

ELECTRONIC SUPPLEMENTARY INFORMATION

Protein Assembly Mediated by Sulfonatocalix[4]arene

Róise E. McGovern,^a Andrew A. McCarthy,^b and Peter B. Crowley*,^a

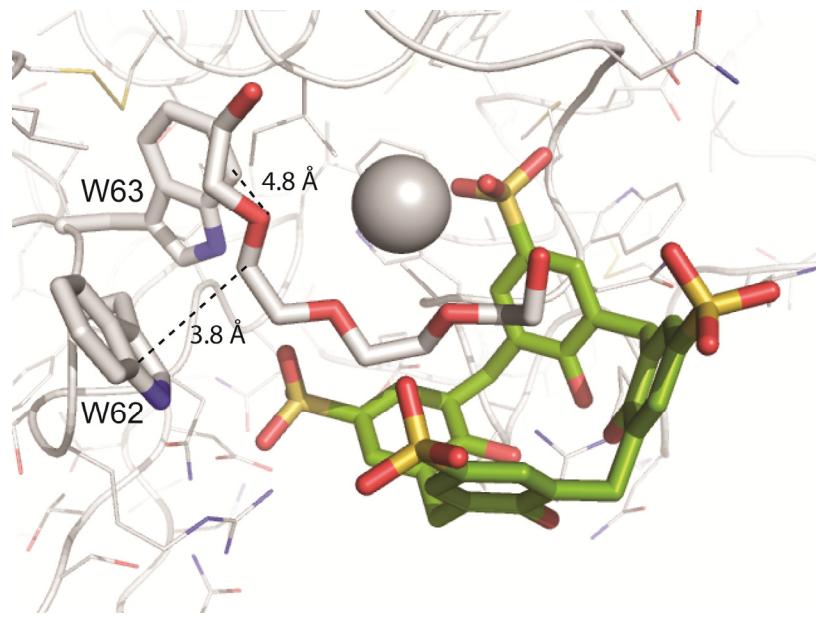
^aSchool of Chemistry, National University of Ireland Galway, Ireland

^bEuropean Molecular Biology Laboratory, Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France

*Correspondence to: peter.crowley@nuigalway.ie, +353 91 49 24 80

Methods

Co-crystallization of lysozyme and sclx4. Hen white egg lysozyme (62971 Fluka) was purchased from Sigma-Aldrich and used without further purification. The hanging drop vapour diffusion method was used for crystallization at 20° C. Co-crystals of lysozyme and sclx4 were grown from identical conditions to those reported for cytochrome *c*¹ except that an oil barrier was not used. Drops were prepared by combining 1 µL volumes of lysozyme (1.4 mM), sclx4 (17 mM) and the reservoir solution (20-30 % polyethylene glycol (PEG) 8000, 50 mM NaCl, 100 mM MgCl₂ and 50 mM sodium cacodylate pH 6.3). Premixing the protein and ligand was not possible as this resulted in complete precipitation.


X-ray Diffraction and Structure Determination. Crystals were transferred to reservoir solution supplemented with 25 % glycerol and flash-frozen under a stream of nitrogen gas at 100 K (X-stream 2000). Diffraction data were collected from a single crystal of the lysozyme:sclx4 complex at Soleil (PROXIMA 1, Pilatus 6M detector, φ scans of 0.1° over 180° to a resolution of 1.72 Å). Data processing and scaling were performed in MOSFLM² and SCALA,³ respectively. The data collection and refinement statistics are given in Table S1. The structure was solved by molecular replacement in PHASER.⁴ Refinement and manual rebuilding were performed in REFMAC5 as implemented in CCP4⁵ and COOT,⁶ respectively. Solvent molecules were placed automatically using ARP/wARP⁷ and refinement was continued until no features remained in the F_o – F_c difference maps. Molprobity⁸ was used to check the structure quality. Coordinates and structure factors were deposited in the Protein Data Bank with the accession code 4PRQ. The protein-ligand and protein-protein interfaces were analysed in COOT and PISA.⁹ Interface areas [the inaccessible surface (Å²) of the protein or ligand in the complex] were calculated as described previously.¹

Arginine solvent accessibility in lysozyme. 15 high resolution (0.9-2.1 Å) crystal structures of hen egg white lysozyme were analyzed using the Accessible Surface Areas calculation in CCP4.⁴ Each file (PDB codes: 194L, 1GWD, 1JIS, 1LPI, 1YIK, 2CDS, 2D4K, 2FBB, 2I25, 2ZQ3, 3A67, 3AGH, 3AW7, 3LZT, 4J1A) was manually edited to contain a single copy of lysozyme. Other proteins, water molecules, ions and alternate conformations were removed prior to the calculations.

