Supporting Information for:

Stereoselective [3+2] Cycloaddition of *N-tert*-Butanesulfinyl Imines to Arynes Facilitated by Removable PhSO₂CF₂ Group: Synthesis and Transformation of Cyclic Sulfoximines

Laijun Zhang,[†] Wenchao Ye,[†] Chuanfa Ni, Jian Rong and Jinbo Hu *

Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry,

Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China

*E-mail: jinbohu@sioc.ac.cn

General	S2
1. Preparation of <i>N-tert</i> -Butanesulfinyl Imines	S2
2. Screening of Reaction Conditions	S10
3. $[3 + 2]$ Cycloaddition of PhSO ₂ CF ₂ -Sulfinimines with Arynes are	d Further
Transformation	S 11
3.1 [3 + 2] Cycloaddition	S11
3.2 Synthesis of Cyclic Sulfinamides	S27
3.3 <i>N</i> -(6-Bromonaphthalen-2-yl)methylation of Cyclic Sulfinamide 6a	S34
3.4 Synthesis of Cyclic Sulfinimines	\$36
3.5 Addition to Cyclic Sulfinimines	S40
3.6 Oxidation of Cyclic Sulfinamide 9c	S44
3.7 Reductive Desulfonylation	S46
4. Determination of the Enantioselectivity	S49
5. ¹ H, ¹⁹ F, and ¹³ C NMR Spectrum of New Compounds	S58

General

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. The solvent THF was distilled from sodium, and the solvents MeCN, CH₂Cl₂, HMPA (hexamethylphosphoramide) and DMF were distilled from CaH₂ before being used. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on a 400 MHz or 300 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of the residual protonated solvent: CDCl₃ δ 7.26. ¹³C NMR chemical shifts were determined relative to internal TMS at δ 0.0. For the isolated compounds, ¹⁹F NMR chemical shifts were determined relative to CFCl₃ at δ 0.0. Mass spactra were obtained on a mass spectrometer. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI mode.

1. Preparation of N-tert-Butanesulfinyl Imines

1.1 Preparation of Difluoro(phenylsulfonyl)methyl Ketones:

Method 1: Ketones **S1a**, **S1d-e**, **S1g-i**, and **S1j** were prepared by difluoro(phenylsulfonyl)methylation of the corresponding methyl esters according to the reported procedures.¹

$$\begin{array}{c} O \\ \parallel \\ \mathsf{R} \end{array} + \\ \begin{array}{c} \mathsf{PhSO}_2\mathsf{CF}_2\mathsf{H} \end{array} \xrightarrow{ \begin{array}{c} \mathsf{LiHMDS} \\ \bullet \\ \mathsf{THF} - \mathsf{HMPA}, -98 \ ^{\circ}\mathsf{C} \end{array}} \begin{array}{c} O \\ \mathbb{R} \end{array} \xrightarrow{ \begin{array}{c} \mathsf{O} \\ \leftarrow \\ \mathsf{CF}_2\mathsf{SO}_2\mathsf{Ph} \end{array}}$$

Method 2: Ketones **S1b-c** and **S1k** were prepared by oxidation of the corresponding known α -difluoro(phenylsulfonyl)methyl alcohols with DMSO/(COCl)₂/Et₃N (Swern Oxidation). Ketone **S1f** was prepared by oxidation with Jones' reagent.

¹ Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2009, 74, 3767.

1.2 Condensation of *N-tert*-Butylsulfinamide and the Corresponding Ketones.

Non-fluorinated imines 1a-c,² difluoromethyl imine 1d, trifluoromethyl imine 1e,³ and monofluoromethyl imine 1f were prepared by condensation of the corresponding (*R*)-*N*-*tert*-butylsulfinamide and carbonyl compounds. The Z-configuration of the imino bond in difluoromethyl imine 1d was established by single-crystal X-ray analysis of its analogue S2 (see SI Section 3.1), and the assumption was made that monofluoromethyl imine **1f** possessed a similar geometry.

Difluoro(phenylsulfonyl)methyl imines **2a-k** (Table S1) were prepared according to the following typical procedures:

Typical procedures:

Under N₂ atmosphere, a mixture of (*R*)-*N*-tert-butylsulfinamide (> 99% ee, 9.6 mmol, 1.162 g), (phenylsulfonyl)difluoromethyl phenyl ketone (**S1a**; 8.0 mmol, 2.368 g), Ti(OEt)₄ (48.0 mmol, 10.944 g) in THF (50.0 mL) was heated to reflux for 36 h, then the reaction mixture was cooled to room temperature and poured into an equal volume of brine while rapidly stirring. The resulting suspension was filtered through a plug of celite, and the filter cake was washed with EtOAc. The filtrate was transferred to a separatory funnel where the organic layer was washed with brine. The brine layer was extracted with EtOAc for three times, and the combined organic phase was dried over anhydrous MgSO₄. The volatile solvents were removed under vacuum, and the crude product was purified by

² (a) Liu, G; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. *J. Org Chem.* **1999**, *64*, 1278. (b) Plobeck, N.; Powell, D. *Tetrahedron: Asym.* **2002**, *13*, 303. (c) Morton, D.; Pearson, D.; Fielda, R. A.; Stockman, R. A. *Chem. Commun.* **2006**, 1833.

³ Wang, H.; Zhao, X.; Li, Y.; Lu, L. Org. Lett. 2006, 8, 1379.

column chromatography (silica gel; ethyl acetate/petroleum ether = 1:10 - 1:5 v/v) to afford **2a** (2.171 g, 68% yield).

		+ PhSO ₂ CF S 1	$rac{0}{F_2} R = \frac{Ti(OE}{THF, r}$	Et) ₄ ►eflux	PhSO ₂ CF ₂	Y S ^S S R
entry	ketone	R	Ti(OEt) ₄ (equiv)	time (h)	sulfinimine	yield (%) ^a
1	S1a	Ph	6.0	36	2a	68
2	S1b	3-MeC ₆ H ₄	5.0	24	2b	43 ^b
3	S1c	4-MeC ₆ H ₄	5.0	24	2c	41 ^b
4	S1d	$4-CIC_6H_4$	5.0	24	2d	48
5	S1e	$4-BrC_6H_4$	4.0	24	2e	55
6	S1f	3-MeOC ₆ H ₄	6.0	36	2f	52 ^b
7	S1g	4-MeOC ₆ H ₄	6.0	24	2g	46 ^b
8	S1h	$4-CF_3C_6H_4$	4.0	36	2h	71
9	S1i	6-Br-2-Naph	5.0	48	2 i	60
10	S1j	(E)-PhCH=CH	5.0	24	2j	75
11	S1k	<i>i</i> Pr	6.0	48	2k	53

Table S1. Preparation of PhSO₂CF₂-Sulfinimines

T

^{*a*} Isolated yield. ^{*b*} The isolated product **2** is contaminated by trace amount (1 - 2%) of difluoro(phenylsulfonyl)methyl alcohol due to the reduction of ketone **S1** during the condensation reaction using Ti(OEt)₄ (for details, see the ¹⁹F NMR spectrum).

Characterization Data:

(*R*,*E*)-*N*-[2,2-Difluoro-1-phenyl-2-(phenylsulfonyl)ethylidene]-2-methylpropane-2-sulfin amide (**2a**)

Mp: 57–59 °C. $[\alpha]_D^{22}$ –171.3 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, *J* = 7.6 Hz, 2H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 2H), 7.52–7.38 (m, 5H), 1.33 (s,

9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.8 (d, J = 231.4 Hz, 1F), –99.3 (d, J = 231.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.8 (t, J = 25.3 Hz), 135.6, 133.1, 130.9, 130.8, 130.6, 129.4, 128.3, 127.8, 116.5 (t, J = 295.5 Hz), 60.2, 22.8. IR (film): 2979, 1605, 1580, 1447, 1150, 1111, 1086 cm⁻¹. MS (ESI, m/z): 422.0 (M + Na⁺). Anal. Calcd for C₁₈H₁₉F₂NO₃S₂: C, 54.12; H, 4.79; N, 3.51; Found: C, 54.35; H, 4.95; N, 3.13.

(*R*,*E*)-*N*-[2,2-Difluoro-2-(phenylsulfonyl)-1-*m*-tolylethylidene]-2-methylpropane-2-sulfin amide (**2b**)

[α]_D²² –175.0 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, *J* = 7.8 Hz, 2H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 2H), 7.31–7.24 (m, 4H), 2.38 (s, 3H), 1.33 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.1 (d, *J* = 233.9 Hz, 1F), –99.6 (d, *J* = 233.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 166.3 (t, *J* = 20.1 Hz), 137.6, 135.6, 133.1, 131.7, 130.9, 130.6, 129.4, 128.5, 127.7, 125.5, 116.5 (t, *J* = 295.6 Hz), 59.9, 22.7, 21.5. IR (film): 2963, 1618, 1584, 1449, 1351, 1171, 1145, 1107 cm⁻¹. MS (ESI, *m/z*): 436.0 (M+ Na⁺). HRMS (ESI): calcd. for C₁₉H₂₁F₂NO₃S₂: (M + Na⁺): 436.0823; Found: 436.0834.

(R,E)-N-[2,2-Difluoro-2-(phenylsulfonyl)-1-p-tolylethylidene]-2-methylpropane-2-sulfin amide (**2c**)

 $[\alpha]_D^{22}$ –198.1 (*c* 1.00, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, *J* = 7.6 Hz, 2H),

7.76 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 2.38 (s, 3H), 1.32 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃): δ –99.0 (d, J = 232.0 Hz, 1F), –101.1 (d, J = 232.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.9 (t, J = 24.2 Hz), 141.3, 135.6, 133.1, 130.9, 129.4, 128.5, 128.4, 127.7, 116.6 (t, J = 295.5 Hz), 60.0, 22.7, 21.6. IR (film): 2964, 1608, 1585, 1509, 1447, 1449, 1351, 1151 cm⁻¹. MS (ESI, m/z): 436.0 (M + Na⁺). HRMS (ESI): calcd. for C₁₉H₂₁F₂NO₃S₂: (M + Na⁺): 436.0823; Found: 436.0831.

(*R*,*E*)-*N*-[1-(4-Chlorophenyl)-2,2-difluoro-2-(phenylsulfonyl)ethylidene]-2-methylpropan e-2-sulfinamide (**2d**)

Mp: 61–63 °C. $[\alpha]_D^{22}$ –179.8 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, *J* = 7.8 Hz, 2H), 7.78 (t, *J* = 7.2 Hz, 1H), 7.62 (t, *J* = 7.5 Hz, 2H), 7.43 (d, *J* = 8.9 Hz, 2H), 7.39 (d, *J* = 8.9 Hz, 2H), 1.34 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.7 (d, *J* = 231.5 Hz, 1F), –99.9 (d, *J* = 231.5 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 164.1 (t, *J* = 24.7 Hz), 137.2, 135.8, 132.8, 130.9, 129.8, 129.5, 128.8, 128.1, 116.4 (t, *J* = 294.7 Hz), 60.7, 22.9. IR (film): 1627, 1590, 1488, 1449, 1351, 1151, 1109, 1091cm⁻¹. MS (ESI, *m/z*): 456.0 (M + Na⁺). HRMS (ESI): calcd. for C₁₈H₁₈ClF₂NO₃S₂: (M + Na⁺): 456.0277; Found: 456.0294.

(*R*,*E*)-*N*-[1-(4-Bromophenyl)-2,2-difluoro-2-(phenylsulfonyl)ethylidene]-2-methylpropan e-2-sulfinamide (**2e**)

Mp: 95–97 °C. $[\alpha]_D^{22}$ –193.5 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, *J* = 7.9 Hz, 2H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.63 (t, *J* = 7.3 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 1.34 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.7 (d, *J* = 231.5 Hz, 1F), -99.9 (d, *J* = 231.5 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 164.2 (t, *J* = 25.5 Hz), 135.8, 132.8, 131.0, 130.9, 129.9, 129.5, 129.3, 125.7, 116.3 (t, *J* = 296.0 Hz), 60.7, 22.9. IR (film): 2961, 1628, 1583, 1485, 1449, 1350, 1149, 1108 cm⁻¹. MS (ESI, *m/z*): 500.0 (M + Na⁺). HRMS (ESI): calcd. for C₁₈H₁₈BrF₂NO₃S₂: (M + Na⁺): 499.9772; Found: 499.9790.

