol) and (DHQ)₂PHAL (19.5 mg, 0.025 mmol, 0.1 equiv) in CH₂Cl₂ (1.25 mL). Recrystallization in MTBE afforded an enantiopur sample (19.6 mg, 0.08 mmol, 53%). m.p. 130-131 °C (MTBE). $R_f = 0.33$ (AcOEt). $[\alpha]_D^{20} - 181.8$ (*c* 1.00, CHCl₃). IR (neat) v_{max} , 3050, 2977, 2932, 1669, 1327, 1309, 774, 771, 694 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) δ_{H} 7.42-7.31 (5H, m), 5.27 (1H, dd, J = 10.7, 4.8 Hz), 3.45 (1H, dd, J = 17.4, 10.7 Hz), 2.87 (1H, dd, J = 17.4, 4.8 Hz), 2.82 (2H, s), 1.71 (3H, s), 1.65 (3H, s). ¹³C NMR (75 MHz; CDCl₃) δ_{C} 164.4 (C=O), 163.7 (C=O), 138.8 (C), 129.3 (CH), 128.7 (CH), 125.8 (CH), 59.2 (C), 54.1 (CH), 49.9 (CH₂), 44.0 (CH₂), 27.0 (CH₃), 25.2 (CH₃). HRMS (ESI⁺): calcd for C₁₄H₁₇N₂O₂ [(M+H)⁺]: 245.1285; Found: 245.1283. HPLC analysis: chiral column AD-H (heptane/*i*-PrOH: 85/15, flow rate 1 mL/min, UV 254 nm, $t_{mino} = 10.7$ min for *R* enantiomer).

(*R*)-3-Phenyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6m). The title compound was prepared according to the above general procedures as a white solid (51.0 mg, 0.24 mmol, 59% in 55.5:44.5 *er*) using conditions A from azomethine imine **4m** (69.8 mg, 0.40 mmol). $R_f = 0.40$ (AcOEt). IR (neat) v_{max} 3110, 3080, 3028, 2971, 2930, 2864, 1684, 1314, 1263, 770, 699 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 7.42-7.30 (5H, m), 5.37 (1H, dd, J = 10.5, 4.2 Hz), 4.23 (1H, dt, J = 11.9, 7.5 Hz), 3.83-3.72 (1H, m), 3.33 (1H, dd, J = 17.7, 10.5 Hz), 2.92-2.86 (3H, m). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 171.1 (C=O), 170.3 (C=O), 139.4 (C), 129.3 (CH), 128.5 (CH), 125.8 (CH), 55.3 (CH), 41.7 (CH₂), 39.8 (CH₂), 33.0 (CH₂). HRMS (ESI⁺): calcd for C₁₂H₁₃N₂O₂ [(M+H)⁺]: 217.0972; Found: 217.0974. HPLC analysis: chiral column OJ-H

(heptane/*i*-PrOH: 70/30, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 49.4$ min for *R* enantiomer; $t_{mino} = 82.8$ min for *S* enantiomer).

(*R*)-3-Cyclohexyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6n). The title compound was prepared according to the above general procedures as a white solide (49.8 mg, 0.22 mmol, 56% in 55.5:44.5 *er*) using conditions A from azomethine imine **4n** (72.1 mg, 0.40 mmol). $R_f = 0.18$ (AcOEt). IR (neat) v_{max} 2922, 2852, 1691, 1325, 1295, 1272, 1221, 972, 712, 547 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 4.19-4.04 (2H, m), 3.71-3.60 (1H, m), 2.92-2.79 (3H, m), 2.63 (1H, dd, J = 17.8, 3.8 Hz), 1.80-1.59 (5H, m), 1.33-1.05 (6H, m). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 171.4 (C=O), 171.0 (C=O), 57.8 (CH), 42.1 (CH), 39.5 (CH₂), 36.5 (CH₂), 33.1 (CH₂), 28.8 (CH₂), 28.6 (CH₂), 26.3 (CH₂), 25.8 (CH₂), 25.8 (CH₂). HRMS (ESI⁺): calcd for C₁₂H₁₉N₂O₂ [(M+H)⁺]: 223.1441; Found: 223.1448. HPLC analysis: chiral column IB (heptane/*i*-PrOH: 60/40, flow rate 1 mL/min, UV 254 nm, $t_{majo} = 9.3$ min for *R* enantiomer; $t_{mino} = 71.8$ min for *S* enantiomer).

