Supporting Information

Sequential Bi-C Bond Activation Reactions of BiEt₃ by Insertion Reactions of RE { $R = HC[C(Me)N(2,6-i-Pr_2C_6H_3)]_2$; E = Al, Ga, In}.

Chelladurai Ganesamoorthy, Dieter Bläser, Christoph Wölper and Stephan Schulz*

Experimental Section

General Procedures. All manipulations were performed in an atmosphere of purified argon using standard Schlenk and glove-box techniques. Toluene and hexane were dried using mBraun Solvent Purification System. Deuterated solvents were dried over activated molecular sieves (4 Å) and degassed prior to use. Anhydrous nature of the solvents were verified by Karl Fischer titration. The compounds RM (R = $HC[C(Me)N(2,6-iPr_2C_6H_3)]_2$; M = Al, Ga and In)^[1] and BiEt₃^[2] were prepared according to the published procedures. Other chemicals were obtained from commercial sources and purified prior to use.

Instrumentation. The ¹H (300 MHz) and ¹³C{¹H} (75.5 MHz) NMR (δ in ppm) spectra were recorded using a Bruker Avance DPX-300 spectrometer and the spectra were referenced to the trace of respective protonated solvent impurities present in the deuterated solvents. Powder X-ray diffraction (XRD) was performed using a Bruker D8 Advance powder diffractometer with Cu K_{a1} radiation (λ 1.540598 Å). The microanalyses were performed at the elemental analysis laboratory of University of Duisburg-Essen. IR spectra were measured in an ALPHA-T FT-IR spectrometer equipped with a single reflection ATR sampling module. The spectrometer was placed in a glovebox so as to perform the FT-IR measurements in inert gas atmosphere. Metal precipitates were analyzed by SEM using a Jeol JSM 6510 equipped with an energy dispersive X-ray spectroscopy (EDX) device (Bruker Quantax 400).

Reference:

a) C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao and F. Cimpoesu, *Angew. Chem.* 2000, **112**, 4444; *Angew. Chem. Int. Ed.* 2000, **39**, 4274; b) N. J. Hardman, B. E. Eichler and P. P. Power, *Chem. Commun.* 2000, 1991; c) M. S. Hill and P. B. Hitchcock, *Chem. Commun.*, 2004, 1818.

2) H. Gilman and J. F. Nelson, J. Am. Chem. Soc. 1937, 59, 935.

Synthesis of RAIEt(BiEt₂) (1)

A mixture of RAI (82 mg, 0.184 mmol) and BiEt₃ (54.6 mg, 30 µL, 0.184 mmol) in 0.6 mL of C₆D₆ was heated at 75 °C for 5 h. The reaction mixture was periodically monitored using ¹H NMR to avoid decomposing **1** into RAIEt₂ (**4**) and Bi metal. The solvents were removed under reduced pressure to give a yellow residue, which was redissolved in 1 mL of *n*-hexane and stored at -30 °C for 2 days to afford analytically pure yellow crystals of **1**. Yield: 80 mg (0.108 mmol, 58 %). Anal. Calcd. for C₃₅H₅₆BiAlN₂: C, 56.75; H, 7.62; N, 3.78. Found: C, 57.60; H, 7.76; N, 3.79%. IR (neat): v 2968 (m), 2922 (m), 2859 (m), 1549 (w), 1521 (m), 1435 (m), 1383 (br, s), 1309 (m), 1257 (m), 1172 (m), 1137 (w), 1103 (w), 1017 (m), 989 (m), 932 (m), 863 (m), 800 (m), 755 (m), 715 (w), 640 (w), 577 (m), 520 (w), 411 (s) cm⁻¹. ¹H NMR (C₆D₆, 300 MHz): δ 7.13 (m, 6 H, C₆H₃(¹Pr)₂), 4.79 (s, 1 H, γ -CH-), 3.53 (sept, 2 H, -CH(CH₃)₂), 1.54 (s, 6 H, ArNCCH₃), 1.52 (d, 6 H, -CH(CH₃)₂), 1.44 (d, 6 H, -CH(CH₃)₂), 1.22 (d, 6 H, -CH(CH₃)₂), 1.06 (d, 6 H, *J* = 6.6 Hz, -CH(CH₃)₂), 0.37 (q, 2 H, *J* = 8.1 Hz, -AlCH₂CH₃). ¹³C NMR (C₆D₆, 75.5 MHz): δ 171.58 (ArNCCH₃).

