Electronic Supplementary Information

A Facilely Synthesized Amino-functionalized Metal-organic Framework for Highly Specific and Efficient Enrichment of Glycopeptides

Yi-Wei Zhang, Ze Li, Qiang Zhao, Ying-Lin Zhou, Hu-Wei Liu and Xin-Xiang Zhang*

Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, P.R. China

Experimental Section

Chemicals and Materials

Horseradish peroxidase (HRP), bovine serum albumin (BSA), and 2, 5-dihydroxyl benzoic acid (DHB), dithiothreitol (DTT) were purchased from sigma-Aldrich (St, Louis, MO, USA). Secreted form mouse IgG (anti- α -fetoprotein (AFP) monoclonal) was obtained from Biocell CO. LTD (Zhengzhou, China). 2-aminoterephthalic acid and iodoacetamide (IAA) were from Alfa Aesar China Chemical Co., Ltd. (Tianjin, China). Sequencing grade modified trypsin was purchased from Promega. Peptide-N-glycosidase (PNGase F) was from New England Biolabs (Ipswich, MA, USA). HPLC grade methanol and acetonitrile (ACN) were from Fisher Scientific (Fair Lawn, NJ, USA). Formic acid (FA) was from TCI (Tokyo, Japan). Chromic nitrate hydrate, urea, ammonium bicarbonate (NH₄HCO₃) and other analytical grade reagents were obtained from Beijing Chemicals (Beijing, China). Water was purified by Milli-Q pure water system (Millipore, Bedford, MA, USA).

Synthesis of MIL-101(Cr)-NH₂

Scheme S1 Synthesis of MIL-101(Cr)-NH₂

MIL-101(Cr)-NH₂ was synthesized according to *Jiang et al.*^{S1} with a little modifications. Scheme S1 was schematic representation of the synthesis procedure. In detail, chromic nitrate hydrate (500 mg, 1.25 mmol) and 2-aminoterephthalic acid (230 mg, 1.26 mmol) were dispersed in deionized water (7 mL, 389 mmol). After stirred for 3 h at room temperature, the suspension was heated under autogeneous pressure in a Teflon-lined stainless steel autoclave at 130 °C for 24 h. The autoclave then cooled down to room temperature. The resulting green precipitate was collected by centrifugation and washed with ethanol for five times to remove the excess regents, followed by drying at 80 °C.

Characterization

Fourier-transformed infrared spectroscope (FT-IR) characterization was performed on a Bruker VERTEX 70/70v FT-IR spectrometer to confirm the existence of 2-aminoterephthalic acid (NH₂bdc) skeleton in the structure. In the FT-IR spectrum (Fig. S1), the double peaks at 3421 cm⁻¹ and 3384 cm⁻¹ ascribed to the asymmetrical and symmetrical stretching vibration absorption of the amine groups. The peak at 1582 cm⁻¹ corresponded to the N-H bending vibration while the 1338 cm⁻¹ and 1257 cm⁻¹ peaks represented for C-N stretching of aromatic amines. The peaks at 1499 cm⁻¹ and 1430 cm⁻¹ illustrated the -(O-C-O)- stretching vibration in the MIL-101(Cr)-NH₂ skeleton. X-ray diffraction (XRD) pattern of the dried powders was carried out on a Rigaku

D/MAX-PC 2500 diffractometer with monochromatic Cu K α radiation ($\lambda = 1.5406$ Å) at an accelerating potential of 40 kV and a tube current of 300 mA. Powder XRD (Fig. S2) indicated that the resulting powder was a typical MIL-101(Cr) structure with a pattern similar to the simulated. The rather broad Bragg reflections were consequence of the small particle sizes, as supported by transmission electron microscopy (TEM) images (Fig. S3), which revealed the uniform and narrow size distribution of particles with about 25 nm. The TEM images were taken on a FEI Tecnai G2 T20 transmission electron microscope. Thermal stability was measured on a simultaneous thermal analysis apparatus (Q600SDT TGA-DTA-DSC) in air at a heat rate of 5 °C / min up to 800 °C. Thermogravimetric analysis showed the nanoparticles were stable up to 260 °C (Fig. S4). The nitrogen adsorption-desorption isotherm was recorded by ASAP 2020M apparatus at 77.2 K. The range of relative pressures was between 0 and 1. The BET surface area was calculated over the range of relative pressures between 0.05 and 0.20. N₂ adsorption experiment illustrates the amazing BET surface area of 2187.4 m²/g and Langmuir surface area of 3129.0 m²/g. The sharp uptake under low pressure (P/P₀=10⁻⁵ to 0.1) in N₂ adsorptiondesorption isotherms (Fig. S5) demonstrated the microporous feature of the material while another uptake occurred near $P/P_0=1.0$ attributed to the textural pores created by nanoparticles aggregation.