III-3 Diastereoselective synthesis of pyrazolidinones

Representative general procedure for the diastereoselective synthesis of pyrazolidinones **6o-q.** Pyrazolidinone **8b**⁹ (40.5 mg, 0.25 mmol, 1.0 equiv), Meldrum's acid **1** (36.0 mg, 0.25 mmol, 1.0 equiv), DIPEA (9 μ L, 0.05 mmol, 0.2 equiv), the appropriate aldehyde **7** (0.25 mmol, 1.0 equiv) were dissolved in toluene (2.5 mL) and the reaction mixture was stirred at the appropriate temperature during the required time. The crude mixture was then concentrated under reduced pressure and purified by column chromatography on silica gel (AcOEt to AcOEt/MeOH: 95/5) to afford product **6**. The major diastereoisomer could be easily separated during the purification step. The diastereoisomeric ratio (dr) was determined by ¹H NMR of the crude reaction mixture.

cis-3,7-Diphenyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (60). The title compound was prepared according to the above general procedure as a white solid after 48 hours stirring at 20 °C (60.5 mg, 0.21 mmol, 83% in 93:7 *dr*) from benzaldehyde 71 (25 µL, 0.25 mmol). $R_f = 0.20$ (AcOEt). m.p. 88-89 °C. IR (neat) v_{max} 3100, 3050, 3028, 2971, 2932, 1679, 1304, 775, 713, 695 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 7.31-7.43 (10H, m), 5.45 (2H, dd, J = 10.6, 4.2 Hz), 3.38 (2H, dd, J = 17.7, 10.6 Hz), 2.92 (2H, dd, J = 17.7, 4.3 Hz). ¹³C NMR (75 MHz; CDCl₃) $\delta_{\rm C}$ 170.7 (C=O), 139.5 (C), 129.0 (CH), 128.1 (CH), 125.4 (CH), 55.0 (CH₂), 41.2 (CH₂). HRMS (ESI⁺): calcd for C₁₈H₁₇N₂O₂ [(M+H)⁺]: 293.1290; Found: 293.1282.

⁹ Shintani, R.; Soh, Y.-T.; Hayashi, T. Org. Lett. 2010, 12, 4106-4109.

cis-3-Phenethyl-7-phenyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6p). The title compound was prepared according to the above general procedure as a white solid after 14 hours 40 °C (70.5 mg, 0.22 mmol, 89% stirring at in >98:2 dr) from 3-phenylpropionaldehyde **7a** (35 μ L, 0.25 mmol). $R_f = 0.15$ (AcOEt/MeOH, 95/5). m.p. 109-110 °C. IR (neat) v_{max} 2926, 1687, 1660, 1330, 1313, 726, 700, 548 cm⁻¹. ¹H NMR $(300 \text{ MHz}; \text{CDCl}_3) \delta_H 7.43-7.20 (10\text{H}, \text{m}), 5.39 (1\text{H}, \text{dd}, J = 10.5, 3.9 \text{ Hz}), 4.47-4.39 (1\text{H}, \text{m}),$ 3.34 (1H, dd, J = 17.7, 10.5 Hz), 3.03 (1H, dd, J = 17.7, 9.8 Hz), 2.90-2.78 (3H, m), 2.57 (1H, dd, J = 17.7, 3.6 Hz), 2.27-2.17 (1H, m), 2.03-1.91 (1H, m). ¹³C NMR (75 MHz; CDCl₃) δ_C 171.1 (C=O), 170.7 (C=O), 140.5 (C), 139.6 (C), 129.1 (CH), 128.5 (CH), 128.4 (CH), 128.2 (CH), 126.2 (CH), 125.4 (CH), 54.7 (CH), 52.4 (CH), 41.6 (CH₂), 38.9 (CH₂), 37.1 (CH₂), 32.0 (CH₂). HRMS (ESI⁺): calcd for $C_{20}H_{21}N_2O_2$ [(M+H)⁺]: 321.1603; Found: 321.1607.

cis-3-(4-Bromophenethyl)-7-phenyltetrahydropyrazolo[1,2-*a*]pyrazole-1,5-dione (6q). The title compound was prepared according to the above general procedure as a white solid after 14 hours stirring at 40 °C (95.5 mg, 0.24 mmol, 96% in >98:2 *dr*) from 3-(4-bromophenyl)propanal **7b** (53.3 mg, 0.25 mmol). $R_f = 0.10$ (AcOEt). m.p. 139-140 °C. IR (neat) v_{max} 2926, 1688, 1659, 1496, 1356, 1318, 701, 550 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) δ_{H} 7.43-7.28 (7H, m), 7.12 (2H, d, J = 8.3 Hz), 5.39 (1H, dd, J = 10.5, 3.9 Hz), 4.44-4.34 (1H, m), 3.33 (1H, dd, J = 17.7, 10.5 Hz), 3.03 (1H, dd, J = 17.7, 9.8 Hz), 2.86 (1H, dd, J = 17.9, 3.9 Hz), 2.75 (2H, dd, J = 7.4 Hz), 2.55 (1H, dd, J = 17.8, 3.6 Hz), 2.23-2.10 (1H, m), 1.97-1.86 (1H, m). ¹³C NMR (75 MHz; CDCl₃) δ_{C} 171.2 (C=O), 170.9 (C=O), 139.5 (C), 131.5 (CH), 130.2 (CH), 129.1 (CH), 128.3 (CH), 125.4 (CH), 120.0 (C), 54.7 (CH), 52.2 (CH), 41.5 (CH₂), 38.8 (CH₂), 37.0 (CH₂), 31.5 (CH₂). MS (ESI⁺): m/z 399.7 and

401.7 [(M+H)⁺]. Anal. Calcd for C₂₀H₁₉BrN₂O₂: C, 60.16; H, 4.80; N, 7.02. Found: C, 59.99; H, 4.92; N, 6.80.