(*R*,*E*)-*N*-[2,2-Difluoro-1-(3-methoxyphenyl)-2-(phenylsulfonyl)ethylidene]-2-methylprop ane-2-sulfinamide (**2f**)

[α]_D²² –163.3 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, J = 7.7 Hz, 2H), 7.76 (t, J = 7.7 Hz, 1H), 7.61 (t, J = 7.3 Hz, 2H), 7.34 (t, J = 7.7 Hz, 1H), 7.08–6.97 (m, 3H), 3.82 (s, 3H), 1.33 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.9 (d, J = 231.5 Hz, 1F), –100.3 (d, J = 231.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.9 (t, J = 24.7 Hz), 158.9, 135.7, 133.1, 131.9, 131.0, 129.5, 129.1, 120.7, 116.0, 116.56 (t, J = 295.8 Hz), 113.8, 60.1, 55.4, 22.8. IR (film): 2964, 1600, 1581, 1487, 1450, 1351, 1293, 1147 cm⁻¹. MS (ESI, m/z): 452.1 (M + Na⁺). HRMS (ESI): calcd. for C₁₉H₂₁F₂NO₄S₂: (M + Na⁺): 452.0772; Found: 452.0782. (*R*,*E*)-*N*-[2,2-Difluoro-1-(4-methoxyphenyl)-2-(phenylsulfonyl)ethylidene]-2-methylprop ane-2-sulfinamide (**2g**)

Mp: 58–60 °C. $[\alpha]_D^{22}$ –229.2 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, *J* = 7.5 Hz, 2H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 3.83 (s, 3H), 1.32 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.9 (d, *J* = 233.4 Hz, 1F), –99.9 (d, *J* = 233.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.4 (t, *J* = 24.5 Hz), 161.7, 135.5, 133.2, 130.6, 129.5, 122.5, 116.8 (t, *J* = 294.1 Hz), 113.9, 113.2, 60.0, 55.3, 22.7. IR (film): 2970, 1607, 1593, 1513, 1348, 1147, 1085 cm⁻¹. MS (ESI, *m*/*z*): 452.0 (M + Na⁺). Anal. Calcd for C₁₉H₂₁F₂NO₄S₂: C, 53.13; H, 4.93; N, 3.26; Found: C, 53.13; H, 4.98; N, 2.93.

(R,E)-N-{2,2-difluoro-2-(phenylsulfonyl)-1-[4-(trifluoromethyl)phenyl]ethylidene}-2-me thylpropane-2-sulfinamide (**2h**)

Yellow solid. Mp: 84–86 °C. $[\alpha]_D^{28} = -179.9$ (c = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, J = 7.5Hz, 2H), 7.81–7.76 (m, 1H), 7.70–7.61 (m, 6H), 1.36 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –64.2 (s, 3F), –100.6 (d, J = 231 Hz, 1F), –101.6 (d, J = 231 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 163.7 (t, J = 25.5 Hz), 135.9, 134.2, 132.8, 132.4 (q, J = 32.9 Hz), 130.9, 129.5 128.8, 124.7 (q, J = 3.6 Hz), 123.6 (q, J = 271.2 Hz),

116.3 (t, J = 293.9 Hz), 60.9, 22.9. IR (KBr): 3078, 2980, 1614, 1450, 1324, 1512, 1109, 1067, 1012, 839, 685, 620, 587, 536 cm⁻¹. MS (ESI, m/z): 468([M + H]⁺). HRMS (ESI, m/z): Calcd. for C₁₉H₁₈F₅NO₃S₂Na⁺ ([M + Na]⁺): 490.0546; Found: 490.0554.

(*R*,*E*)-*N*-[1-(6-Bromonaphthalen-2-yl)-2,2-difluoro-2-(phenylsulfonyl)ethylidene]-2-meth ylpropane-2-sulfinamide (**2i**)

Mp: 42–45 °C. $[\alpha]_D^{20}$ –217.0 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.01(s, 2H), 7.99 (s, 1H), 7.95 (s, 1H), 7.81–7.71 (m, 3H), 7.64–7.54 (m, 4H), 1.35 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.4 (d, *J* = 231.6 Hz, 1F), –99.8 (d, *J* = 231.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 165.0 (t, *J* = 24.8 Hz), 135.7, 134.8, 132.8, 130.8, 130.5, 130.3, 130.2, 129.9, 129.4, 128.6, 128.4, 126.4, 125.9, 122.0, 116.5 (t, *J* = 291.5 Hz), 60.4, 22.7. IR (film): 2963, 1625, 1583, 1448, 1350, 1148, 1129, 1102 cm⁻¹. MS (ESI, *m/z*): 528.0 (M + H⁺). HRMS (ESI): calcd. for C₂₂H₂₀BrF₂NO₃S₂: (M + Na⁺): 549.9928; Found: 549.9936.

(*R*,*E*)-*N*-[(*E*)-1,1-Difluoro-4-phenyl-1-(phenylsulfonyl)but-3-en-2-ylidene]-2-methylprop ane-2-sulfinamide (**2j**)

Mp: 76–78 °C. $[\alpha]_D^{22}$ –616.9 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.12–8.00 (m, 3H), 7.77 (t, *J* = 7.5 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 2H), 7.60–7.53 (m, 2H), 7.47 (d, *J* = 17.2 Hz, 1H), 7.41–7.35 (m, 3H), 1.34 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –95.9 (d, *J*

= 237.8 Hz, 1F), -98.7 (d, J = 237.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.7 (t, J = 22.6 Hz), 145.2 (t, J = 4.6 Hz), 135.6, 135.1, 133.0, 130.9, 130.8, 129.4, 128.9, 128.5, 117.8 (t, J = 295.3 Hz), 116.7, 61.2, 23.0. IR (film): 2975, 1614, 1576, 1559, 1449, 1353, 1172, 1117 cm⁻¹. MS (ESI, m/z): 448.0 (M + Na⁺). Anal. Calcd for C₂₀H₂₁F₂NO₃S₂: C, 56.45; H, 4.97; N, 3.29; Found: C, 56.62; H, 5.07; N, 2.89.

(*R*,*E*)-*N*-[1,1-Difluoro-3-methyl-1-(phenylsulfonyl)butan-2-ylidene]-2-methylpropane-2-s ulfinamide (**2k**)

[α]_D²² -35.9 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, J = 7.7 Hz, 2H), 7.77 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.8 Hz, 2H), 3.94–3.78 (m, 1H), 1.38–1.28 (m, 15H). ¹⁹F NMR (282 MHz, CDCl₃): δ –96.6 (d, J = 237.6 Hz, 1F), –100.7 (d, J = 237.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 172.9 (t, J = 22.2 Hz), 135.5, 133.3, 130.8, 129.4, 117.6 (t, J = 297.9 Hz), 60.0, 32.6, 22.8, 20.1, 19.3. IR (film): 2970, 1630, 1585, 1450, 1351, 1165, 1091 cm⁻¹. MS (ESI, m/z): 388.0 (M + Na⁺). HRMS (ESI): calcd. for C₁₅H₂₁F₂NO₃S₂: (M + Na⁺): 388.0823; Found: 388.0831.

2. Screening of Reaction Conditions

Table S2. Reaction between 2a and 3a under Various Conditions

entry	2a:3a :CsF	solvent	temp. (^o C)	time (h)	yield (%) ^a	dr ^b	er ^c
1	1.0:2.0:3.0	CH₃CN	rt	48	74	>99:1	>99:1
2	1.0:2.0:3.0	$PhCH_3$	rt	24	0	—	—
3	1.0:2.0:3.0	THF	rt	24	trace	—	—
4	1.0:1.5:2.0	CH ₃ CN	rt	48	59	>99:1	>99:1
5	1.0:1.5:2.0	CH ₃ CN	60	24	55	>99:1	>99:1
6	1.0:2.0:3.0	CH ₃ CN	60	18	70	>99:1	>99:1
7	1.0:2.5:4.0	CH ₃ CN	60	12	76	>99:1	>99:1
8	1.0:2.5:4.0	CH ₃ CN	rt	12	84	>99:1	>99:1
9	1.0:3.0:5.0	CH ₃ CN	80	12	78	>99:1	>99:1
10	1.0:3.0:5.0	CH ₃ CN	rt	12	87	>99:1	>99:1
11	1.0:3.0:5.0	CH ₃ CN	rt	4	80	>99:1	>99:1

^{*a*} Isolated yield. ^{*b*} Determined by ¹⁹F NMR spectroscopy of the crude product. ^{*c*} Determined by chiral HPLC.

3. [3 + 2] Cycloaddition of PhSO₂CF₂-Sulfinimines with Arynes and Further Transformation

3.1 [3+2] Cycloaddition.

Figure S1 Structures of Difluomethyl Imine (*R*)-**S2** and Cyclic Sulfinamide (*Ss*,*S*)-**4d** in the Crystals

Experimental Procedures:

To a Schlenk tube containing sulfinimine (*R*)-1d (0.104 g, 0.4 mmol), aryne precursor 3a (0.238 g, 0.8 mmol), and CH₃CN (8.0 mL) was added CsF (0.182 g, 1.2 mmol). The tube was sealed with a rubber septum, and then the reaction mixture was stirred at room temperature for 48 h. After quenched with brine, the reaction mixture was extracted with Et₂O (30 mL × 3), and the combined organic phase was dried over anhydrous MgSO₄. The volatile solvents were removed under vacuum, and the crude product was purified by column chromatography (silica gel; ethyl acetate/petroleum ether = 1:3 v/v) to give enantiopure product (*Ss*,*S*)-4d as a white solid (0.043 g, 32% yield).

The diastereoselectivity was determined by HPLC-MS (ESI) analysis of the crude product, and the enantioselectivity was determined by chiral HPLC analysis of the isolated product. The absolute configuration of *N*-TBS imine **1d** was determined by the X-ray crystal structure of its analogue **S2**, and that of product **4d** was determined by its X-ray crystal structure (Figure S1).

(1S,3S)-1-(tert-butyl)-3-(difluoromethyl)-3-phenylbenzo[d]isothiazole 1-oxide (4d)

Mp: 145–148 °C. $[\alpha]_D^{20}$ –183.8 (*c* 0.60, CHCl₃), >99:1 er. The enantiomeric ratio was determined by Lux 5u Cellulose–2 (250 × 4.6 mm), hexane / IPA= 80 / 20 (v/v%), 0.7 mL/min, $\lambda = 214$ nm, t_R (major) = 9.03 min, t_R (minor) = 9.68 min. ¹H NMR (300 MHz, CDCl₃): δ 8.02 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 2H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.40–7.28 (m, 3H), 6.09 (t, *J* = 56.5 Hz, 1H), 1.33 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –123.4 (dd, *J* = 267.4, 56.5 Hz, 1F), –124.9 (dd, *J* = 267.3, 56.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.3 (d, *J* = 1.2 Hz), 138.5 (d, *J* = 2.4 Hz), 136.6, 132.7, 130.2, 128.3, 128.1, 127.9, 127.8 (dd, *J* = 3.3, 1.6 Hz), 124.7, 117.1 (t, *J* = 249.8 Hz), 79.2 (t, *J* = 21.1 Hz), 62.6, 24.2. IR (film) 1448, 1365, 1226, 1105, 1064, 965, 753, 705 cm⁻¹. MS (ESI, *m/z*): 336.2 (M + H⁺). Anal. Calcd for C₁₈H₁₉F₂NOS: C, 64.46; H, 5.71; N, 4.18; Found: C, 64.43; H, 5.77; N, 4.01.

Typical Procedures:

Method A (at rt for compounds 5a-l, 5p, and 5u):

To a Schlenk tube containing sulfinimine (*R*)-**2a** ($R^1 = Ph$) (0.120 g, 0.3 mmol), aryne precursor **3a** (R^2 , $R^3 = H$) (0.268 g, 0.9 mmol), and CH₃CN (5.0 mL) was added CsF (0.228 g, 1.5 mmol). The tube was sealed, and then the reaction mixture was stirred at room temperature for 12 h. After quenched with brine, the reaction mixture was extracted with Et₂O (30 mL × 3), and the combined organic phase was dried over anhydrous MgSO₄. The volatile solvents were removed under vacuum, and the crude product was

purified by column chromatography (silica gel; ethyl acetate/petroleum ether = 1:3 v/v) to give product (*Ss*,*R*)-**5a** ($R^1 = Ph$; R^2 , $R^3 = H$) as a white solid (0.124 g, 87% yield).