Preparation of protein digests

Glycoproteins were dissolved in 50 mM NH₄HCO₃ solution (HRP 2 mg/mL and IgG 4 mg/mL, respectively.) and denatured by adding 8 M urea, 10 mM DTT for 45 min at 60 °C. Then 100 mM IAA was added and reacted at 37°C for 45 min in dark. The solution was diluted until the urea concentration reached 0.8 M and treated with trypsin at 37°C (enzyme/protein ratio of 1:20

for HRP and enzyme/protein ratio of 1:25 for IgG) for 18 h. The tryptic digests were stored at - 20 °C before use.

Enrichment of glycopeptides

MIL-101(Cr)-NH₂ was dispersed in ACN contain 0.1% FA. Then 10 μ L tryptic digest of HRP (50 pmol) or IgG (200 pmol) was added into 90 μ L 5 mg/mL MIL-101(Cr)-NH₂ suspension and shaken at room temperature for 5 min. After capture, the slurry was centrifuged at 10000 rpm for 3 min to remove the suspensions. Then the MOFs were washed twice with 80% ACN containing 1% H₃PO₄ to remove the most non-glycopeptides. Finally, 30 μ L 30% ACN containing 0.1% FA were added to elute the glycopeptides and collected for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

Deglycosylation of N-linked glycopeptides by PNGase F

The eluted glycopeptides after enrichment were dissolved in 17 μ L deionized water, followed by 2 μ L 10×G7 Reaction Buffer and 1 μ L PNGase F added to the solution then incubated at 37 °C for 18 h. The reaction solutions were directly spotted on the target plate for MALDI-TOF-MS analysis or analysis by LC-MS/MS.

Mass spectrometry analysis

MALDI-TOF-MS Analysis

A mixture of 30 mg/mL DHB in 50% (v/v) ACN was prepared as the matrix. Then, 1 μ L aliquot of the eluate and 1 μ L matrix solution were sequentially dropped onto the ground steel plate, dried at room temperature for MS analysis. All MALDI-MS spectra were acquired in reflection

and positive mode on an Ultraflex MALDI TOF/TOF mass spectrometer (Bruker Daltonics, Bremen, Germany), equipped with pulsed-nitrogen laser (337 nm). The accelerating voltage was set at 25 kV, 70 ns extraction delay. Laser fluence was optimized at 20%. Each mass spectrum was generated by an average of 400 laser shots.

LC-MS/MS Analysis

All LC-MS/MS analyses were performed on a Thermo Q-Exactive Orbitrap mass spectrometer with a Thermo Ultimate 3000 UHPLC (Thermo, San Jose, CA, USA). The deglycosylated glycopeptides were loaded on a C18 column. For a gradient separation, H_2O/FA (99.9:0.1) was used as the mobile phase A while ACN/FA (99.9:0.1) was mobile phase B. At first, 5 % B was hold for 10 min, then from 5% to 35% for 120 min, from 35% to 80% for 10 min and held at 80% for 6 min. The flow rate was 0.2 mL/min. Full mass scan was acquired from 300 to 2000 m/z with resolution 70000 at R=400 m/z. The MS/MS spectra were obtained in data-dependent ddMS² mode.

Database search and data analysis

The LC-MS/MS raw file was searched against the Swiss-Prot database using MASCOT software (version 2.3.02). The search parameters were set as follows: fixed modification of cysteine residues (+57 Da), variable modification of methionine oxidation (+16 Da), N-terminal acetylation, and deamidation (N), at most two missed tryptic cleavage sites, 20 ppm error tolerance in MS and 0.1 Da error tolerance in MS/MS. The resulting data files were exported with the cut off set to 0.05. According to the consensus N-X-S/T ($X \neq P$) sequent of N-

glycosylation, the remaining peptide sequences were additionally filtered to remove non-motif containing peptides.

Results

Figure S1 FT-IR spectrum of the MIL-101(Cr)-NH₂

Figure S2 Powder XRD pattern of MIL-101(Cr)-NH₂ (a) and the simulated PXRD pattern calculated from the MIL-101(Cr) crystal structure (b)

Figure S3 TEM images of MIL-101(Cr)-NH₂

Figure S4 The thermogravimetric curve (a) and differential thermal analysis spectrum (b) for MIL-101(Cr)-NH₂ powder. TG curve showed the start decomposition temperature was about 260 °C. The sharp endothermic peak 300 °C in heat flow spectrum was due to the rapid decomposition of the resulting powders.