145.79 (C_6H_3), 143.81 (C_6H_3), 141.55 (C_6H_3), 127.84 (C_6H_3), 125.46 (C_6H_3), 125.01 (C_6H_3), 98.83 (γ -CH-), 30.51 (-CH(CH_3)₂), 27.77 (-CH(CH_3)₂), 25.84 (-CH(CH_3)₂), 25.72 (-CH(CH_3)₂), 25.45 (-CH(CH_3)₂), 25.37 (-CH(CH_3)₂), 24.16 (ArNCCH₃), 17.99 (BiCH₂CH₃), 12.48 (AlCH₂CH₃), -14.83 (AlCH₂CH₃).

Synthesis of RGaEt(BiEt₂) (2)

A mixture of RGa (300 mg, 0.615 mmol) and BiEt₃ (182 mg, 100 μ L, 0.614 mmol) in 5 mL of toluene was heated at 80 °C for 24 h. Compound 2 is stable at this temperature even for 2 days. The solvents were removed under reduced pressure to give a yellow residue, which was redissolved in 5 mL of *n*-hexane and stored at -30 °C for 1 day to afford analytically pure yellow crystals of 1. Yield: 420 mg (0.536 mmol, 87 %). Anal. Calcd. for C₃₅H₅₆BiGaN₂: C, 53.65; H, 7.20; N, 3.58. Found: C, 54.20; H, 7.25; N, 3.71%. IR (neat): v 2966 (m), 2929 (m), 2851 (m), 1549 (m), 1520 (m), 1435 (m), 1393 (s), 1310 (m), 1255 (m), 1171 (m), 1141 (w), 1105 (w), 1015 (w), 937 (w), 853 (m), 788 (s), 757 (m), 661 (w), 619 (w), 511 (m), 439 (m) cm⁻¹. ¹H NMR (C₆D₆, 300 MHz): δ 7.13 (m, 6 H, C₆H₃(^{*i*}Pr)₂), 4.66 (s, 1 H, γ -CH-), 3.61 (sept, 2 H, -CH(CH₃)₂), 3.47 (sept, 2 H, -CH(CH₃)₂), 1.87 & 1.71 (m, 7 H, -GaCH₂CH₃, -BiCH₂CH₃), 1.58 (s, 6 H, ArNCCH₃), 1.56 (t, 6 H, -BiCH₂CH₃), 1.52 (d, 6 H, -CH(CH₃)₂), 1.40 (d, 6 H, -CH(CH₃)₂), 1.23 (d, 6 H, -CH(CH₃)₂), 1.13 (d, 6 H, J = 6.9 Hz, -CH(CH₃)₂), 0.83 (q, 2 H, -GaCH₂CH₃). ¹³C NMR (C₆D₆, 75.5 MHz): δ 169.47 (ArNCCH₃), 145.42 (C₆H₃), 143.51 (C₆H₃), 143.16 (C₆H₃), 127.30 (C₆H₃), 125.21 (C₆H₃), 124.82 (C₆H₃), 97.33 (γ-CH-), 30.24 (-CH(CH₃)₂), 27.74 (-CH(CH₃)₂), 25.78 (-CH(CH₃)₂), 25.77 (-CH(CH₃)₂), 25.43 (-CH(CH₃)₂), 25.34 (-CH(CH₃)₂), 24.22 (ArNCCH₃), 18.38 (BiCH₂CH₃), 17.23 (BiCH₂CH₃), 13.29 (GaCH₂CH₃), -11.09 (GaCH₂CH₃).