Method B (at 80 °C for compounds 5m-o and 5q-t):

To a Schlenk tube containing sulfinimine (*R*)-**2a** ($\mathbb{R}^1 = \mathbb{Ph}$) (0.239 g, 0.6 mmol), aryne precursor **3d** (\mathbb{R}^2 , $\mathbb{R}^3 = \mathbb{OMe}$) (0.644 g, 1.8 mmol), and CH₃CN (5.0 mL) was added CsF (0.456 g, 3.0 mmol). The tube was sealed, and then the reaction mixture was stirred at 80 °C for 12 h. After cooled to rt and quenched with brine, the reaction mixture was extracted with Et₂O (40 mL × 3), and the combined organic phase was dried over anhydrous MgSO₄. The volatile solvents were removed under vacuum, and the crude product was purified by column chromatography (silica gel; ethyl acetate/petroleum ether = 1:1.5 v/v) to give product (*Ss*,*R*)-**5s** ($\mathbb{R}^1 = \mathbb{Ph}$; \mathbb{R}^2 , $\mathbb{R}^3 = \mathbb{OMe}$) as a white solid (0.200 g, 62% yield).

Characterization Data:

(1S,3R)-1-(tert-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-phenylbenzo[d]isothiazole

1-oxide (5a)

Mp: 138–140 °C. $[\alpha]_D^{22}$ –45.1 (*c* 0.80, CHCl₃), >99:1 er. The enantiomeric ratio was determined by CHIRALPAK OD (250 × 4.6 mm), hexane / IPA= 60 / 40 (v/v), 0.7 mL/min, $\lambda = 214$ nm, t_R (major) = 8.69 min, t_R (minor) = 10.24 min. ¹H NMR (300 MHz, CDCl₃): δ 8.03–7.87 (m, 5H), 7.69–7.55 (m, 3H), 7.47 (t, *J* = 7.4 Hz, 3H), 7.26 (d, *J* = 7.4 Hz, 3H), 1.47 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.7 (d, *J* = 233.9 Hz, 1F), –100.0 (d, *J* = 233.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 147.8, 138.9, 136.1, 134.9, 134.6, 133.0, 131.1, 129.9, 128.7, 128.2, 128.0, 127.5 (d, *J* = 5.2 Hz), 126.0 (d, *J* = 1.9 Hz), 123.6, 122.7 (t, *J* = 298.7 Hz), 80.9 (t, *J* = 23.5 Hz), 63.6, 24.7 (d, *J* = 1.4 Hz). IR (film): 3061, 1585, 1451, 1360, 1222, 1153, 1113 cm⁻¹. MS (ESI, *m/z*): 498.1 (M + Na⁺). Anal. Calcd for C₂₄H₂₃F₂NO₃S₂: C, 60.61; H, 4.87; N, 2.95; Found: C, 60.93; H, 4.78; N, 2.73.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-(*m*-tolyl)benzo[*d*]isothiazole 1-oxide (**5b**)

Mp: 147–149 °C. $[\alpha]_D^{22}$ –42.6 (*c* 0.75, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.99 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 7.4 Hz, 2H), 7.77–7.55 (m, 5H), 7.47 (q, *J* = 7.0 Hz, 3H), 7.15 (t, *J* = 7.7 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 2.30 (s, 3H), 1.51 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.1 (d, *J* = 234.3 Hz, 1F), –99.8 (d, *J* = 234.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 147.9 (d, *J* = 1.8 Hz), 138.8 (t, *J* = 2.8 Hz), 137.5, 136.1, 135.0, 134.6,

133.0, 131.1, 129.9, 129.0, 128.7, 128.3 (d, J = 3.7 Hz), 127.9, 126.1 (d, J = 2.8 Hz), 124.5 (d, J = 6.4 Hz), 123.6, 122.8 (t, J = 296.9 Hz), 80.9 (t, J = 21.8 Hz), 63.7, 24.8 (d, J = 2.4 Hz), 21.8. IR (film): 1736, 1449, 1349, 1224, 1113, 964, 755, 607 cm⁻¹. MS (ESI, m/z): 512.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₅H₂₅F₂NO₃S₂: (M + Na⁺): 512.1136; Found: 512.1143.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-(*p*-tolyl)benzo[*d*]isothiazole 1-oxide (**5c**)

Mp: 148–150 °C. $[\alpha]_D^{23}$ –35.9 (*c* 0.90, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 7.9 Hz, 2H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.69–7.55 (m, 3H), 7.48 (t, *J* = 7.9 Hz, 3H), 7.08 (d, *J* = 7.6 Hz, 2H), 2.28 (s, 3H), 1.46 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.0 (d, *J* = 233.1 Hz, 1F), –99.9 (d, *J* = 233.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 148.2 (d, *J* = 2.6 Hz), 138.1, 136.3, 136.2 (t, *J* = 2.6 Hz), 135.0, 134.7, 133.2, 131.3, 129.9, 129.0, 128.9, 127.6 (d, *J* = 4.8 Hz), 126.2 (d, *J* = 3.1 Hz), 123.8, 122.9 (t, *J* = 295.3 Hz), 80.9 (t, *J* = 21.4 Hz), 63.7, 24.9 (d, *J* = 2.5 Hz), 21.2. IR (film): 1450, 1337, 1330, 1213, 1171, 1114 cm⁻¹. MS (ESI, *m*/*z*): 512.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₅H₂₅F₂NO₃S₂: (M + H⁺): 490.1317; Found: 490.1328.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-(4-chlorophenyl)-3-[difluoro(phenylsulfonyl)methyl]benzo[*d*]iso thiazole 1-oxide (**5d**)

Mp: 139–141 °C. $[\alpha]_D^{23}$ –36.7 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 4H), 7.71–7.57 (m, 3H), 7.55–7.46 (m, 3H), 7.23 (d, *J* = 8.5 Hz, 2H), 1.46 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.9 (d, *J* = 239.4 Hz, 1F), –100.5 (d, *J* = 239.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 147.6 (d, *J* = 1.7 Hz), 137.8 (t, *J* = 2.6 Hz), 136.1, 135.1, 134.9, 134.5, 133.4, 131.2, 130.3, 129.2 (d, *J* = 5.1 Hz), 129.0, 128.3, 126.0 (d, *J* = 2.9 Hz), 123.9, 122.6 (t, *J* = 296.8 Hz), 80.6 (t, *J* = 21.8 Hz), 63.9, 24.9 (d, *J* = 2.3 Hz). IR (film): 1492, 1445, 1344, 1221, 1168, 1114, 963 cm⁻¹. MS (ESI, *m/z*): 532.1 (M + Na⁺). Anal. Calcd for C₂₄H₂₂ClF₂NO₃S₂: C, 56.52; H, 4.35; N, 2.75; Found: C, 56.16; H, 4.45; N, 2.55.

(1*S*,3*R*)-3-(4-Bromophenyl)-1-(*tert*-butyl)-3-[difluoro(phenylsulfonyl)methyl]benzo[*d*]iso thiazole 1-oxide (**5e**)

Mp: 148–150 °C. $[\alpha]_D^{23}$ –35.5 (*c* 0.90, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.71–7.57 (m, 3H), 7.55–7.45 (m, 3H), 7.38 (d, *J* = 8.0 Hz, 2H), 1.46 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.9 (d, *J* = 238.6 Hz, 1F), –100.5 (d, *J* = 236.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 147.5 (d, *J* = 2.3 Hz), 138.4 (t, *J* = 2.9 Hz), 136.0, 135.1, 134.9, 133.4, 131.3, 131.2, 130.3, 129.6 (dd, *J* = 5.2, 1.7 Hz), 129.0, 126.0 (d, *J* = 2.9 Hz), 123.9, 122.9, 122.6 (t, *J* =

298.3 Hz), 80.7 (t, J = 21.8 Hz), 63.9, 24.9 (d, J = 2.3 Hz). IR (film): 1580, 1487, 1446, 1335, 1223, 1154, 1012, 961 cm⁻¹. MS (ESI, m/z): 576.0 (M + Na⁺). HRMS (ESI): calcd. for C₂₄H₂₂BrF₂NO₃S₂: (M + H⁺): 554.0265; Found: 554.0277.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-(3-methoxyphenyl)benzo[*d*]i sothiazole 1-oxide (**5f**)

Mp: 126–128 °C. $[\alpha]_D^{23}$ –42.7 (*c* 0.80, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.97 (d, *J* = 7.6 Hz, 1H), 7.91 (d, *J* = 7.6 Hz, 2H), 7.69–7.43 (m, 8H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.76 (dd, *J* = 8.0, 2.7 Hz, 1H), 3.76 (s, 3H), 1.49 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.2 (d, *J* = 231.0 Hz, 1F), –99.8 (d, *J* = 231.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 147.7, 140.6, 136.0, 134.9, 134.6, 133.0, 131.1, 129.9, 128.8, 128.7, 126.0 (d, *J* = 2.2 Hz), 123.6, 122.7 (t, *J* = 300.0 Hz), 119.7 (d, *J* = 8.0 Hz), 113.7, 113.6, 80.9 (t, *J* = 22.1 Hz), 63.6, 55.2, 24.7 (d, *J* = 1.6 Hz). IR (film): 1736, 1604, 1584, 1450, 1347, 1223, 1113, 755 cm⁻¹. MS (ESI, *m*/*z*): 528.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₅H₂₅F₂NO₄S₂: (M + H⁺): 506.1266; Found: 506.1288.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-(4-methoxyphenyl)benzo[*d*]i sothiazole 1-oxide (**5**g)

Mp: 149–151 °C. [α]_D²³ –28.4 (*c* 0.80, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.98 (d, J

= 8.0 Hz, 1H), 7.91 (d, J = 7.6 Hz, 2H), 7.85 (d, J = 8.0 Hz, 2H), 7.69–7.55 (m, 3H), 7.48 (t, J = 7.5 Hz, 3H), 6.78 (d, J = 8.0 Hz, 2H), 3.74 (s, 3H), 1.47 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.9 (d, J = 233.0 Hz, 1F), –100.2 (d, J = 233.1 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 148.1, 136.1, 134.7, 134.5, 132.9, 130.9, 130.8 (t, J = 2.9 Hz), 129.7, 128.8 (d, J = 5.1 Hz), 128.6, 125.8 (d, J = 3.3 Hz), 123.5, 122.6 (t, J = 297.8 Hz), 113.2, 80.5 (t, J = 21.8 Hz), 63.4, 55.1, 24.6 (d, J = 2.4 Hz). IR (film): 1608, 1510, 1450, 1344, 1253, 1218, 1181, 1114 cm⁻¹. MS (ESI, m/z): 528.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₅H₂₅F₂NO₄S₂: (M + Na⁺): 528.1085; Found: 528.1102.

(*1S*,*3R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-[4-(trifluoromethyl)phenyl]b enzo[*d*]isothiazole 1-oxide (**5h**)

White solid. M.p.: 154–156 °C. $[\alpha]_D^{29} = -35.5$ (c = 0.95, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.08 (d, J = 7.8 Hz, 2H), 7.98 (d, J = 7.5 Hz, 1H), 7.95 (d, J = 7.5 Hz, 2H), 7.71–7.59 (m, 4H), 7.56–7.46 (m, 4H), 1.49 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –61.7 (s, 3F), –96.2 (d, J = 234.9 Hz, 1F), –99.3 (d, J = 235.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 147.0, 143.1, 135.8, 135.1, 134.8, 133.3, 131.0, 130.7, 130.3 (q, J = 32.1 Hz), 128.8, 128.0 (d, J = 5.1 Hz), 125.9 (d, J = 2.9 Hz), 124.9 (d, J = 3.6 Hz), 124.1 (q, J = 270.6 Hz), 123.8, 122.4 (t, J = 296 Hz), 80.6 (t, J = 21.9 Hz), 63.8, 24.6. IR (KBr): 3073, 2981, 1616, 1450, 1316, 1224, 1124, 1045, 963, 828, 8005, 605, 555 cm⁻¹. MS (ESI, m/z): 566 ([M+Na]⁺). HRMS (ESI, m/z): Calcd. for C₂₅H₂₂F₅NNaO₃S₂ ([M + Na]⁺): 566.0859; Found: 566.0863.