Figure S5 N₂ adsorption-desorption isotherms at 77.2 K

Figure S6 The influence of final acetonitrile concentration on peak intensity of six chosen glycopeptides enriched by MIL-101(Cr)-NH₂; Sample: HRP tryptic digests, 1.0 pmol/µL

Figure S7 The influence of incubation time on peak intensity of six chosen glycopeptides enriched by MIL-101(Cr)-NH₂; Sample: HRP tryptic digests, 1.0 pmol/µL

Figure S8 The influence of MOFs-to-protein ratio on peak intensity of six chosen glycopeptides enriched by MIL-101(Cr)-NH₂; Sample: HRP tryptic digests, 1.0 pmol/μL

Figure S9 MALDI-TOF-MS spectra of the mixture of HRP (1.0 pmol/µL) and BSA tryptic digests (10.0 pmol/µL) after enriching and sequenced washing

Figure S10 MALDI-TOF-MS spectra of IgG tryptic digest after enrichment by MIL-101(Cr)-NH₂ (A) 200 fmol (1 μ L), (B) 100 fmol (1 μ L), (C) 20 fmol (1 μ L), * denotes glycopeptides

 Table S1 Observed glycopeptides and glycan structures of mouse IgG tryptic digests enriched by

 MIL-101(Cr)-NH2. Hex, HexNAc, Fuc and NeuAc are the abbreviations of hexose, N

 acetylhexosamine, fucose and N-acetylneuraminic acid, respectively. N# denotes the N-linked

 glycosylation sites

Peak	Observed	Theoretic	Glycan structure	Peptide
Number	m/z	glycan		sequence

		mass		
I1	2251.5	1113.4	[Hex]3[HexNAc]3	EEQF N #STFR
I2	2374.0	1234.4	[Hex]5[HexNAc]2	EEQF N #STFR
I3	2401.1	1259.5	[Hex]3[HexNAc]3[Fuc]1	EEQF N #STFR
I4	2415.8	1275.5	[Hex]4[HexNAc]3	EEQF N #STFR
15	2457.2	1316.5	[Hex]3[HexNAc]4	EEQFN#STFR
I6	2603.4	1462.5	[Hex]3[HexNAc]4[Fuc]1	EEQF N #STFR
I7	2619.6	1478.5	[Hex]4[HexNAc]4	EEQFN#STFR
18	2659.6	1519.6	[Hex]3[HexNAc]5	EEQFN#STFR
19	2765.0	1624.6	[Hex]4[HexNAc]4[Fuc]1	EEQFN#STFR
I10	2821.7	1681.6	[Hex]4[HexNAc]5	EEQF N #STFR
I11	2908.8	1769.6	[Hex]4[HexNAc]4[NeuAc]1	EEQF N #STFR
I12	2926.7	1786.7	[Hex]5[HexNAc]4[Fuc]1	EEQFN#STFR
I13	2965.4	1827.7	[Hex]4[HexNAc]5[Fuc]1	EEQF N #STFR
I14	2982.8	1843.7	[Hex]5[HexNAc]5	EEQF N #STFR
I15	3063.1	1915.7	[Hex]4[HexNAc]4[Fuc]1[NeuAc]1	EEQF N #STFR
I16	3126.1	1989.7	[Hex]5[HexNAc]5[Fuc]1	EEQF N #STFR
I17	3461.5	2321.9	[Hex]4[HexNAc]6[Fuc]1[NeuAc]1	EEQF N #STFR
I18	3508.6	2368.8	[Hex]5[HexNAc]4[Fuc]1[NeuAc]2	EEQF N #STFR
I19	3580.5	2442.9	[Hex]6[HexNAc]5[Fuc]1[NeuAc]1	EEQF N #STFR
I20	3730.2	2587.9	[Hex]5[HexNAc]5[NeuAc]2	EEQF N #STFR
I21	3786.6	2646.0	[Hex]6[HexNAc]6[Fuc]1[NeuAc]1	EEQF N #STFR
I22	3824.4	2684.9	[Hex]10[HexNAc]3[Fuc]1[NeuAc]1	EEQF N #STFR

Table S2 Observed glycopeptides and glycan structures of HRP tryptic digests enriched by MIL-