Synthesis of RInEt(BiEt₂) (3)

This was synthesized by following the procedure of **1** using RIn (228 mg, 0.429 mmol) and BiEt₃ (254 mg, 0.858 mmol). Heating temperature and time duration were 79 °C and 4 h, respectively. Yield: 0.310 g (0.374 mmol, 87 %). Anal. Calcd. for $C_{35}H_{56}BiInN_2$: C, 50.73; H, 6.81; N, 3.38. Found: C, 50.60; H, 6.79; N, 3.35%. IR (neat): v 2962 (m), 2917 (m), 2855 (m), 1550 (m), 1510 (m), 1460 (m), 1432 (m), 1381 (br, s), 1314 (s), 1241 (s), 1173 (m), 1128 (br, m), 982 (m), 931 (m), 847 (w),

791 (s), 751 (m), 661 (w), 605 (w), 515 (w), 442 (s) cm⁻¹. ¹H NMR (C₆D₆, 300 MHz): δ 7.11 (m, 6 H, C₆H₃(ⁱPr)₂), 4.66 (s, 1 H, γ -CH-), 3.60 (sept, 2 H, -CH(CH₃)₂), 3.48 (sept, 2 H, -CH(CH₃)₂), 1.98 (m, 7 H, -InCH₂CH₃, -BiCH₂CH₃), 1.70 (t, 6 H, -BiCH₂CH₃), 1.63 (s, 6 H, ArNCCH₃), 1.47 (d, 6 H, -CH(CH₃)₂), 1.33 (d, 6 H, -CH(CH₃)₂), 1.26 (d, 6 H, -CH(CH₃)₂), 1.18 (d, 6 H, J = 6.9 Hz, -CH(CH₃)₂), 1.15 (m, 2 H, -InCH₂CH₃). ¹³C NMR (C₆D₆, 75.5 MHz): δ 169.15 (ArNCCH₃), 144.97 (C₆H₃), 144.00 (C₆H₃), 142.90 (C₆H₃), 126.53 (C₆H₃), 124.78 (C₆H₃), 124.61 (C₆H₃), 96.71 (γ -CH-), 29.85 (-CH(CH₃)₂), 28.12 (-CH(CH₃)₂), 26.30 (-CH(CH₃)₂), 25.88 (-CH(CH₃)₂), 25.31 (-CH(CH₃)₂), 24.88 (-CH(CH₃)₂), 24.63 (ArNCCH₃), 21.02 (BiCH₂CH₃), 18.36 (BiCH₂CH₃), 13.95 (InCH₂CH₃), -10.64 (InCH₂CH₃).

Formation of RGaEt₂ (5) from RGaEt(BiEt₂) (2)

Compound **2** (175 mg, 0.223 mmol) in 1 mL of toluene was heated at 120 °C for 15 h. The reaction mixture was filtered and the insoluble gray power was washed with 5 mL of toluene. The combined filtrates were dried under reduced pressure and the resulting white solid was dissolved in minimum amount of *n*-hexane. The solution was kept at -30 °C for 1 day to afford colorless crystals of **5**. Yield: 0.112 g of RGaEt₂ (0.205 mmol, 92 %); 0.0214 g of Bi metal. IR (neat): v 2968 (m), 2919 (m), 2864 (m), 1548 (m), 1516 (m), 1440 (m), 1396 (br, s), 1309 (s), 1255 (m), 1173 (m), 1097 (w), 1010 (m), 934 (m), 858 (w), 798 (s), 754 (m), 640 (m), 542 (m), 499 (m), 444 (m) cm^{-1.} ¹H NMR (C₆D₆, 300 MHz): δ 7.13 (m, 6 H, C₆H₃(¹Pr)₂), 4.68 (s, 1 H, γ -CH-), 3.50 (sept, 4 H, -CH(CH₃)₂), 1.57 (s, 6 H, ArNCCH₃), 1.36 (d, 12 H, -CH(CH₃)₂), 1.23 (t, 6 H, -GaCH₂CH₃). ¹³C NMR (C₆D₆, 75.5 MHz): δ 169.12 (ArNCCH₃), 144.54 (C₆H₃), 142.91 (C₆H₃), 127.11 (C₆H₃), 124.72 (C₆H₃), 97.29 (γ -CH-), 28.44 (-CH(CH₃)₂), 25.58 (-CH(CH₃)₂), 25.25 (-CH(CH₃)₂), 23.82 (ArNCCH₃), 11.38 (GaCH₂CH₃).