Table S1. Summary of crystallization conditions, data collection and refinement statistics

<i>Crystallization Conditions^a</i>	
[protein], [sclx ₄] (mM)	1.4, 17
PEG 8,000 (%)	24
Buffer, (CH ₃) ₂ AsO ₂ Na	0.05 M, pH 6.3
Salts	0.05 M NaCl, 0.1 M MgCl ₂
<i>Data Collection^b</i>	
Space group	<i>P</i> 2 ₁
	<i>a</i> = 44.01 Å
	<i>b</i> = 81.75 Å
Cell constants	<i>c</i> = 72.10 Å
	$\alpha = \gamma = 90^\circ$
	$\beta = 105.37^\circ$
Resolution (Å)	81.75-1.72 (1.77-1.72)
Wavelength (Å)	1.00792
Unique reflections	1386759 (51142)
Multiplicity	3.0 (2.6)
<i>I</i> / σ	9.4 (1.8)
Completeness (%)	98.7 (94.9)
<i>R</i> _{merge} ^c (%)	7.3 (55.6)
Solvent content (%)	43.86
<i>Refinement</i>	
<i>R</i> _{factor} (%)	18.48
<i>R</i> _{free} (%)	22.42
rmsd ^d bonds (Å)	0.01
rmsd angles (°)	1.12
# molecules in asymmetric unit	
Protein	4
sclx ₄	5
PEG	5
Mg ²⁺	3
Solvent	322
Average <i>B</i> factors ^e (Å ²)	
Protein	21.51
sclx ₄	19.70
PEG	45.46
Mg ²⁺	28.88
Solvent	28.44
Ramachandran analysis ^f	
% residues (favoured regions)	98.8
% residues (allowed regions)	100.0

^aThe crystallization drops comprised 1 μL each of the protein, ligand and reservoir solutions; ^bValues in parentheses correspond to the highest resolution shell; ^c $R_{\text{merge}} = \sum_{hkl} \sum_i |I_i(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_i I_i(hkl)$; ^droot mean square deviation; ^ecalculated from the B values of all non-hydrogen atoms; ^fcalculated with Molprobity.

Fig S1. A calixarene bound near the active site in chain B. This calixarene is complexed with Mg^{2+} and a fragment of PEG (in a crown ether like conformation). The PEG also makes van der Waals contacts with the indole rings of the active site residues Trp62 and Trp63.

References

1. R. E. McGovern, H. Fernandes, A. R. Khan, N. P. Power and P. B. Crowley, *Nat. Chem.* 2012, **4**, 527.
2. A. G. W. Leslie, Recent changes to the MOSFLM package for processing film and image plate data; Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography **1992**.
3. P. Evans, *Acta Crystallogr. D* 2006, **62**, 72.
4. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni and R. J. Read, *J. Appl. Crystallogr.* 2007, **40**, 658.
5. Collaborative Computational Project, N. *The CCP4 suite: programs for protein crystallography.*; *Acta Crystallogr. D* 1994, **50**, 760.
6. P. Emsley, and K. Cowtan, *Acta Crystallogr. D* 2004, **60**, 2126.
7. E. J. van Asselt, A. Perrakis, K. H. Kalk, V. S. Lamzin and B. W. Dijkstra, *Acta Crystallogr. D* 1998, **54**, 58.
8. V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson and D. C. Richardson, *Acta Crystallogr. D* 2010, **66**, 12.
9. E. Krissinel, and K. Henrick, *J. Mol. Biol.* 2007, **372**, 774.