101(Cr)-NH₂. Hex, HexNAc, Fuc and Xyl are the abbreviations of hexose, N-acetylhexosamine,

fucose and xylose, respectively. N# denotes the N-linked glycosylation sites

Peak Number	Observed m/z	Theoretic glycan mass	Glycan structure	Peptide sequence
H1	1844.6	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	¹⁸⁴ NVGL <i>N</i> #R ¹⁸⁹
H2	2069.5	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	⁴² PNVS <i>N</i> #IVR ⁴⁹
Н3	2542.7	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	²⁸² SSPN#ATDTIPLVR ²⁹⁴
H4	2613.1	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	²²⁵ PTL <i>N</i> #TTYLQTLR ²³⁶
H5	3145.5	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	237GLCPLNGN#LSALVDFDLR254
H6	3190.2	367.1	[HexNAc]1[Fuc]1	⁶⁹ LHFHDCFVNGCDASILLDN#TTSFR ⁹²
H7	3206.7	1042.4	[Hex]3[HexNAc]2[Xyl]1	²⁹⁵ SFAN#STQTFFNAFVEAMDR ³¹³
H8	3338.9	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	³¹ QLTPTFYDNSCP <i>N</i> #VSNIVR ⁴⁹

H9	3353.3	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	²⁹⁵ SFAN#STQTFFNAFVEAMDR ³¹³
H10	3387.6	2226.8	[Hex]6[HexNAc]4[Fuc]2[Xyl]1	¹⁸⁰ DSFRNVGL <i>N</i> #R ¹⁸⁹
H11	3675.7	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	²⁷² GLIQSDQELFSSPN#ATDTIPLVR ²⁹⁴
H12	3752.2	1042.4	[Hex]3[HexNAc]2[Xyl]1	⁶⁹ LHFHDCFVNGCDASILLD <i>N</i> #TTSFRTEK ⁹⁵
H13	3897.1	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	⁶⁹ LHFHDCFVNGCDASILLD <i>N</i> #TTSFRTEK ⁹⁵
H14	4059.7	1042.4	[Hex]3[HexNAc]2[Xyl]1	³¹ QLTPTFYDNSC(AAVESACPR)P <i>N</i> #VSNIV R ⁴⁹ -H2O
H15	4840.8	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	²¹⁴ LYN#FSNTGLPDPTLN#TTYLQTLR ²³⁶
		1042.4	[Hex]3[HexNAc]2[Xyl]1	
H16	4987.8	1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	²¹⁴ LY N #FSNTGLPDPTLN#TTYLQTLR ²³⁶
		1188.4	[Hex]3[HexNAc]2[Fuc]1[Xyl]1	

Table S3 Observed glycopeptides of human serum tryptic digests enriched by MIL-101(Cr)-NH₂.

OS=OrganismName, GN=GeneName, PE=ProteinExistence, SV=SequenceVersion. N denotes

the N-linked	glycosylati	on sites
--------------	-------------	----------

Protein Accession Number	Protein Description	Peptide Sequence
A1AG1_HU MAN	Alpha-1-acid glycoprotein 1 OS=Homo sapiens GN=ORM1 PE=1 SV=1	WFYIASAFRNEEY <u>N</u> K
A1AG1_HU	Alpha-1-acid glycoprotein 1 OS=Homo sapiens GN=ORM1	QDQCIY <u>N</u> TTYLNVQRE <u>N</u> GTIS
MAN	PE=1 SV=1	R
A1AT_HUM AN	Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1 PE=1 SV=3	YLG <u>N</u> ATAIFFLPDEGK
A1AT_HUM	Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1	QLAHQS <u>N</u> STNIFFSPVSIATAF
AN	PE=1 SV=3	AMLSLGTK
A1AT_HUM	Alpha-1-antitrypsin OS=Homo sapiens GN=SERPINA1	KLSSWVLLMKYLG <u>N</u> ATAIFF
AN	PE=1 SV=3	LPDEGK
A1BG_HUM	Alpha-1B-glycoprotein OS=Homo sapiens GN=A1BG PE=1	PLA <u>N</u> VTLTCQAHLETPDFQLF
AN	SV=3	K
A1BG_HUM	Alpha-1B-glycoprotein OS=Homo sapiens GN=A1BG PE=1	EGDHEFLEVPEAQEDVEATF
AN	SV=3	PVHQPG <u>N</u> YSCSYR
A2MG_HUM	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1	TEVSSNHVLIYLDKVS <u>N</u> QTLS
AN	SV=2	LFFTVLQDVPVR
A2MG_HUM	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1	SNHVSRTEVSSNHVLIYLDK
AN	SV=2	VS <u>N</u> QTLSLFFTVLQDVPVR
A2MG_HUM	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1	GCVLLSYL <u>N</u> ETVTVSASLESV
AN	SV=2	R
A2MG_HUM	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1	GCVLLSYL <u>N</u> ETVTVSASLESV
AN	SV=2	RGN
A2MG_HUM	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1	VIFIRGNEANYYSNATTDEHG
AN	SV=2	LVQFSI <u>N</u> TTNVMGTSLTVR
A2MG_HUM AN	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=2	VS <u>N</u> QTLSLFFTVLQDVPVR