III-4 Reductive cleavage of bicyclopyrazolidinone N-N bond

(R)-4,4-Dimethyl-8-phenethyl-1,5-diazocane-2,6-dione (11). Dry liquid ammonia was condensed at -78 °C in a three-necked round bottom flask equipped with a Dewar condenser cooled with solid CO_2 in acetone. A solution of bicyclopyrazolidinone **6a** (58.0 mg, 0.21 mmol, 7.5:92.5 er) in dry degassed THF (10 mL) was added followed by sodium metal (14.7 mg, 0.64 mmol). The solution became blue in 5 minutes and then discolored to a white cloudy solution. The resulting mixture was stirred for 1 hour at -78 °C before an excess of solid NH4Cl was added. The reaction mixture was slowly warmed to room temperature until NH₃ has been distilled off. Water was added and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified by column chromatography on silica gel (AcOEt to AcOEt/MeOH: 95/5) to afford product 11 (33.0 mg, 0.12 mmol, 57% in 9.5:90.5 er). $R_f = 0.10$ (AcOEt/MeOH, 95/5). IR (neat) v_{max} , 3210, 3067, 2971, 2926, 1651, 1453, 1411, 1244, 750, 700 cm⁻¹. ¹H NMR (300 MHz; CDCl₃) $\delta_{\rm H}$ 7.96 (1H, br s), 7.4 (1H, s), 7.31-7.17 (5H, m), 3.56-3.44 (m, 1H), 2.89-2.56 (m, 6H), 2.13-2.01 (1H, m), 1.96-1.84 (1H, m), 1.44 (6H, s). ¹³C NMR (75 MHz; CDCl₃) δ_C 173.6 (C=O), 173.3 (C=O), 141.0 (C), 128.8 (CH), 128.7 (CH), 126.4 (CH), 51.5 (C), 49.1 (CH), 46.4 (CH₂), 40.1 (CH₂), 38.0 (CH₂), 32.1 (CH₂), 30.6 (CH₃), 30.2 (CH₃). HRMS (ESI⁺): calcd for $C_{16}H_{23}N_2O_2$ [(M+H)⁺]: 275.1754; Found: 275.1758. HPLC analysis: chiral column AD-H (heptane/i-PrOH: 70/30, flow rate 1 mL/min, UV 230 nm, $t_{mino} = 15.5$ min for S enantiomer; $t_{majo} = 31.4$ min for R enantiomer).

IV NMR spectra

IV.1 1-Phenylpropylidene-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide (4a)

IV.3 (R)-3,3-Dimethyl-7-phenethyltetrahydropyrazolo[1,2-a]pyrazole-

IV.4 (R)-3,3-Dimethyl-7-(2'-(p-bromophenyl)ethyl)tetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6b)

HMBC $^{1}\text{H}/^{13}$ C NMR (400 MHz)

IV.5 (*R*)-3,3-Dimethyl-7-pentyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6c)

IV.7 (*R*)-3,3-Dimethyl-7-(but-3'-en-1'-yl)-tetrahydropyrazolo[1,2a]pyrazole-1,5-dione (6e)

IV.8 (*R*)-3,3-Dimethyl-7-cyclohexyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6f)

IV.9 (R)-3,3-Dimethyl-7-isopropyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6g)

IV.10 (*R*)-3,3-Dimethyl-7-cyclopropyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6h)

IV.11 (*R*)-3,3-Dimethyl-7-(2'-((benzyloxycarbonyl)amino)ethyl)tetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6i)

IV.12 (*R*)-3,3-Dimethyl-7-(2'-(benzyloxy)ehtyl)-tetrahydropyrazolo[1,2a]pyrazole-1,5-dione (6j)

IV.13 (*R*)-3,3-Dimethyl-7-(3'-oxobutyl)-tetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6k)

f1 (ppm) C

IV.15 (R)-3-Phenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6m)

IV.16 (R)-3-Cyclohexyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6n)

f1 (ppm)

IV.17 cis-3,7-Diphenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (60)

IV.18 cis-3-Phenethyl-7-phenyltetrahydropyrazolo[1,2-a]pyrazole-1,5-dione (6p)

IV.19 cis-3-(4-Bromophenethyl)-7-phenyltetrahydropyrazolo[1,2a]pyrazole-1,5-dione (6q)