(1*S*,3*R*)-3-(6-Bromonaphthalen-2-yl)-1-(*tert*-butyl)-3-[difluoro(phenylsulfonyl)methyl)be nzo[*d*]isothiazole 1-oxide (**5**i)

Mp: 100–103 °C. $[\alpha]_D^{20}$ –36.0 (*c* 0.80, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.40 (s, 1H), 8.06 (t, *J* = 7.9 Hz, 2H), 7.90 (s, 1H), 7.87 (d, *J* = 7.4 Hz, 2H), 7.69 (t, *J* = 8.3 Hz, 2H), 7.65–7.44 (m, 5H), 7.40 (t, *J* = 7.9 Hz, 2H), 1.52 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –96.6 (d, *J* = 234.3 Hz, 1F), –99.6 (d, *J* = 234.2 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 147.3 (d, *J* = 2.1 Hz), 136.8 (t, *J* = 2.1 Hz), 135.6, 134.8, 134.6, 133.8, 133.1, 131.2, 130.9, 130.5, 129.9, 129.2, 129.1, 128.6, 127.3 (d, *J* = 2.2 Hz), 126.5, 125.9 (d, *J* = 2.8 Hz), 125.8, 123.7, 122.5 (t, *J* = 299.9 Hz), 120.3, 80.8 (t, *J* = 21.6 Hz), 63.6, 24.6 (d, *J* = 2.3 Hz). IR (film): 1734, 1585, 1449, 1348, 1223, 1154, 1113, 1062 cm⁻¹. MS (ESI, *m/z*): 626.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₈H₂₄BrF₂NO₃S₂: (M + Na⁺): 626.0241; Found: 626.0272.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-[(*E*)-styryl]benzo[*d*]isothiaz ole 1-oxide (**5j**)

Mp: 145–147 °C. $[\alpha]_D^{23}$ –34.6 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.06 (d, *J* = 7.7 Hz, 2H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.65–7.46 (m, 5H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.28–7.14 (m, 3H), 6.91 (d, *J* = 15.3 Hz, 1H), 6.72 (dd, *J* = 15.2, 3.3 Hz, 1H), 1.48 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –100.9 (d, *J* = 235.2 Hz, 1F), –105.4 (d, *J* = 233.0 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 146.8 (d, *J* = 3.0 Hz), 136.3, 135.6, 134.8, 134.2, 133.1, 131.6, 131.2, 130.0, 128.7, 128.2, 127.7, 127.1, 126.0 (dd, *J* = 3.7, 2.4 Hz), 125.4 (d, J = 4.3 Hz), 124.1, 122.3 (t, J = 298.1 Hz), 80.4 (t, J = 21.7, Hz), 63.4, 24.6 (d, J = 2.3 Hz). IR (film): 1581, 1449, 1341, 1222, 1156, 1113, 1017, 600 cm⁻¹. MS (ESI, m/z): 524.1 (M + Na⁺). Anal. Calcd for C₂₆H₂₅F₂NO₃S₂: C, 62.26; H, 5.02; N, 2.79; Found: C, 61.96; H, 5.12; N, 2.62.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-isopropylbenzo[*d*]isothiazol e 1-oxide (**5**k)

Mp: 58–60 °C. $[\alpha]_D^{23}$ –25.8 (*c* 0.60, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00 (d, J = 8.0 Hz, 2H), 7.85 (d, J = 7.6 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.62–7.50 (m, 4H), 3.17–3.05 (m, 1H), 1.39 (s, 9H), 1.02 (dd, J = 6.6, 3.6 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –92.8 (d, J = 240.4 Hz, 1F), –94.2 (d, J = 240.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.2 (d, J = 3.5 Hz), 136.9, 135.6, 134.7, 132.3, 130.8, 129.9, 128.9, 126.3 (d, J = 3.0 Hz), 123.7, 123.6 (t, J = 295.7 Hz), 84.8 (dd, J = 20.1, 16.5 Hz), 63.7, 34.9, 24.7, 19.1 (d, J = 2.9 Hz), 18.6 (d, J = 7.5 Hz). IR (film): 2973, 1449, 1349, 1222, 1157, 1104, 754, 589 cm⁻¹. MS (ESI, m/z): 464.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₁H₂₅F₂NO₃S₂: (M + Na⁺): 464.1136; Found: 464.1152.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-5,6-dimethyl-3-phenylbenzo[*d*]isothiazole 1-oxide (**5**I)

Mp: 95–97 °C. [α]_D²³ –11.5 (*c* 0.90, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.90–7.78

(m, 4H), 7.63 (s, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.38 (t, J = 7.7 Hz, 2H), 7.31 (s, 1H), 7.22–7.10 (m, 3H), 2.26 (s, 3H), 2.19 (s, 3H), 1.37 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.4 (d, J = 238.9 Hz, 1F), –99.9 (d, J = 238.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.9, 143.1, 139.4, 136.2, 134.5, 132.6, 131.2, 128.4, 128.04, 128.02, 127.5, 127.4 (d, J = 1.3 Hz), 126.6 (d, J = 2.9 Hz), 123.9, 122.9 (t, J = 295.4 Hz), 80.5 (t, J = 22.4 Hz), 63.4, 24.8 (d, J = 2.4 Hz), 20.9, 20.1. IR (film): 1449, 1347, 1224, 1164, 1113, 1052, 962, 686 cm⁻¹. MS (ESI, m/z): 526.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₆H₂₇F₂NO₃S₂: (M + H⁺): 504.1473; Found: 504.1485.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-5,6-dimethyl-3-(m-tolyl)benzo [*d*]isothiazole 1-oxide (**5m**)

White solid. Mp: 143–144 °C. $[\alpha]_D^{28} = -11.2$ (*c* 0.20, CHCl₃). IR (KBr): 2964, 2926, 1604, 1448, 1341, 1367, 1182, 1112, 958, 724, 687, 634, 597, 561 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 7.89 (d, *J* = 7.5 Hz, 2H), 7.73–7.67 (m, 3H), 7.62–7.56 (m, 1H), 7.47–7.39 (m, 3H), 7.17–7.15 (m, 1H), 7.01 (d, *J* = 7.2 Hz, 1H), 2.34 (s, 3H), 2.29 (s, 3H), 2.28 (s, 3H), 1.49 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –95.9 (d, *J* = 232.7 Hz, 1F), –99.0 (d, *J* = 231.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.9, 142.9, 139.3 (d, *J* = 1.7 Hz), 139.2, 137.4, 136.2, 134.4, 132.6, 131.1, 128.8, 128.5, 128.1 (d, *J* = 4.3 Hz), 127.7, 126.6 (d, *J* = 2.6 Hz), 124.3 (d, *J* = 6.9 Hz), 123.8, 122.9 (t, *J* = 294.7 Hz), 80.5 (t, *J* = 21.6 Hz), 63.3, 24.8 (d, *J* = 2.6 Hz), 21.7, 20.8, 20.0. MS (ESI, *m/z*): 518 ([M + H]⁺). HRMS (ESI, *m/z*): Calcd. for C₂₇H₃₀F₂NO₃S₂ ([M + H]⁺): 518.1635; found: 518.1614.

(1S, 3R)-1-(tert-Butyl)-3-(4-chlorophenyl)-3-[difluoro(phenylsulfonyl)methyl]-5,6-dimeth

ylbenzo[*d*]isothiazole 1-oxide (**5n**)

Mp: 159–161 °C. $[\alpha]_D^{22}$ –1.0 (*c* 0.75, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.86–7.78 (m, 4H), 7.56 (t, *J* = 7.4 Hz, 2H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.32 (s, 1H), 7.14 (d, *J* = 8.2 Hz, 2H), 2.27 (s, 3H), 2.21 (s, 3H), 1.36 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.6 (d, *J* = 231.8 Hz, 1F), –100.4 (d, *J* = 231.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.4, 143.3, 139.6, 138.2, 136.1, 134.6, 134.1, 132.5, 131.0, 129.0 (d, *J* = 5.5 Hz), 128.8, 128.0, 126.3 (d, *J* = 2.9 Hz), 123.9, 122.6 (t, *J* = 298.1 Hz), 80.1 (t, *J* = 21.9 Hz), 63.4, 24.7 (d, *J* = 1.8 Hz), 20.8, 20.0. IR (film): 1492, 1449, 1348, 1224, 1165, 964, 686 cm⁻¹. MS (ESI, *m/z*): 560.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₆H₂₆ClF₂NO₃S₂: (M + Na⁺): 560.0903; Found: 560.0898.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-(difluoro(phenylsulfonyl)methyl)-3-(3-methoxyphenyl)-5,6-dim ethylbenzo[*d*]isothiazole 1-oxide (**5**0)

Mp: 149–151 °C. $[\alpha]_D^{21}$ –6.8 (*c* 0.75, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 7.7 Hz, 2H), 7.66 (s, 1H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 3H), 7.40 (s, 1H), 7.18 (t, *J* = 8.1 Hz, 1H), 6.75 (dd, *J* = 8.2, 2.5 Hz, 1H), 3.76 (s, 3H), 2.33 (s, 3H), 2.28 (s, 3H), 1.48 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –96.7 (d, *J* = 229.8 Hz, 1F), –99.5 (d, *J* = 229.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.1, 145.7, 142.9, 140.9, 139.3, 136.1, 134.4, 132.4, 131.1, 128.8, 128.5, 126.5, 123.7, 122.8 (t, *J* =

298.8 Hz), 119.5 (d, J = 7.5 Hz), 113.5, 113.4 (d, J = 4.5 Hz), 80.4 (t, J = 21.4 Hz), 63.3, 55.1, 24.7 (d, J = 2.2 Hz), 20.7, 19.9. IR (film): 1600, 1450, 1351, 1223, 1162, 1123, 1055, 968 cm⁻¹. MS (ESI, m/z): 556.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₇H₂₉F₂NO₄S₂: (M + Na⁺): 556.1398; Found: 556.1407.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-phenyl-3,5,6,7-tetrahydroind eno[5,6-*d*]isothiazole 1-oxide (**5p**)

Mp: 85–88 °C. $[\alpha]_D^{22}$ –10.5 (*c* 0.95, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.87 (d, *J* = 7.4 Hz, 2H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.67 (s, 1H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.8 Hz, 3H), 7.23–7.10 (m, 3H), 2.92–2.70 (m, 4H), 2.14–1.92 (m, 2H), 1.38 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.4 (d, *J* = 232.4 Hz, 1F), –99.8 (d, *J* = 233.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 151.3, 147.4, 146.8, 139.6, 136.3, 134.6, 133.2, 131.0, 128.7, 127.9, 127.5, 127.4, 122.9 (t, *J* = 297.6 Hz), 121.5 (d, *J* = 2.9 Hz), 118.9, 80.1 (t, *J* = 21.3 Hz), 63.3, 32.9, 32.3, 25.9, 24.7 (d, *J* = 1.4 Hz). IR (film): 2968, 1448, 1347, 1223, 1168, 1112, 1048, 964 cm⁻¹. MS (ESI, *m/z*): 538.2 (M + Na⁺). HRMS (ESI): calcd. for C₂₇H₂₇F₂NO₃S₂: (M + H⁺): 516.1473; Found: 516.1487.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-(*m*-tolyl)-3,5,6,7-tetrahydroi ndeno[5,6-*d*]isothiazole 1-oxide (**5q**)

Mp: 92–95 °C. $[\alpha]_D^{22}$ –8.5 (*c* 0.80, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.81 (d, *J* = 7.5 Hz, 2H), 7.64 (t, *J* = 7.9 Hz, 3H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 3H), 7.07 (t, *J* = 7.9 Hz, 1H), 6.93 (d, *J* = 7.4 Hz, 1H), 2.92–2.70 (m, 4H), 2.21 (s, 3H), 2.13–1.93 (m, 2H), 1.41 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –96.5 (d, *J* = 232.7 Hz, 1F), –99.6 (d, *J* = 234.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 151.2, 147.2, 146.9, 139.3, 137.4, 136.2, 134.4, 133.2, 131.0, 128.8, 128.5, 128.1 (d, *J* = 4.6 Hz), 127.8, 124.3 (d, *J* = 6.8 Hz), 123.0 (t, *J* = 298.4 Hz), 121.5 (d, *J* = 3.0 Hz), 118.8, 80.1 (t, *J* = 21.4 Hz), 63.4, 32.9, 32.3, 25.9, 24.8 (d, *J* = 2.3 Hz), 21.8. IR (film): 2968, 1449, 1348, 1223, 1167, 1116, 964, 597 cm⁻¹. MS (ESI, *m*/*z*): 552.2 (M + Na⁺). HRMS (ESI): calcd. for C₂₈H₂₉F₂NO₃S₂: (M + Na⁺): 552.1449; Found: 552.1454.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-3-(3-methoxyphenyl)-3,5,6,7-t etrahydroindeno[5,6-*d*]isothiazole 1-oxide (**5r**)