A2MG_HUM	Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1	GNEANYYS <u>N</u> ATTDEHGLVQF
AN	SV=2	SI <u>N</u> TTNVMGTSLTVR
AACT_HUM	Alpha-1-antichymotrypsin OS=Homo sapiens	YTG <u>N</u> ASALFILPDQDK
AACT HUM	Alpha-1-antichymotrypsin OS=Homo sapiens	NVIFSPI SISTALAFI SLGAHN
AN	GN=SERPINA3 PE=1 SV=2	TTLTEILK
AACT HUM	Alpha-1-antichymotrypsin OS=Homo sapiens	
AN	GN=SERPINA3 PE=1 SV=2	F <u>N</u> LTETSEAEIHQSFQHLLR
AACT HUM	Alpha-1-antichymotrypsin OS=Homo sapiens	
AN –	GN=SERPINA3 PE=1 SV=2	IL <u>N</u> QSSDELQLSMGNAMFVK
AFAM_HUM	Afamin OS=Homo sapiens GN=AFM PE=1 SV=1	HNFSHCCSKVDAORR
AN	1	
AFAM_HUM AN	Afamin OS=Homo sapiens GN=AFM PE=1 SV=1	F <u>N</u> ETTEKSLKMVQQECK
ANT3 HUM	Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1	
AN	SV=1	AAINKWVS <u>N</u> K
ANT3_HUM	Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1	LGAC <u>N</u> DTLQQLMEVFK
ANT3 HUM	Antithrombin-III OS=Homo saniens GN=SERPINC1 PE=1	Ι GACNDTI OOI MEVEKEDTI
ANIS_HOW	SV=1	SEK
ANT3_HUM	Antithrombin-III OS=Homo sapiens GN=SERPINC1 PE=1	ENAFOSRAAINKWVSNK
AN	SV=1	
APOB_HUM	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1	NI TDFAFOYSIODWAKRMK
AN	SV=1	
APOB_HUM	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1	HLRVNONLVYESGSLNFSK
AN	SV=1	
APOB_HUM	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1 SV=1	PTVSSSMEFKYDF <u>N</u> SSMLYST AK
APOB HUM	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1	
AN	SV=1	AEEEMILE <u>N</u> VSLVCPK
APOB_HUM	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1	OVIFLDTVYGNCSTHFTVK
AN	SV=1	
APOB_HUM	Apolipoprotein B-100 OS=Homo sapiens GN=APOB PE=1	TIHDLHLFIENIDF <u>N</u> K
ADOR HUM	Apolinoprotein P 100 OS-Homo sopiens GN-A DOB DE-1	ELCTISHIEIDAMGNITVDESE
AN AN	SV=1	K
APOR HUM	Anolinoprotein B-100 $OS=Homo$ saniens $GN=APOB$ $PE=1$	I NGESNI RENSSVI OGTNOIT
AN	SV=1	GR
APOD HUM		
AN	Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1	CPNPPVQENFDV <u>N</u> K
APOD HUM	An alternative D. OC-Hanne and the ON-ADOD DE-1 CM-1	
AN	Apolipoprotein D OS=Homo sapiens GN=APOD PE=1 SV=1	CIQA <u>N</u> YSLMENGKIK
APOD_HUM	Analinanyatain D. OS-Hama ganiang CN-ADOD DE-1 SV-1	ADGTVNQIEGEATPV <u>N</u> LTEP
AN	Aponpoprotein D OS-nomo sapiens ON-APOD PE-1 SV-1	AKLEVK
APOE_HUM	Apolipoprotein E OS=Homo sapiens GN=APOE PE=1 SV=1	VQAAVGTSAAPVPSD <u>N</u> H
	Beta-2-alyconrotein 1 OS=Home caniene GN=ADOH DE-1	
AN	SV=3	PSAG <u>N</u> NSLYR
APOH_HUM	Beta-2-glycoprotein 1 OS=Homo sapiens GN=APOH PE=1	L CNIWS A MOSCY A SCY
AN	SV=3	LUNWSAWPSUKASUK
APOH_HUM	Beta-2-glycoprotein 1 OS=Homo sapiens GN=APOH PE=1	DTAVFECLPQHAMFG <u>N</u> DTIT
AN	SV=3	CTTHG <u>N</u> WTK
AT1B3_HUM	Sodium/potassium-transporting ATPase subunit beta-3	KSI NOSI AFWK
1 1 3 7	OS=Homo saniens GN=ATP1B3 PE=1 SV=1	KOLMQOLALWK