Single-crystal X-ray analyses. The crystals were mounted on nylon loops in inert oil. Data were collected on a Bruker AXS D8 Kappa diffractometer with APEX2 detector (mono-chromated Mo_{Ka} radiation, $\lambda = 0.71073$ Å) at 100 K. The structures were solved by Direct Methods (SHELXS-97)¹ and refined anisotropically by full-matrix least-squares on F^2 (SHELXL-97)². Absorption corrections were performed semiempirically from equivalent reflections on basis of multi-scans (Bruker AXS APEX2) except for 1 where the corrections was done numerically by face-indexing. Hydrogen atoms were refined using a riding model or rigid methyl groups. CCDC 1011108 (1),CCDC 1011107 (2), CCDC 1011105 (3), and CCDC 1011106 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

	1	2	3	5
Empirical formula	C ₃₅ H ₅₆ Al Bi N ₂	C ₃₅ H ₅₆ Bi Ga N ₂	C ₃₅ H ₅₆ Bi In N ₂	C33 H51 Ga N2
M	740.77	783.51	828.61	545.47
Crystal size [mm]	0.28 × 0.24 × 0.21	0.480 × 0.413 × 0.254	0.324 × 0.299 × 0.227	$0.460 \times 0.430 \times 0.380$
<i>T</i> [K]	100(1)	100(1)	100(1)	100(1)
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1	$P 2_1/n$	<i>P</i> -1
<i>a</i> [Å]	11.5940(15)	9.0994(6)	8.7410(4)	10.3656(18)
<i>b</i> [Å]	12.2244(16)	12.0444(9)	21.4064(10)	12.119(2)
c [Å]	12.6546(16)	16.5176(12)	19.0397(9)	13.700(2)
α [°]	72.804(6)	74.379(2)	90	71.293(6)
β [°]	88.915(6)	79.774(2)	99.2600(10)	75.982(6)
γ [°]	89.682(6)	85.921(2)	90	73.618(6)
V[Å ³]	1713.1(4)	1715.2(2)	3516.2(3)	1542.0(5)
Ζ	2	2	4	2

$D_{\text{calc}} [g \cdot \text{cm}^{-1}]$	1.436	1.517	1.565	1.175
$\mu(\mathrm{Mo}K_{\alpha}[\mathrm{mm}^{-1}])$	5.196	5.932	5.677	0.914
Transmissions	0.54/0.38	0.44/0.12	0.50/0.24	0.80/0.69
F(000)	752	788	1648	588
Index ranges	$-16 \le h \le 16$	$-13 \le h \le 13$	$-12 \le h \le 12$	$-15 \le h \le 14$
	$-16 \le k \le 17$	$-17 \le k \le 17$	$-31 \le k \le 31$	$-17 \le k \le 17$
	$-17 \le l \le 17$	$-23 \le l \le 23$	$-28 \le l \le 27$	$-19 \le l \le 19$
θ _{max} [°]	30.086	30.978	31.708	31.426
Reflections collected	48941	55296	127401	34092
Independent reflections	9813	10747	11625	9970
R _{int}	0.0251	0.0508	0.0471	0.0219
Refined parameters	365	365	365	337
$R_1 \left[I > 2\sigma(I)\right]^a$	0.0175	0.0278	0.0283	0.0269
wR_2 [all data] ^a	0.0437	0.0693	0.0631	0.0751
GooF ^b	1.042	1.046	1.103	1.039
$\frac{\Delta \rho_{\text{final}} (\text{max/min})}{[\text{e} \cdot \text{Å}^{-3}]}$	1.407/-0.592	2.736/-2.248	3.281/-1.236	1.429/-0.292