Mp: 83–86 °C. $[\alpha]_D^{21}$ –4.7 (*c* 0.70, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 7.7 Hz, 2H), 7.70 (s, 1H), 7.60 (t, *J* = 7.3 Hz, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.45 (t, *J* = 7.2 Hz, 4H), 7.17 (t, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 8.1 Hz, 1H), 3.76 (s, 3H), 3.01–2.78 (m, 4H), 2.22–2.00 (m, 2H), 1.48 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –96.6 (d, *J* = 234.5 Hz, 1F), –99.5 (d, *J* = 234.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.2, 151.3, 147.3, 146.8, 141.1, 136.2, 134.4, 133.2, 131.1, 128.8, 128.6, 123.0 (t, *J* = 300.4 Hz), 121.5 (d, *J* = 3.3 Hz), 119.5 (d, *J* = 7.7 Hz), 118.8, 113.5, 113.4, 80.1 (t, *J* = 21.7 Hz), 63.4, 55.2, 32.9, 32.3, 25.9, 24.8 (d, *J* = 2.2 Hz). IR (film): 2960, 1601, 1450, 1347, 1222, 1167, 1116, 1049 cm⁻¹. MS (ESI, *m*/*z*): 568.2 (M + Na⁺). HRMS (ESI): calcd. for C₂₈H₂₉F₂NO₄S₂: (M + Na⁺): 568.1398; Found: 568.1393.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-5,6-dimethoxy-3-phenylbenzo [*d*]isothiazole 1-oxide (**5**s)

Mp: 135–137 °C. $[\alpha]_D^{22}$ –29.9 (*c* 0.85, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.92 (t, *J* = 7.3 Hz, 4H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.9 Hz, 2H), 7.35–7.20 (m, 4H), 6.98 (s, 1H), 3.96 (s, 3H), 3.83 (s, 3H), 1.45 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.2 (d, *J* = 233.4 Hz, 1F), –99.4 (d, *J* = 233.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 150.7, 141.9, 139.3, 136.1, 134.6, 131.1, 128.7, 128.1, 127.2, 127.1, 126.0, 122.9 (t, *J* = 297.8 Hz), 107.1, 104.4, 80.4 (t, *J* = 21.4 Hz), 63.4, 56.4, 56.3, 27.8 (d, *J* = 2.3 Hz). IR (film): 1585, 1501, 1449, 1348, 1279, 1218, 1168 cm⁻¹. MS (ESI, *m/z*): 558.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₆H₂₇F₂NO₅S₂: (M + Na⁺): 558.1191; Found: 558.1193.

(1*S*,3*R*)-1-(*tert*-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-5,6-dimethoxy-3-(3-methoxyp henyl)benzo[*d*]isothiazole 1-oxide (**5**t)

Mp: 81–83 °C. $[\alpha]_D^{21}$ –21.2 (*c* 0.80, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 7.6 Hz, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.53–7.42 (m, 4H), 7.28 (s, 1H), 7.18 (t, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 6.76 (dd, *J* = 8.0, 2.5 Hz, 1H), 3.94 (s, 3H), 3.85 (s, 3H), 3.76 (s, 3H), 1.46 (s, 9H). ¹⁹F NMR (282 MHz, CDCl₃): δ –96.5 (d, *J* = 234.8 Hz, 1F), –99.1 (d, *J* =

234.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 159.3, 153.4, 150.8, 141.8, 141.0 (t, J = 3.0 Hz), 136.1, 134.5, 131.1, 128.9, 128.6, 126.0, 122.9 (t, J = 297.5 Hz), 119.2 (d, J = 7.2 Hz), 113.5, 113.4, 107.2, 104.5, 80.4 (t, J = 21.1 Hz), 63.5, 56.4, 56.3, 55.2, 24.8 (d, J = 1.5 Hz). IR (film): 1601, 1500, 1348, 1279, 1217, 1170, 1056 cm⁻¹. MS (ESI, m/z): 588.1 (M + Na⁺). HRMS (ESI): calcd. for C₂₇H₂₉F₂NO₆S₂: (M + Na⁺): 588.1297; Found: 588.1294.

(1S,3R)-1-(tert-Butyl)-3-[difluoro(phenylsulfonyl)methyl]-6-methyl-3-phenylbenzo[d]iso thiazole 1-oxide and (1S,3R)-1-(tert-butyl)-3-[difluoro(phenylsulfonyl)methyl]-5-methyl-3-phenylbenzo[d]isot hiazole 1-oxide (**5u**)

A mixture of two inseperable regio-isomers. $[\alpha]_D^{28}$ –24.4 (*c* 0.95, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.00–7.83 (m, 4.54H), 7.75 (s, 0.46H), 7.61 (t, J = 7.5 Hz, 1H), 7.56–7.17 (m, 7H), 2.44 (s, 1.38H), 2.38 (s, 1.62H), 1.47 (s, 4.86H), 1.44 (s, 4.14H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.4 (d, J = 233.9 Hz, 0.46F), –97.7 (d, J = 234.2 Hz, 0.54F), –99.9 (d, J = 234.2 Hz, 0.46F), –100.0 (d, J = 234.1 Hz, 0.54F). MS (ESI, *m/z*): 512.4 (M + Na⁺). HRMS (ESI): calcd. for C₂₅H₂₅F₂NO₃S₂: (M + Na⁺): 512.1136; Found: 512.1139.

3.2 Synthesis of Cyclic Sulfinamides

Typical Procedures:

To a solution of (*Ss*,*R*)-**5a** ($\mathbb{R}^1 = \mathbb{Ph}$; \mathbb{R}^2 , $\mathbb{R}^3 = \mathbb{H}$) (3.92 g, 8.25 mmol) in CH₂Cl₂ (40 mL) was added HCl (2.5 M in 1,4-dioxane, 66 mL, 165 mmol) at -78 °C. Then the reaction mixture was allowed to warm up to room temperature in 1 h. The reaction mixture was diluted with water (20 mL) and treated with saturated NaHCO₃ solution (200 mL). The aqueous phase was extracted with ethyl acetate (40 mL × 3), and the combined organic phases were washed with brine (40 mL) and dried over Na₂SO₄. The volatile solvents were removed under vacuum, and the residue was purified by flash column chromatography (silica gel; ethyl acetate/petroleum ether = 1:3 v/v) to give cyclic sulfinamide (*Ss*,*R*)-**6a** ($\mathbb{R}^1 = \mathbb{P}$); \mathbb{R}^2 , $\mathbb{R}^3 = \mathbb{H}$) as a white solid (3.310 g, 96% yield).

Characterization Data:

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-3-phenyl-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (**6a**)

Mp: 165–167 °C. $[\alpha]_D^{26}$ –90.4 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.91 (d, *J* = 6.0 Hz, 2H), 7.87–7.76 (m, 3H), 7.70 (t, *J* = 7.1 Hz, 2H), 7.62–7.47 (m, 4H), 7.34 (d, *J* = 5.5 Hz, 3H), 6.48 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –99.3 (d, *J* = 237.5 Hz, 1F), –100.9 (d, *J* = 237.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.5, 137.9, 135.8, 135.4, 133.6, 131.9, 130.6, 130.4, 129.2, 129.0, 128.7, 126.8 (dd, *J* = 3.9, 2.0 Hz), 125.6 (dd, *J* =

3.1, 1.6 Hz), 125.4, 120.9 (dd, J = 301.7, 299.2 Hz), 79.8 (t, J = 20.8 Hz). IR (film): 3385, 1633, 1583, 1449, 1339, 1149, 1085, 1060 cm⁻¹. MS (ESI, m/z): 420.3 (M + H⁺). HRMS (ESI): calcd. for C₂₀H₁₅F₂NO₃S₂: (M + H⁺): 420.0534; Found: 420.0531.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-3-(*m*-tolyl)-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (**6b**)

White solid. Mp: 135–136 °C. $[\alpha]_D^{26} = -85.6$ (c = 0.85, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.83–7.80 (m, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.70–7.64 (m, 4H), 7.55–7.47 (m, 4H), 7.26–7.19 (m, 1H), 7.11 (d, J = 8.1 Hz, 1H), 6.42 (s, 1H), 2.30 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –97.2 (d, J = 236.6 Hz, 1F), –98.1 (d, J = 236.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 138.5, 138.0, 135.9, 135.4, 133.9, 132.0, 130.6, 130.4, 129.9, 129.2, 128.6, 127.5, 125.8, 125.4, 124.0, 121.2 (t, J = 293.1 Hz), 79.9 (t, J = 20.4 Hz), 28.8, 21.7. IR (KBr): 3381, 3064, 1606, 1582, 1448, 1332, 1147, 1080, 1061 cm⁻¹. MS (ESI, m/z): 434 ([M + H]⁺). HRMS (ESI, m/z): Calcd. for C₂₁H₁₈F₂NO₃S₂ ([M + H]⁺): 434.0696; Found: 434.0688.

(1*S*, 3*R*)-3-(4-Bromophenyl)-3-[difluoro(phenylsulfonyl)methyl]-2,3-dihydrobenzo[*d*]isot hiazole 1-oxide (**6c**)

White solid. Mp: 96–98 °C. $[\alpha]_D^{29} = -103.4$ (c = 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.84–7.71 (m, 6H), 7.65–7.52 (m, 5H), 7.48–7.43 (m, 2H), 6.46 (s, 1H). ¹⁹F

NMR (282 MHz, CDCl₃): δ -99.5 (d, J = 236.9 Hz, 1F), -100.5 (d, J = 236.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 137.6, 135.6, 135.1, 133.5, 132.1, 131.9, 130.9, 130.5, 129.4, 128.7, 128.6, 125.6, 123.3, 120.8 (t, J = 297.5 Hz), 79.5 (t, J = 21.9 Hz). IR (KBr): 3375, 3068, 1491, 1336, 1150, 1070 cm⁻¹. MS (ESI, m/z): 498 ([M + H] ⁺). HRMS (ESI, m/z): Calcd. for C₂₀H₁₅BrF₂NO₃S₂⁺ ([M + H]⁺): 497.9645; Found: 497.9651.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-3-[4-(trifluoromethyl)phenyl]-2,3-dihydrobe nzo[*d*]isothiazole 1-oxide (**6d**)

White solid. Mp: 88–90 °C. $[\alpha]_D^{28} = -89.6 (c = 0.90, CHCl_3)$. ¹H NMR (300 MHz, CDCl_3): δ 8.06 (d, J = 8.4 Hz, 2H), 7.85–7.79 (m, 3H), 7.75–7.51 (m, 8H), 6.56 (s, 1H). ¹⁹F NMR (282 MHz, CDCl_3): δ –62.4 (s, 3F), –99.8 (d, J = 237.7 Hz, 1F), –100.5 (d, J = 237.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl_3): δ 145.8, 140.0, 137.5, 135.8, 133.3, 132.2, 131.2 (q, J = 32.8 Hz), 131.0, 130.5, 129.4, 127.5, 125.68 (q, J = 3.5 Hz), 125.64, 125.57, 123.8 (q, J = 270.5 Hz), 120.8 (t, J = 296.7 Hz), 79.6 (t, J = 21.1 Hz). IR (KBr): 3207, 1619, 1449, 1329, 1124, 1072 cm⁻¹. MS (ESI, m/z): 488 ([M + H]⁺). HRMS (ESI, m/z): Calcd. for C₂₁H₁₅F₅NO₃S₂⁺ ([M + H]⁺): 488.0414; Found: 488.0413.