AT1B3_HUM	Sodium/potassium-transporting ATPase subunit beta-3	PYTLEEQK <u>N</u> LTVCPDGALFE
ATS20 HUM	A disintegrin and metalloproteinase with thrombospondin	
AN	motifs 20 OS=Homo sapiens GN=ADAMTS20 PE=2 SV=2	KLEDT <u>N</u> CSQVQKPPTHK
ATS20_HUM	A disintegrin and metalloproteinase with thrombospondin	CPQGQFSI <u>N</u> LSGTGMKISSTA
AN CIR HUMA	motifs 20 OS=Homo sapiens GN=ADAM1S20 PE=2 SV=2	K
N	PE=1 SV=2	MLLTFHTDFSNEE <u>N</u> GTIMFY
C1R_HUMA N	Complement C1r subcomponent OS=Homo sapiens GN=C1R PE=1 SV=2	EHEAQS <u>N</u> ASLDVFLGHTNVE ELMK
C1R_HUMA N	Complement C1r subcomponent OS=Homo sapiens GN=C1R PE=1 SV=2	RSYPPDLRC <u>N</u> YSIRVER
CERU_HUM AN	Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1	ELHHLQEQ <u>N</u> VSNAFLDK
CERU_HUM AN	Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1	AGLQAFFQVQEC <u>N</u> KSSSK
CERU_HUM AN	Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1	EHEGAIYPD <u>N</u> TTDFQRADDK
CERU_HUM AN	Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1	E <u>N</u> LTAPGSDSAVFFEQGTTR
CERU_HUM AN	Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1	EFYLFPTVFDE <u>N</u> ESLLLEDNI R
CERU_HUM AN	Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1	DVDKEFYLFPTVFDE <u>N</u> ESLLL EDNIR
CFAH_HUM AN	Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4	SPDVI <u>N</u> GSPISQK
CFAH_HUM AN	Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4	DGRWQSIPLCVEKIPCSQPPQI EHGTINSSR
CFAH_HUM AN	Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4	WDPEV <u>N</u> CSMAQIQLCPPPPQI PNSHNMTTTLNYR
CFAH_HUM AN	Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4	SPYEMFGDEEVMCLNG <u>N</u> WT EPPQCK
CLUS_HUM AN	Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1	EILSVDCSTN <u>N</u> PSQAK
CLUS_HUM AN	Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1	EDAL <u>N</u> ETRESETKLK
CLUS_HUM AN	Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1	ELPGVC <u>N</u> ETMMALWEECK
CLUS_HUM AN	Clusterin OS=Homo sapiens GN=CLU PE=1 SV=1	ML <u>N</u> TSSLLEQLNEQFNWVSR
CO3_HUMA N	Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2	TVLTPATNHMG <u>N</u> VTFTIPAN REFK
CO3_HUMA N	Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2	SYTVAIAGYALAQMGRLKGP LL <u>N</u> K
CO4A_HUM AN	Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1	FSDGLES <u>N</u> SSTQFEVKK
CO4A_HUM AN	Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1	GL <u>N</u> VTLSSTGR
CO4A_HUM AN	Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1	GL <u>N</u> VTLSSTGRNGFKSHALQ LNNR
FETUA_HU MAN	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1	VCQDCPLLAPL <u>N</u> DTR
FETUA_HU MAN	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1	AALAAFNAQN <u>N</u> GSNFQLEEI SR