 $\frac{1}{a}R(F) = \sum ||F_0| - |F_c|| / \sum |F_0|; wR(F^2) = [\sum \{w(F_0^2 - F_c^2)^2\} / \sum \{w(F_0^2)^2\}]^{0,5}; w^{-1} = \sigma^2(F_0^2) + (aP)^2 + bP \text{ mit } P = [F_0^2 + 2F_c^2] / 3, a \text{ and } b \text{ are constants chosen by the programme;}^{b} GoF = [\sum \{w(F_0^2 - F_c^2)^2\} / (n-p)]^{0,5} \text{ with } n \text{ data and } p \text{ parameters.}$

[1] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467

[2] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures University of Göttingen, Göttingen (Germany) 1997. (see also: Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112)

Ga(1)-C(32) $1.9814(11)$ $C(32)-Ga(1)-N(2)$ $110.92(4)$ $Ga(1)-N(2)$ $1.9876(9)$ $C(32)-Ga(1)-N(1)$ $113.30(4)$ $Ga(1)-N(1)$ $1.9979(9)$ $N(2)-Ga(1)-N(1)$ $93.75(4)$ $Ga(1)-C(30)$ $2.0215(12)$ $C(32)-Ga(1)-C(30)$ $117.77(5)$ $N(1)-C(1)$ $1.3326(13)$ $N(2)-Ga(1)-C(30)$ $110.59(4)$ $N(1)-C(6)$ $1.4441(13)$ $N(1)-Ga(1)-C(30)$ $107.91(4)$ $N(2)-C(3)$ $1.3360(13)$ $C(1)-N(1)-C(6)$ $121.17(8)$	1.9814(11)	$C_{\alpha}(1) C(22)$
Ga(1)-N(2) $1.9876(9)$ $C(32)$ - $Ga(1)$ -N(1) $113.30(4)$ $Ga(1)$ -N(1) $1.9979(9)$ $N(2)$ - $Ga(1)$ -N(1) $93.75(4)$ $Ga(1)$ -C(30) $2.0215(12)$ $C(32)$ - $Ga(1)$ - $C(30)$ $117.77(5)$ $N(1)$ -C(1) $1.3326(13)$ $N(2)$ - $Ga(1)$ - $C(30)$ $110.59(4)$ $N(1)$ -C(6) $1.4441(13)$ $N(1)$ - $Ga(1)$ - $C(30)$ $107.91(4)$ $N(2)$ -C(3) $1.3360(13)$ $C(1)$ - $N(1)$ - $C(6)$ $121.17(8)$		Ga(1)- $C(32)$
Ga(1)-N(1)1.9979(9)N(2)- $Ga(1)$ -N(1)93.75(4) $Ga(1)$ -C(30)2.0215(12)C(32)- $Ga(1)$ -C(30)117.77(5)N(1)-C(1)1.3326(13)N(2)- $Ga(1)$ -C(30)110.59(4)N(1)-C(6)1.4441(13)N(1)- $Ga(1)$ -C(30)107.91(4)N(2)-C(3)1.3360(13)C(1)-N(1)-C(6)121.17(8)	1.9876(9)	Ga(1)-N(2)
Ga(1)-C(30)2.0215(12)C(32)-Ga(1)-C(30)117.77(5)N(1)-C(1)1.3326(13)N(2)-Ga(1)-C(30)110.59(4)N(1)-C(6)1.4441(13)N(1)-Ga(1)-C(30)107.91(4)N(2)-C(3)1.3360(13)C(1)-N(1)-C(6)121.17(8)	1.9979(9)	Ga(1)-N(1)
N(1)-C(1)1.3326(13)N(2)-Ga(1)-C(30)110.59(4)N(1)-C(6)1.4441(13)N(1)-Ga(1)-C(30)107.91(4)N(2)-C(3)1.3360(13)C(1)-N(1)-C(6)121.17(8)	2.0215(12)	Ga(1)-C(30)
N(1)-C(6)1.4441(13)N(1)-Ga(1)-C(30)107.91(4)N(2)-C(3)1.3360(13)C(1)-N(1)-C(6)121.17(8)	1.3326(13)	N(1)-C(1)
N(2)-C(3) 1.3360(13) C(1)-N(1)-C(6) 121.17(8	1.4441(13)	N(1)-C(6)
	1.3360(13)	N(2)-C(3)
N(2)-C(18) 1.4365(12) $C(1)-N(1)-Ga(1)$ 119.93(7)	1.4365(12)	N(2)-C(18)
C(1)-C(2) 1.4104(14) C(6)-N(1)-Ga(1) 118.71(6	1.4104(14)	C(1)-C(2)
C(2)-C(3) 1.4010(14) C(3)-N(2)-C(18) 121.10(8	1.4010(14)	C(2)-C(3)
C(3)-N(2)-Ga(1) 120.18(7		
C(18)-N(2)-Ga(1) 118.67(6		