(1*S*,3*R*)-3-(6-Bromonaphthalen-2-yl)-3-[difluoro(phenylsulfonyl)methyl]-2,3-dihydroben zo[*d*]isothiazole 1-oxide (**6e**)

Mp: 113–115 °C. $[\alpha]_D^{26}$ –105.8 (*c* 0.90, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.38 (s, 1H), 7.98 (d, J = 8.6 Hz, 1H), 7.93 (s, 1H), 7.84 (d, J = 7.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.75–7.49 (m, 7H), 7.44 (t, J = 7.4 Hz, 2H), 6.61 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –99.2 (d, J = 238.5 Hz, 1F), –100.7 (d, J = 238.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 137.6 (d, J = 1.5 Hz), 135.5, 134.1, 133.7 (t, J = 1.5 Hz), 133.4, 132.0, 131.2, 130.8, 130.5, 130.4, 129.9, 129.3, 129.2, 127.5, 126.7 (dd, J = 3.7, 2.2 Hz), 125.7 (d, J = 2.2 Hz), 125.5, 125.1 (dd, J = 4.5, 2.3 Hz), 121.1, 120.9 (t, J = 299.5 Hz), 79.9 (t, J = 22.3 Hz). IR (film): 3370, 1585, 1449, 1336, 1149, 1062 cm⁻¹. MS (ESI, m/z): 548.4 (M + H⁺). HRMS (ESI): calcd. for C₂₄H₁₆BrF₂NO₃S₂: (M + H⁺): 547.9796; Found: 547.9795.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-3-[(*E*)-styryl]-2,3-dihydrobenzo[*d*]isothiazol e 1-oxide (**6f**)

Mp: 82–84 °C. $[\alpha]_D^{27}$ –71.4 (*c* 0.70, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.84 (d, *J* = 5.8 Hz, 1H), 7.72 (t, *J* = 7.0 Hz, 1H), 7.63–7.51 (m, 5H), 7.41 (d, *J* = 6.4 Hz, 2H), 7.35–7.17 (m, 4H), 6.75 (d, *J* = 15.6 Hz, 1H), 6.27 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –105.9 (d, *J* = 233.6 Hz, 1F), –107.1 (d, *J* = 233.6 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.4, 137.2, 135.6, 135.5, 134.7 (d, *J* = 1.2 Hz), 133.1, 132.0, 130.8, 130.7, 129.3, 128.48, 128.47, 127.3, 125.5, 125.1 (d, *J* = 4.4 Hz), 122.7 (d, *J* = 2.8 Hz),

120.2 (t, J = 299.6 Hz), 78.7 (t, J = 20.9 Hz). IR (film): 1449, 1336, 1189, 1151, 1092, 1062 cm⁻¹. MS (ESI, m/z): 446.3 (M + H⁺). HRMS (ESI): calcd. for C₂₂H₁₇F₂NO₃S₂: (M + H⁺): 446.0691; Found: 446.0696.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-3-isopropyl-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (**6**g)

Mp: 106–108 °C. $[\alpha]_D^{27}$ –33.8 (*c* 0.60, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.84 (d, *J* = 8.2 Hz, 3H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.67–7.50 (m, 5H), 5.55 (s, 1H), 2.80–2.65 (m, 1H), 1.11 (d, *J* = 6.7 Hz, 3H), 0.95 (d, *J* = 6.7 Hz, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.6 (d, *J* = 241.8 Hz, 1F), –101.3 (d, *J* = 241.8 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 146.8 (d, *J* = 1.5 Hz), 135.5 (d, *J* = 4.5 Hz), 135.3, 133.6, 131.5, 130.9, 130.4, 129.2, 125.5, 125.47 (t, *J* = 1.9 Hz), 121.7 (t, *J* = 300.4 Hz), 81.1 (t, *J* = 25.3 Hz), 33.6, 18.4 (dd, *J* = 4.9, 1.0 Hz), 17.7 (d, *J* = 1.8 Hz). IR (film): 2977, 1584, 1450, 1348, 1158, 1047 cm⁻¹. MS (ESI, *m/z*): 386.2 (M + H⁺). HRMS (ESI): calcd. for C₁₇H₁₇F₂NO₃S₂: (M + H⁺): 386.0691; Found: 386.0687.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-5,6-dimethyl-3-phenyl-2,3-dihydrobenzo[*d*]i sothiazole 1-oxide (**6h**)

Mp: 161–163 °C. $[\alpha]_D^{27}$ –88.5 (*c* 0.80, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.88 (d, *J* =

7.5 Hz, 2H), 7.77 (d, J = 7.4 Hz, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.57–7.45 (m, 3H), 7.38 (s, 1H), 7.37–7.28 (m, 3H), 6.35 (s, 1H), 2.28 (s, 3H), 2.27 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –99.5 (d, J = 239.3 Hz, 1F), –100.8 (d, J = 239.3 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 143.1, 141.5, 140.0, 136.1, 135.5 (d, J = 0.8 Hz), 135.3, 133.7, 130.3, 129.1, 128.8, 128.6, 126.8 (dd, J = 3.9, 2.4 Hz), 126.2 (dd, J = 2.8, 0.7 Hz), 125.8, 121.0 (t, J = 302.7 Hz), 79.5 (t, J = 21.0 Hz), 20.4, 19.8. IR (film): 1583, 1449, 1338, 1184, 1149, 1066, 686, 587 cm⁻¹. MS (ESI, m/z): 448.3 (M + H⁺). HRMS (ESI): calcd. for C₂₂H₁₉F₂NO₃S₂: (M + H⁺): 448.0847; Found: 448.0842.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-5,6-dimethyl-3-(*m*-tolyl)-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (**6i**)

White solid. M.p.: 183–184 °C. $[\alpha]_D^{26} = -63.8$ (c = 0.95, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.75 (d, J = 7.8 Hz, 2H), 7.65 (t, J = 6.3 Hz, 3H), 7.55 (s, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.36 (s, 1H), 7.21 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 6.29 (s, 1H), 2.29 (s, 6H), 2.28 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –98.5 (d, J = 235.8 Hz, 1F), -99.7 (d, J = 236.9 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 143.3, 141.5, 140.0, 138.4, 136.2, 135.6, 135.3, 134.0, 130.4, 129.7, 129.2, 128.5, 127.5, 126.3, 125.8, 124.0, 121.3 (t, J = 298 Hz), 79.6 (t, J = 20.4 Hz), 21.7, 20.5, 19.9. IR (KBr): 3243, 2921, 1733, 1605, 1448, 1350, 1172, 1148, 1058 cm⁻¹. MS (ESI, m/z): 462 ([M + H] ⁺). HRMS (ESI, m/z): Calcd. for C₂₃H₂₂F₂NO₃S₂ ([M + H]⁺): 462.1009; Found: 462.1009.

(1*S*,3*R*)-3-[Difluoro(phenylsulfonyl)methyl]-3-phenyl-3,5,6,7-tetrahydro-2*H*-indeno[5,6*d*]isothiazole 1-oxide (**6j**)

Mp: 191–193 °C. $[\alpha]_D^{27}$ –94.6 (*c* 0.90, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.90 (d, *J* = 6.7 Hz, 2H), 7.78 (d, *J* = 7.8 Hz, 2H), 7.68 (t, *J* = 7.3 Hz, 1H), 7.59 (s, 1H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.44 (s, 1H), 7.32 (d, *J* = 5.5 Hz, 3H), 6.36 (s, 1H), 3.00–2.80 (m, 4H), 2.20–2.00 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃): δ –99.3 (d, *J* = 238.4 Hz, 1F), –100.8 (d, *J* = 238.4 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 147.8, 143.8, 136.2 (d, *J* = 4.5 Hz), 135.3, 133.7, 130.4, 129.1, 128.8, 128.6, 126.8 (d, *J* = 2.1 Hz), 126.7, 121.2 (d, *J* = 2.4 Hz), 120.8, 121.1 (dd, *J* = 301.2, 298.4 Hz), 79.3 (t, *J* = 20.7 Hz), 32.8, 32.4, 25.7. IR (film): 3167, 1583, 1447, 1347, 1145, 1108, 1066, 1042 cm⁻¹. MS (ESI, *m/z*): 460.3 (M + H⁺). HRMS (ESI): calcd. for C₂₃H₁₉F₂NO₃S₂: (M + H⁺): 460.0847; Found: 460.0846.

3.3 N-(6-Bromonaphthalen-2-yl)methylation of Cyclic Sulfinamide 6a

Figure S2 Structure of Cyclic Sulfinamide (Ss, R)-S3 in the Crystal

Experimental Procedures:

Under N₂ atmosphere, to a solution of cyclic sulfinamide **6a** (0.126 g, 0.3 mmol) in DMF (6.0 mL) was added NaH (0.0144 g, 0.6 mmol) at -30 °C. After stirring at this temperature for 2 h, 2-bromo-6-(bromomethyl)naphthalene (0.180 g, 0.6 mmol) was added, and then the reaction mixture was stirred at the same temperature for 10 h. After quenched with saturated NH₄Cl solution, the reaction mixture was extracted with diethyl ether (3 × 30 mL), and the combined organic phases were dried over anhydrous MgSO₄. The volatile solvents were removed under vacuum, and the crude product was purified by flash column chromatography (silica gel; ethyl acetate/petroleum ether = 1:5, v/v) to give **S3** as a white solid (0.118 g; 62% yield).

(1S,3R)-2-[(6-Bromonaphthalen-2-yl)methyl]-3-[difluoro(phenylsulfonyl)methyl]-3-phen yl-2,3-dihydrobenzo[*d*]isothiazole 1-oxide (**S3**) Mp: 225 – 228 °C. [α]_D²⁸ –52.0 (*c* 0.75, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 8.07 (s, 1H), 8.01 (s, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.81 – 7.66 (m, 5H), 7.65 – 7.44 (m, 7H), 7.41 – 7.22 (m, 4H), 4.47 (d, J = 13.3 Hz, 1H), 4.20 (d, J = 13.3 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –87.6 (d, J = 242.7 Hz, 1F), –95.7 (d, J = 242.7 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): δ 145.7 (d, J = 1.3 Hz), 140.1 (dd, J = 6.4, 1.8 Hz), 135.1, 134.9, 134.4, 134.2, 133.1, 131.9, 131.6, 130.7, 130.3, 129.8, 129.7, 129.6, 129.3, 129.2, 129.1, 128.9, 128.7 (t, J = 2.5 Hz), 128.6, 127.1, 126.7 (d, J = 6.4 Hz), 125.4 (t, J = 305.1 Hz), 124.6, 120.1, 82.8 (t, J = 21.9 Hz), 49.0 (d, J = 6.6 Hz). IR (film): 3053, 1585, 1498, 1448, 1354, 1181, 1147, 1091 cm⁻¹. MS (ESI, m/z): 638.4 (M + H⁺). HRMS (ESI): calcd. for C₃₁H₂₂BrF₂NO₃S₂: (M + H⁺): 638.0265; Found: 638.0274.

3.4 Synthesis of Cyclic Sulfinimines

Figure S3 Structure of Cyclic Sulfinimine (S)-7c in the Crystal

Typical Procedures:

Under N₂ atmosphere, Cs₂CO₃ (260 mg, 0.8 mmol) was added to a solution of cyclic
sulfinamide (*Ss*,*R*)-**6a** ($R^1 = Ph$; R^2 , $R^3 = H$) (89 mg, 0.2 mmol) in dry THF, and then reaction mixture was heated at 42–45 °C for 12 h. After diluted with water (10 mL), the aqueous phase was extracted with ethyl acetate (3 × 20 mL). The combined organic phases were washed with brine (40 mL) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash chromatography (silica gel; *n*-hexane/ethyl acetate = 3: 1 v/v) to afford cyclic sulfinimine (*S*)-**7a** ($R^1 = Ph$; R^2 , $R^3 = H$) as a white solid (31.7 mg; 70% yield; 98:2 er).

The er of **7a** could be improved to > 99:1 after a single recrystallization from ethyl acetate/petroleum ether (1:1, v/v; 0.073 mol/L) at 0 $^{\circ}$ C.

(S)-3-Phenylbenzo[d]isothiazole 1-oxide (7a)

Pale yellow solid. Mp: 74–75 °C. $[\alpha]_D^{29}$ –292.6 (*c* 1.00, CHCl₃), 98:2 er. The enantiomeric ratio was determined by Lux 5u Cellulose–2 (250×4.6 mm), MeOH / IPA= 50 / 50 (v/v), 0.7 mL/min, λ = 214 nm, t_R (major) = 22.39 min, t_R (minor) = 33.02 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.14–8.10 (m, 1H), 7.98–7.93 (m, 3H), 7.74–7.69 (m, 2H), 7.67–7.56 (m, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 155.0, 135.1, 132.4, 132.2, 131.5, 129.2, 129.1, 127.0, 125.8. IR (KBr): 1598, 1512, 1443, 1335, 1095 cm⁻¹. MS (ESI, *m/z*): 227. HRMS (ESI, *m/z*): Calcd. for C₁₃H₉NOS ([M]⁺): 227.0405; Found: 227.0404.