FETUA_HU MAN	Alpha-2-HS-glycoprotein OS=Homo sapiens GN=AHSG PE=1 SV=1	VCQDCPLLAPL <u>N</u> DTRVVHAA K
FINC_HUMA N	Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3	DQCIVDDITYNV <u>N</u> DTFHK
FINC_HUMA N	Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3	HEEGHML <u>N</u> CTCFGQGR
FINC_HUMA N	Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3	HEEGHML <u>N</u> CTCFGQGRGR
FINC_HUMA N	Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3	LDAPTNLQFV <u>N</u> ETDSTVLVR
FINC_HUMA N	Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3	GGNSNGALCHFPFLYNNH <u>N</u> Y TDCTSEGRR
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	SRAAE <u>N</u> ASLGPT <u>N</u> GSK
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	SRAAE <u>N</u> ASLGPT <u>N</u> GSKLMNR
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	GFHINH <u>N</u> TSEKSL <u>N</u> FSMSM <u>N</u> NTTEDILGMVQIPR
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	SSETTSGNIAFIVELLK <u>N</u> ISTD LSDNVTR
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	<u>N</u> ISTDLSD <u>N</u> VTREK
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	CEGPCISSS <u>N</u> CSQPCAK
GP115_HUM AN	Probable G-protein coupled receptor 115 OS=Homo sapiens GN=GPR115 PE=2 SV=2	NASSDLLQSVNLFAR
HEMO_HUM AN	Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2	GHGHR <u>N</u> GTGHG <u>N</u> STHHGPE YMR
HEMO_HUM AN	Hemopexin OS=Homo sapiens GN=HPX PE=1 SV=2	SWPAVG <u>N</u> CSSALRWLGR
HPT_HUMA N	Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1	KQLVEIEKVVLHP <u>N</u> YSQVDI GLIK
HPT_HUMA N	Haptoglobin OS=Homo sapiens GN=HP PE=1 SV=1	NLFL <u>N</u> HSE <u>N</u> ATAK
HRG_HUMA N	Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 SV=1	HSHN <u>N</u> NSSDLHPHK
IGHA1_HUM AN	Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2	PALEDLLLGSEA <u>N</u> LTCTLTGL R
IGHA2_HUM AN	Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 SV=3	TPLTA <u>N</u> ITKSGNTFR
IGHA2_HUM AN	Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 SV=3	PALEDLLLGSEA <u>N</u> LTCTLTGL R
IGHA2_HUM AN	Ig alpha-2 chain C region OS=Homo sapiens GN=IGHA2 PE=1 SV=3	HYT <u>N</u> PSQDVTVPCPVPPPPC CHPR
IGHG1_HUM AN	Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 PE=1 SV=1	EEQY <u>N</u> STYR
IGHG1_HUM AN	Ig gamma-1 chain C region OS=Homo sapiens GN=IGHG1 PE=1 SV=1	FNWYVDGVEVHNAKTKPRE EQYNSTYR
IGHG2_HUM AN	Ig gamma-2 chain C region OS=Homo sapiens GN=IGHG2 PE=1 SV=2	EEQF <u>N</u> STFR
IGHG3_HUM AN	Ig gamma-3 chain C region OS=Homo sapiens GN=IGHG3 PE=1 SV=2	EEQY <u>N</u> STFR
IGHM_HUM AN	Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3	NSDISSTRGFPSVLR

IGHM_HUM AN	Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3	VDHRGLTFQQ <u>N</u> ASSMCVPD QDTAIR
IGHM_HUM AN	Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3	PTLY <u>N</u> VSLVMSDTAGTCY
IGHM_HUM AN	Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3	THT <u>N</u> ISESHP <u>N</u> ATFSAVGEASI CEDDWNSGER
ITIH1_HUM AN	Inter-alpha-trypsin inhibitor heavy chain H1 OS=Homo sapiens GN=ITIH1 PE=1 SV=3	ICDLLVA <u>N</u> NHFAHFFAPQ <u>N</u> L TNMNK
ITIH2_HUM AN	Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens GN=ITIH2 PE=1 SV=2	 GAFIS <u>N</u> FSMTVDGK
ITIH2_HUM AN	Inter-alpha-trypsin inhibitor heavy chain H2 OS=Homo sapiens GN=ITIH2 PE=1 SV=2	VV <u>N</u> NSPQPQNVVFDVQIPK
KLKB1_HU MAN	Plasma kallikrein OS=Homo sapiens GN=KLKB1 PE=1 SV=1	TSTRIVGGT <u>N</u> SSWGEWPWQV SLQVK
KLKB1_HU MAN	Plasma kallikrein OS=Homo sapiens GN=KLKB1 PE=1 SV=1	IYPGVDFGGEEL <u>N</u> VTFVK
KLOTB_HU MAN	Beta-klotho OS=Homo sapiens GN=KLB PE=1 SV=1	AIWSKNPNFTPV <u>N</u> ESQLFLYD TFPK
KLOTB_HU MAN	Beta-klotho OS=Homo sapiens GN=KLB PE=1 SV=1	<u>N</u> VSST <u>N</u> GSSDSYIFLEK
KLOTB_HU MAN	Beta-klotho OS=Homo sapiens GN=KLB PE=1 SV=1	GWLSITLGSHWIEP <u>N</u> R
KLOTB_HU MAN	Beta-klotho OS=Homo sapiens GN=KLB PE=1 SV=1	YGGWK <u>N</u> DTIIDIFNDYATYC FQMFGDR
KLOTB_HU MAN	Beta-klotho OS=Homo sapiens GN=KLB PE=1 SV=1	MGQ <u>N</u> VSLNLREALNWIK
KLOTB_HU MAN	Beta-klotho OS=Homo sapiens GN=KLB PE=1 SV=1	SG <u>N</u> DTYGAAHNLLVAHALA WR
KNG1_HUM AN	Kininogen-1 OS=Homo sapiens GN=KNG1 PE=1 SV=2	YNSQ <u>N</u> QSNNQFVLYR
KV104_HUM AN	Ig kappa chain V-I region CAR OS=Homo sapiens PE=1 SV=1	ASQ <u>N</u> ISSWLAWYQQKPGK
PLMN_HUM AN	Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2	GNVAVTVSGHTCQHWSAQT PHTH <u>N</u> R
PON1_HUM AN	Serum paraoxonase/arylesterase 1 OS=Homo sapiens GN=PON1 PE=1 SV=2	VVAEGFDFANGI <u>N</u> ISPDGKY VYIAELLAHK
THRB_HUM AN	Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2	GHV <u>N</u> ITR
THRB_HUM AN	Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2	YPHKPEI <u>N</u> STTHPGADLQENF CR
THRB_HUM AN	Prothrombin OS=Homo sapiens GN=F2 PE=1 SV=2	NFTENDLLVRIGK
TRFE_HUM AN	Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=2	ILRQQQHLFGS <u>N</u> VTDCSGNF CLFR