 Table 2. Selected bond distances and bond angles for compound 5.

Figure S1. ¹H NMR spectrum of RAlEt(BiEt₂) (1) in C_6D_6 .

Figure S2. ¹³C NMR spectrum of RAlEt(BiEt₂) (1) in C_6D_6 .

Figure S3. ATR-IR spectrum of RAlEt(BiEt₂) (1).

Figure S4. ¹H NMR spectrum of RGaEt(BiEt₂) (2) in C_6D_6 .

Figure S5. ¹³C NMR spectrum of RGaEt(BiEt₂) (2) in C_6D_6 .

Figure S6. ATR-IR spectrum of RGaEt(BiEt₂) (2).

Figure S8. ¹³C NMR spectrum of RInEt(BiEt₂) (3) in C_6D_6 .

Figure S9. ATR-IR spectrum of RInEt(BiEt₂) (3).

Figure S10. ¹H NMR spectrum of RGaEt₂ (**5**) in C_6D_6 .

Figure S11. ¹³C NMR spectrum of RGaEt₂ (5) in C_6D_6 .

Figure S12. ATR-IR spectrum of RGaEt₂ (5).

Figure S13. Formation of RAlEt₂ (**4**) and BiEt₃ from isolated RAlEt(BiEt₂) (**1**). ¹H NMR spectrum of RAlEt(BiEt₂) (**1**) in C₆D₆ after heating at 90 °C for 5 h.

Figure S14. Formation of RGaEt₂ (**5**) and BiEt₃ from isolated RGaEt(BiEt₂) (**2**). ¹H NMR spectrum of RGaEt(BiEt₂) (**2**) in Toluene- d_8 after heating at 120 °C for 15 h.

Figure S15. ¹H NMR spectrum of $BiEt_3$ in C_6D_6 .

Figure S16. SEM picture and EDX spectrum of the Bi metal formed from compound RGaEt(BiEt₂) (**2**).

Figure S17. PXRD pattern of the Bi metal obtained from compound RGaEt(BiEt₂) (2).

Figure S18. Molecular structure of $RAlEt(BiEt_2)$ (1). H-atoms have been omitted for clarity and displacement ellipsoids are drawn at the 30% probability level.

Figure S19. Molecular structure of RGaEt(BiEt₂) (**2**). H-atoms have been omitted for clarity and displacement ellipsoids are drawn at the 30% probability level.

Figure S20. Molecular structure of RInEt(BiEt₂) (**3**). H-atoms have been omitted for clarity and displacement ellipsoids are drawn at the 30% probability level.

Figure S21. Molecular structure of $RGaEt_2$ (5). H-atoms have been omitted for clarity and displacement ellipsoids are drawn at the 30% probability level.