(S)-3-(m-Tolyl)benzo[d]isothiazole 1-oxide (7b)

White solid. Mp: 79–80 °C. $[\alpha]_D^{28}$ –301.9 (*c* 1.00, CHCl₃), 96:4 er. The enantiomeric ratio was determined by Lux 5u Cellulose–1 (250×4.6 mm), MeOH / IPA= 60 / 40 (v/v), 0.7 mL/min, λ = 214 nm, t_R (major) = 9.46 min, t_R (minor) = 10.44 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.13–8.10 (m, 1H), 7.98–7.94 (m, 1H), 7.77 (s, 1H), 7.75–7.69 (m, 3H), 7.48–7.45 (m, 2H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.3, 154.9, 139.1, 135.2, 133.2, 132.3, 132.1, 131.5, 129.6, 128.9, 127.1, 126.3, 125.7, 21.5. IR (KBr): 2965, 1511, 1301, 1078 cm⁻¹. MS (ESI, *m/z*): 241([M]⁺). HRMS (ESI, *m/z*): Calcd. for C₁₄H₁₁NOS ([M]⁺): 241.0561; Found: 241.0558.

(S)-3-(4-Bromophenyl)benzo[d]isothiazole 1-oxide (7c)

White solid. Mp: 150–152 °C. $[\alpha]_D^{29}$ –356.2 (*c* 0.55, CHCl₃), 97:3 er. The enantiomeric ratio was determined by Lux 5u Cellulose–1 (250×4.6 mm), MeOH / IPA= 70 / 30 (v/v), 0.7 mL/min, λ = 214 nm, t_R (major) = 14.13 min, t_R (minor) = 15.39 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.15–8.12 (m, 1H), 7.93–7.91 (m, 1H), 7.85–7.82 (m, 2H), 7.76–7.71 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ 173.0, 155.0, 134.8, 132.5, 132.4, 131.7, 131.1, 130.6, 127.3, 126.7, 125.9. IR (KBr): 3078, 1586, 1504, 1485, 1309, 1075, 1008 cm⁻¹. MS (ESI, *m/z*): 305 ([M]⁺). HRMS (ESI, *m/z*): Calcd. for C₁₃H₈BrNOS⁺([M]⁺): 304.9510; Found: 304.9513.

(S)-3-[4-(Trifluoromethyl)phenyl]benzo[d]isothiazole 1-oxide (7d)

White solid. Mp: 176–177 °C. $[\alpha]_D^{28}$ –217.3 (*c* 1.10, CHCl₃), 95:5 er. The enantiomeric ratio was determined by Lux 5u Cellulose–1 (250×4.6 mm), MeOH / IPA= 80 / 20 (v/v), 0.7 mL/min, λ = 214 nm, t_R (major) = 17.41 min, t_R (minor) = 18.85 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.17–8.14 (m, 1H), 8.07 (d, *J* = 8.4 Hz, 2H), 7.92–7.85 (m, 3H), 7.79–7.73 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃): δ –63.0 (s, 3F). ¹³C NMR (100 MHz, CDCl₃): δ 172.9, 155.1, 135.5, 134.7, 133.8 (q, *J* = 32.8 Hz), 132.6, 131.9, 129.5, 126.6, 126.1 (q, *J* = 3.7 Hz), 126.0, 123.6 (q, *J* = 270.5 Hz). IR (KBr): 3105, 1590, 1505, 1411, 1328, 1122, 1081, 1070 cm⁻¹. MS (ESI, *m/z*): 295 ([M] ⁺). HRMS (ESI, *m/z*): Calcd. for C₁₄H₈F₃NOS⁺ ([M + Na]⁺): 295.0279; Found: 295.0275.

(S)-5,6-Dimethyl-3-phenylbenzo[d]isothiazole 1-oxide (7e)

White solid. Mp: 90–91 °C. $[\alpha]_D^{29}$ –241.8 (*c* 0.80, CHCl₃), 93:7 er. The enantiomeric ratio was determined by Lux 5u Cellulose–2 (250×4.6 mm), MeOH / IPA= 60 / 40 (v/v), 1.0 mL/min, λ = 214 nm, t_R (major) = 43.63 min, t_R (minor) = 57.64 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.89 (s, 1H), 7.68 (s, 1H), 7.64–7.55 (m, 3H), 2.43 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.0, 152.7, 141.8, 141.6, 133.4, 132.5, 132.1, 129.1, 129.0, 127.6, 126.6, 20.5, 20.3. IR (KBr): 3445, 3055, 2917, 1595, 1540, 1441, 1335, 1080 cm⁻¹. MS (ESI, *m/z*): 255. HRMS (ESI, *m/z*): Calcd. for C₁₅H₁₃NOS ([M]⁺): 255.0718; Found: 255.0720.

(S)-5,6-Dimethyl-3-(m-tolyl)benzo[d]isothiazole 1-oxide (7f)

White solid, Mp: 113–114 °C. $[\alpha]_D^{28}$ –248.8 (*c* 0.75, CHCl₃), 95:5 er. The enantiomeric ratio was determined by Lux 5u Cellulose–1 (250×4.6mm), MeOH / IPA= 60 / 40 (v/v), 0.7 mL/min, λ = 214 nm, t_R (major) = 8.67 min, t_R (minor) = 9.45 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 7.85 (s, 1H), 7.75 (s, 1H), 7.71 (d, *J* = 6.6 Hz, 1H), 7.67 (s, 1H), 7.49–7.44 (m, 2H), 2.47 (s, 3H), 2.43 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.3, 152.6, 141.8, 141.5, 139.0, 133.5, 132.9, 132.5, 129.6, 128.8, 127.6, 126.5, 126.2, 21.5, 20.5, 20.3. IR (KBr): 2919, 1592, 1508, 1336, 1083 cm⁻¹. MS (ESI, *m/z*): 269 ([M]⁺). HRMS (ESI, *m/z*): Calcd. for C₁₆H₁₅NOS ([M]⁺): 269.0874; Found: 269.0876.

3.5 Addition to Cyclic Sulfinimines

Typical Procedures:

Under N₂ atmosphere, to a solution of **8a** (R = 4-EtC₆H₄) (119 mg, 0.8 mmol) in dry THF (1 mL) was added KHMDS (1.0 M in THF, 0.8 mL, 0.8 mmol) at -78 °C. After 10 min, chiral sulfinimine (*S*)-**7a** (91 mg, 0.4 mmol) in THF (0.4 mL) was added to the enolate solution of **8a** at -78 °C. The whole mixture was stirred for 2 h at -78 °C. The reaction mixture was diluted with water (10 mL) and the aqueous phase was extracted with ethyl acetate (3 × 20 mL). The combined organic phases were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to fast column chromatography

(silica gel; *n*-hexane/ethyl acetate 3: 1, v/v) to give product **9a** as a white solid (140 mg; 93% yield).

Characterization Data:

1-(4-Ethylphenyl)-2-{(*1S*,*3S*)-1-oxido-3-phenyl-2,3-dihydrobenzo[*d*]isothiazol-3-yl}etha none (**9a**)

White solid. Mp: 152–154 °C. $[\alpha]_D^{28}$ +288.5 (*c* 1.05, CHCl₃), 95:5 dr, 99:1 er. The dr and er were determined by CHIRALPAK AS–RH (250 × 4.6 mm), MeOH / IPA= 85 / 15 (v/v), 0.3 mL/min, λ = 230 nm, t_R (major) = 10.37 min, t_R (minor) = 20.14 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 7.87 (d, *J* = 8.1 Hz, 3H), 7.46–7.45 (m, 2H), 7.33–7.25 (m, 7H), 7.13 (s, 1H), 6.43 (s, 1H), 4.69 (d, *J* = 18.6 Hz, 1H), 3.90 (d, *J* = 18 Hz, 1H), 2.71 (q, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 150.9, 146.3, 145.5, 141.9, 134.4, 131.8, 129.1, 128.8, 128.4, 128.3, 127.6, 125.4, 124.8, 124.2, 74.5, 50.1, 29.0, 15.2. IR (KBr): 3323, 3060, 2963, 2932, 1674, 1605, 1448, 1414, 1364, 1224, 1181, 1073 cm⁻¹. MS (ESI, *m/z*): 376 ([M + H]⁺). HRMS (ESI, *m/z*): Calcd. for C₂₃H₂₂NO₂S⁺ ([M + H]⁺): 376.1371; Found: 376.1369.

1-(4-Nitrophenyl)-2-{(*1S*,*3S*)-1-oxido-3-phenyl-2,3-dihydrobenzo[*d*]isothiazol-3-yl}etha none (**9b**)

White solid. Mp: 96–98 °C. $[\alpha]_D^{29}$ +218.9 (*c* 0.70, CHCl₃). 88:12 dr, 99:1 er. The dr and er were determined by Lux 5u Cellulose–1 (250 × 4.6 mm), MeOH / IPA= 90 / 10 (v/v),

0.5 mL/min, λ = 230 nm, t_R (major) = 12.87 min, t_R (minor) = 23.69 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.31 (d, *J* = 8.7 Hz, 2H), 8.10 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 5.1 Hz, 1H), 7.49 (t, *J* = 3.6 Hz, 2H), 7.32–7.14 (m, 5H), 7.17 (s, 1H), 6.25 (s, 1H), 4.70 (d, *J* = 18.6 Hz, 1H), 4.03 (d, *J* = 18.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 196.4, 150.6, 145.8, 145.3, 141.3, 140.9, 132.0, 129.3, 129.2, 129.0, 127.9, 125.3, 124.9, 124.2, 124.0, 74.2, 50.9. IR (KBr): 3356, 3064, 2906, 1690, 1602, 1525, 1345, 1214, 1073, 1053 cm⁻¹. MS (ESI, *m/z*): 393([M + H]⁺). HRMS (ESI, *m/z*): Calcd. for C₂₁H₁₇N₂O₄S⁺ ([M + H]⁺): 393.0909; Found: 393.0893.

1-(4-Bromophenyl)-2-{(*1S*,*3S*)-1-oxido-3-phenyl-2,3-dihydrobenzo[*d*]isothiazol-3-yl}eth anone (**9c**)

White solid. Mp: 68–70 °C. $[\alpha]_D^{28}$ +239.8 (*c* 1.00, CHCl₃). 92:8 dr, 99:1 er. The dr and er were determined by Lux 5u Cellulose–3 (250 × 4.6 mm), MeOH / IPA= 90 / 10 (v/v), 0.5 mL/min, λ = 230 nm, t_R (major) = 9.38 min, t_R (minor) = 8.92 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 7.87–7.78 (m, 3H), 7.63–7.59 (m, 2H), 7.50–7.45 (m, 2H), 7.32–7.25 (m, 5H), 7.16–7.11 (m, 1H), 6.34 (s, 1H), 4.64 (d, *J* =18.3 Hz, 1H), 3.91 (d, *J* =18.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 196.8, 146.1, 145.4, 141.6, 135.3, 132.1, 131.9, 129.7, 129.2, 129.1, 128.9, 127.7, 125.3, 124.8, 124.2, 74.3, 50.2. IR (KBr): 3447, 3060, 2923, 1682, 1584, 1449, 1355, 1216, 1071, 1053 cm⁻¹. MS (ESI, *m/z*): 426 ([M + H]⁺). HRMS (ESI, *m/z*): Calcd. for C₂₁H₁₇BrNO₂S⁺ ([M + H]⁺): 426.0163; Found: 426.0150.

1-(Benzo[*b*]thiophen-2-yl)-2-{(*1S*,*3S*)-1-oxido-3-phenyl-2,3-dihydrobenzo[*d*]isothiazol-3 -yl}ethanone (**9d**)

White solid. Mp: 90–92 °C. $[\alpha]_D^{28}$ +278.3 (*c* 1.05, CHCl₃). 94:6 dr, 99:1 er. The dr and er were determined by Lux 5u Cellulose–1 (250 ×4.6 mm), MeOH / IPA= 90 / 10 (v/v), 0.5 mL/min, λ = 230 nm, t_R (major) = 10.81 min, t_R (minor) = 14.50 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.05 (s, 1H), 7.90–7.85 (m, 3H), 7.48–7.37 (m, 6H), 7.32–7.24 (m, 3H), 7.17 (s, 1H), 6.38 (s, 1H), 4.74 (d, *J* = 18.3 Hz, 1H), 4.01 (d, *J* = 18.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 146.0, 145.5, 143.1, 142.8, 141.5, 139.0, 131.9, 130.0, 129.2, 128.9, 127.9, 127.8, 126.2, 125.4, 125.3, 124.8, 124.2, 123.0, 74.5, 50.6. IR (KBr): 3337, 3058, 2923, 1730, 1660, 1514, 1449, 1355, 1224, 1169, 1073, 1052 cm⁻¹. MS (ESI, *m/z*): 404 ([M + H]⁺). HRMS (ESI, *m/z*): Calcd. for C₂₃H₁₈NO₂S₂⁺ ([M + H]⁺): 404.0779; Found: 404.0773.