Appendix I. Matched sequence of BSA tryptic digest by 80% ACN containing $1\% H_3PO_4$ washing for the first time

Matched peptides shown in *bold red*.

1	MKWVTFISLL	LLFSSAYSRG	VFRRDTHKSE	IAHR <mark>FKDLGE</mark>	EHFK GLVLIA
51	FSQYLQQCPF	DEHVK LVNEL	TEFAK TCVAD	ESHAGCEK <mark>SL</mark>	HTLFGDELCK
101	VASLRETYGD	MADCCEKQEP	ERNECFLSHK	DDSPDLPK LK	PDPNTLCDEF
151	KADEKKFWGK	YLYEIAR RHP	YFYAPELLYY	ANKYNGVFQE	CCQAEDKGAC
201	LLPKIETMRE	KVLASSARQR	LRCASIQKFG	ERALK AWSVA	RLSQKFPKAE
251	FVEVTK LVTD	LTKVHKECCH	GDLLECADDR	ADLAK YICDN	QDTISSKLKE
301	CCDKPLLEKS	HCIAEVEKDA	IPENLPPLTA	DFAEDKDVCK	NYQEAK <mark>DAFL</mark>
351	GSFLYEYSRR	HPEYAVSVLL	RLAKEYEATL	EECCAKDDPH	ACYSTVFDKL
401	KHLVDEPQNL	IKQNCDQFEK	LGEYGFQNAL	IVRYTRKVPQ	VSTPTLVEVS
451	R SLGKVGTRC	CTKPESERMP	CTEDYLSLIL	NRLCVLHEKT	PVSEK VTK CC
501	TESLVNRRPC	FSALTPDETY	VPKAFDEKLF	TFHADICTLP	DTEKQIKKQT
551	ALVELLK HKP	KATEEQLKTV	MENFVAFVDK	CCAADDKEAC	FAVEGPKLVV
601	STQTALA				

Appendix II. Matched sequence of BSA tryptic digest by 80% ACN containing 1% H₃PO₄

washing for the second time

Matched peptides shown in **bold red**.

1	MKWVTFISLL	LLFSSAYSRG	VFRRDTHKSE	IAHR <mark>FKDLGE</mark>	EHFK GLVLIA
51	FSQYLQQCPF	DEHVK LVNEL	TEFAK TCVAD	ESHAGCEK <mark>SL</mark>	HTLFGDELCK
101	VASLRETYGD	MADCCEKQEP	ERNECFLSHK	DDSPDLPK LK	PDPNTLCDEF
151	KADEKKFWGK	YLYEIARRHP	YFYAPELLYY	ANK YNGVFQE	CCQAEDKGAC
201	LLPKIETMRE	KVLASSARQR	LRCASIQKFG	ERALK AWSVA	R LSQKFPK AE
251	FVEVTK LVTD	LTKVHK <mark>ECCH</mark>	GDLLECADDR	ADLAK <mark>YICDN</mark>	QDTISSKLKE
301	CCDKPLLEKS	HCIAEVEKDA	IPENLPPLTA	DFAEDKDVCK	NYQEAK <mark>DAFL</mark>
351	GSFLYEYSRR	HPEYAVSVLL	RLAKEYEATL	EECCAKDDPH	ACYSTVFDKL
401	KHLVDEPQNL	IK QNCDQFEK	LGEYGFQNAL	IVRYTRKVPQ	VSTPTLVEVS
451	R SLGKVGTRC	CTKPESERMP	CTEDYLSLIL	NR LCVLHEK T	PVSEK VTK CC
501	TESLVNRRPC	FSALTPDETY	VPK AFDEK LF	TFHADICTLP	DTEK QIKKQT
551	ALVELLKHKP	KATEEQLKTV	MENFVAFVDK	CCAADDKEAC	FAVEGPKLVV
601	STQTALA				

References

S1. D. Jiang, L. L. Keenan, A. D. Burrows and K. J. Edler, *Chem. Commun.*, 2012, **48**, 12053-12055.