1-(Naphthalen-2-yl)-2-{(*1S*,*3S*)-1-oxido-3-phenyl-2,3-dihydrobenzo[*d*]isothiazol-3-yl}et hanone (**9e**)

White solid. Mp: 88–90 °C. $[\alpha]_D^{29}$ +284.0 (*c* 1.00, CHCl₃). 95:5 d, 99:1 er. The dr and er were determined by CHIRALPAK AD–H (250 × 4.6 mm), MeOH / IPA= 90 / 10 (v/v), 0.5 mL/min, λ = 230 nm, t_R (major) = 10.76 min, t_R (minor) = 22.89 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 8.49 (s, 1H), 8.00–7.87 (m, 5H), 7.64–7.53 (m, 2H), 7.50–7.47 (m, 2H), 7.38–7.25 (m, 5H), 7.20–7.19 (m, 1H), 6.46 (s, 1H), 4.86 (d, *J* = 18.3 Hz, 1H), 4.08 (d, *J* = 18.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 197.7, 146.3, 145.5, 141.9, 135.9, 134.0, 132.5, 131.9, 130.2, 129.7, 129.2, 128.9, 128.8, 128.7, 127.9,

127.7, 127.1, 125.4, 124.8, 124.3, 123.6, 74.6, 50.3. IR (KBr): 3339, 3057, 2922, 1675, 1626, 1449, 1359, 1172, 1124, 1053 cm⁻¹. MS (ESI, *m/z*): 398 ($[M + H]^+$). HRMS (ESI, *m/z*): Calcd. for C₂₅H₂₀NO₂S⁺ ($[M + H]^+$): 398.1215; Found: 398.1191.

Ethyl 2-{(1S,3S)-1-oxido-3-phenyl-2,3-dihydrobenzo[d]isothiazol-3-yl}acetate (9f)

White solid. Mp: 66–68 °C. $[\alpha]_D^{28}$ +189.2 (*c* 1.10, CHCl₃). 95:5 dr, 99:1 er. The dr and er were determined by Lux 5u Cellulose–3 (250 × 4.6 mm), MeOH / IPA= 85 / 15, 0.3 mL/min, λ = 230 nm, t_R (major) = 12.61 min, t_R (minor) = 12.13 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 7.82 (d, *J* = 3.9 Hz, 1H), 7.42–7.39 (m, 4H), 7.35–7.26 (m, 3H), 7.10 (s, 1H), 6.29 (s, 1H), 4.11 (q, *J* = 6.6 Hz, 2H), 3.77 (d, *J* = 17.1 Hz, 1H), 3.43 (d, *J* = 16.8 Hz, 1H), 1.71 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 145.5, 145.2, 141.6, 131.9, 129.2, 128.9, 127.9, 125.4, 124.7, 124.1, 74.0, 61.1, 46.9, 14.1. IR (KBr): 3334, 2980, 2927, 1725, 1496, 1449, 1372, 1348, 1201, 1075, 1019 cm⁻¹. MS (ESI, *m*/*z*): 316 ([M + H]⁺). HRMS (ESI, *m*/*z*): Calcd. for C₁₇H₁₈NO₃S⁺ ([M + H]⁺): 316.1007; Found: 316.1007.

3.6 Oxidation of Cyclic Sulfinamide 9c

Figure S4 Structure of Cyclic Sulfonamide (S)-S4 in the Crystal

Experimental Procedures:

To a solution of **8d** (85 mg, 0.2 mmol) in a mixture solvent of H₂O (1 mL), CCl₄ (0.5 mL), and CH₃CN (0.5 mL) was added NaIO₄ (128 mg, 0.6 mmol) and RuCl₃ (0.25 mg, 0.01 mmol). The whole mixture was stirred at rt for 2 h. The reaction mixture was diluted with water (5 mL) and the aqueous phase was extracted with Et₂O (3 × 10 mL). The combined organic phases were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was subjected to fast column chromatography (silica gel; *n*-hexane/EtOAc = 2: 1, v/v) to give product **S4** as a white solid (74 mg; 83% yield). The single crystal of the major enatiomer of **S4** that is suitable for X-ray crystallographic analysis (Figure S4) was obtained by recrystallization from ethyl acetate / petroleum ether (5:2, v/v; 0.024 mol/L) at room temperature.

(*S*)-1-(4-Bromophenyl)-2-(1,1-dioxido-3-phenyl-2,3-dihydrobenzo[*d*]isothiazol-3-yl)etha none (**S4**)

White solid. Mp: 183–185 °C. $[\alpha]_D^{29}$ +239.0 (*c* 0.95, CHCl₃); 90.5:9.5 er. The enantiomeric excess was determined by Lux 5u Cellulose–1 (250 × 4.6 mm), MeOH / IPA= 60 / 40 (v/v), 0.7 mL/min, λ = 230 nm, t_R (major) = 21.92 min, t_R (minor) = 31.35 min on Dionex Utimate 3000. ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 6.6 Hz, 2H), 7.63 (d, *J* = 6.6 Hz, 2H), 7.58–7.51 (m, 2H), 7.48 (d, *J* = 5.7 Hz, 2H), 7.33–7.23 (m, 4H), 6.62 (s, 1H), 4.46 (d, *J* = 13.5 Hz, 1H), 3.62 (d, *J* = 13.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 196.5, 142.6, 141.1, 135.0, 134.0, 133.5, 132.3, 129.7, 129.6, 129.1, 128.2, 125.5, 124.4, 121.7, 65.8, 46.7, 29.7. IR (KBr): 3353, 3284, 2921, 2851, 1678, 1584, 1484, 1359, 1286, 1198, 1162, 1130, 1068 cm⁻¹. MS (ESI, *m/z*): 464 ([M + Na]⁺). HRMS (ESI, *m/z*): Calcd. for C₂₁H₁₆BrNNaO₃S⁺ ([M + Na]⁺): 463.9932; Found: 463.9943.

3.7 Reductive Desulfonylation

Experimental Procedures:

To a solution of (Ss,R)-**5a** (0.095 g, 0.2 mmol) in DMF (6.0 mL), HOAc/NaOAc (1:1) buffer solution ($M_{(OAc)} = 8 \text{ mol/L}$; 4.0 ml) and magnesium turnings (0.192 g, 8.0 mmol) were added slowly at 0 °C. Then the reaction temperature was allowed to raise to rt slowly with vigorous stirring. After 8 h, the reaction mixture was diluted with water (10 mL) and the aqueous phase was extracted with diethyl ether (3 × 20 mL). The combined organic phases were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was

subjected to fast column chromatography (silica gel; ethyl acetate/petroleum ether = 1:3, v/v) to give (*Ss*,*R*)-**10** (0.063 g; 94% yield).

(1*S*,3*R*)-1-(*tert*-Butyl)-3-(difluoromethyl)-3-phenylbenzo[*d*]isothiazole 1-oxide (10)

[α]_D²¹ +20.2 (*c* 1.10, CHCl₃). ¹H NMR: δ 7.83 (d, *J* = 7.8 Hz, 1H), 7.80–7.70 (q, *J* = 7.4 Hz, 3H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.35–7.21 (m, 3H), 6.15 (t, *J* = 55.9 Hz, 1H), 1.61 (s, 9H). ¹⁹F NMR: δ –122.3 (dd, *J* = 271.7, 56.9 Hz, 1F), –123.4 (dd, *J* = 271.7, 56.9 Hz, 1F). ¹³C NMR: δ 147.7, 141.0, 136.9, 133.6, 130.6, 129.3, 128.7, 127.9 (t, *J* = 1.9 Hz), 127.6 (t, *J* = 1.9 Hz), 124.6, 118.2 (t, *J* = 250.7 Hz), 80.1 (t, *J* = 21.8 Hz), 63.9, 25.7. IR (film): 2974, 1452, 1366, 1218, 1080, 962, 757 cm⁻¹. MS (ESI, *m/z*): 336.1 (M + H⁺). HRMS (ESI): calcd. for C₁₈H₁₉F₂NOS: (M + H⁺): 336.1228; Found: 336.1225.

Experimental Procedures:

To a solution of (Ss,R)-**6a** (0.419 g, 1.0 mmol) in DMF (16 mL), HOAc/NaOAc (1:1) buffer solution ($M_{(OAc)} = 8 \text{ mol/L}$; 10 ml) and magnesium turnings (0.480 g, 20 mmol) were added slowly at 0 °C. Then the reaction temperature was allowed to raise to rt slowly with vigorous stirring. After 10 h, the reaction mixture was diluted with water (20 mL) and the aqueous phase was extracted with diethyl ether (3 × 30 mL). The combined organic phases were washed with brine (40 mL) and dried over anhydrous Na₂SO₄. After the solution was filtered and the solvent was evaporated under vacuum, the residue was

subjected to fast column chromatography (silica gel; ethyl acetate/petroleum ether = 1:3, v/v) to give (*Ss*,*R*)-**11** as a white solid (0.203 g; 73% yield).

(1S,3R)-3-(Difluoromethyl)-3-phenyl-2,3-dihydrobenzo[d]isothiazole 1-oxide (11)

White solid. Mp: 152–154 °C. $[\alpha]_D^{25}$ –140.9 (*c* 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃): δ 7.85–7.83 (m, 1H), 7.70 (d, *J* = 6.9 Hz, 2H), 7.57–7.54 (m, 2H), 7.44 (d, *J* = 4.8 Hz, 1H), 7.39–7.31 (m, 3H), 6.13 (t, *J* = 55.2 Hz, 1H), 5.47 (s, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –122.7 (dd, *J* = 274.7 Hz, 54.4 Hz, 1F), –125.9 (dd, *J* = 274.9 Hz, 55.5 Hz, 1F). ¹³C NMR (100 MHz, CDCl₃): 145.9, 138.7, 137.4, 132.2, 130.4, 128.9, 128.6, 127.1 (t, *J* = 1.5 Hz), 125.3, 125.1 (d, *J* = 1.5 Hz), 115.9 (t, *J* = 249.0 Hz), 78.0 (t, *J* = 21.3 Hz). IR (KBr): 3154, 2788, 1497, 1450, 1406, 1361, 1347, 1133, 1077, 1042, 1025, 861 cm⁻¹. MS (EI, *m*/*z*): 279 (M⁺, 4.96), 228 (100). HRMS (EI, *m*/*z*): Calcd. for C₁₄H₁₁F₂NOS⁺ ([M + H]⁺): 279.0529; Found: 279.0534.

4. Determination of the Enantioselectivity

For racemic product 4d and enantioenriched product 4d (er > 99:1):

For racemic product 5a and enantioenriched product 5a (er > 99:1):

For racemic product 7a and enantioenriched product 7a (er 98:2):

racemic product 7a and enantioenriched product 7a (after a single recrystallization; er > 99:1):

For racemic product 7b and enantioenriched product 7b (er 96:4):

Table 4, entry 3

For racemic product 7c and enantioenriched product 7c (er 97:3):

Table 4, entry 4

Table 4, entry 5

For racemic product 7e and enantioenriched product 7e (er 93:7):

For racemic product 7f and enantioenriched product 7f (er 95:5):

For racemic product 9a and enantioenriched product 9a (dr 95:5; er 99:1):

For racemic product 9b and enantioenriched product 9b (dr 88:12; er 99:1):

For racemic product 9c and enantioenriched product 9c (dr 92:8; er 99:1):

Table 5, entry 4

For racemic product 9d and enantioenriched product 9d (dr 94:6; er 99:1):

Table 5, entry 5

For racemic product 9e and enantioenriched product 9e (dr 95:5; er 99:1):

For racemic product 9f and enantioenriched product 9f (dr 95:5; er 99:1):

For racemic product S4 and enantioenriched product S4 (er 90.5:9.5):

For racemic product S4 and enantioenriched product S4 (after a single recrystallization; er > 99:1):

5. ¹H, ¹⁹F, and ¹³C NMR Spectrum of New Compounds

