Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Fluorinative Hydrolysis of Phosphorothioic Acid Esters with a Binaphthyl Group Through Axis-to-Center Chirality Transfer Leading to the Formation of *P*-Chiral Phosphorothioic Monofluoridic Acid Salts

Toshiaki Murai,^{a,b} Takae Hayashi,^a Kyohei Yamada,^a Yuuki Maekawa, Mao Minoura^c

a Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan, e-mail:mtoshi@gifu-u.ac.jp b JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan c Department of Chemistry, Graduate School of Science, Rikkyo University, Nishi-ikebukuro, Toshima-ku, Tokyo, Japan

S 1
S3
S4
S12
S25
S28
S29
S31
S32

General Remarks: The IR spectra were obtained on a JASCO FT/IR 410 spectrometer. The ¹ H NMR spectra were recorded on a JEOL α -400 (400 MHz) in CDCl₃. Chemical shifts of protons were reported in δ values referred to tetramethylsilane as an internal standard in CDCl₃, and the following abbreviations were used: s: singlet, d: doublet, t: triplet, sext: sextet, m: multiplet. The ¹³ C NMR spectra were measured on a JEOL α -400 (100 MHz) in CDCl₃. The ¹⁹ F NMR spectra were measured on a JEOL α -400 (100 MHz) in CDCl₃. The ¹⁹ F NMR spectra were measured on a JEOL α -400 (162 MHz) in CDCl₃ and with 85% H₃PO₄ as an external standard. All spectra were acquired in the proton-decoupled mode. The mass spectra (MS), the high-resolution mass spectra (HRMS) and the fast atomic bombardment mass spectra (FAB) were taken on a JMS-700 mass spectrometer. Melting points were determined using a Yanaco seisakusho MP-S2 micro melting point apparatus and are uncorrected. Enantiomeric excess were determined by HPLC analysis (JASCO Gulliver) with CHIRALCEL OZ-Hand OD-H with MeCN/Et₃N/CF₃COOH (100/0.1/0.1) as eluent. Optical rotations were measured on a JASCO-P 1010 polarimeter. Circular Dichroism spectra were measured on a JASCO J-820 spectrometer.

• Synthesis of binaphthylphosphorothioic acid chlorides

(*R*_{ax})-4-Chlorodinaphtho[2,1-d:1'-f][1,3,2]dioxaphophepin-4-sulfide ((*R*_{ax})-BISPCI)

mL, 30 mmol) were added Et₃N (8.4 mL, 60 mmol) and (R_{ax}) -1,1'-bi-2-naphthol (8.6 g, 30 mmol) at 0 °C. The resulting mixture was stirred under reflux for 21 h. The reaction mixture was filtered, washed with CH₂Cl₂, and concentrated in vacuo. The mixture was purified by column chromatography on (CH_2Cl_2) : hexane = 1 · 3) to give (R_{ax}) -4-chlorodinaphtho[2,1-d:1'-f][1,3,2]dioxaphophepin-4-sulfide (R_{ax}) -BISPCl (10.6 g, 28 mmol,

To a toluene (60 mL) solution of thiophosphorylchloride (3.1

Chemical Formula: C₂₀H₁₂ClO₂PS Exact Mass: 381.9984 Molecular Weight: 382.7998

92%) as a white solid.

gel

silica

mp: 218 – 219 °C; IR (KBr) 3437, 3070, 1906, 1763, 1621, 1589, 1508, 1462, 1433, 1403, 1361, 1324, 1256, 1217, 1193, 1155, 1143, 1068, 1028, 963, 879, 849, 816, 794, 772, 751, 734, 704, 687, 652, 631, 589, 566, 525 cm⁻¹; ¹H NMR (CDCl₃) δ 7.25-7.54 (m, 8H, Ar), 7.91-8.02 (m, 4H, Ar); ³¹P NMR (CDCl₃) δ 74.8; MS (EI) *m/z* 382 (M⁺); HRMS calcd for C₂₀H₁₂ClO₂FPS (M⁺) 381.9984, found 381.9984.

(S_{ax})-4-Chlorodinaphtho[2,1-d:1'-f][1,3,2]dioxaphophepin-4-sulfide ((S_{ax})-BISPCl)

Chemical Formula: C₂₀H₁₂ClO₂PS Exact Mass: 381.9984 Molecular Weight: 382.7998

To a toluene (60 mL) solution of thiophosphorylchloride (3.1 mL, 30 mmol) were added Et₃N (8.4 mL, 60 mmol) and (S_{ax}) -1,1'-bi-2-naphthol (8.6 g, 30 mmol) at 0 °C. The resulting mixture was stirred under reflux for 23.5 h. The reaction mixture was filtered, washed with CH₂Cl₂, and concentrated in vacuo. The mixture was purified by column chromatography on silica gel $(CH_2Cl_2 : hexane = 1 : 3)$ to give

(Sax)-4-chlorodinaphtho[2,1-d:1'-f][1,3,2]dioxaphophepin-4-sulfide (Sax)-BISPCl (10.6 g, 28 mmol, 92%) as a white solid.

mp: 218 – 219 °C; IR (KBr) 3436, 3069, 2924, 1906, 1827, 1763, 1621, 1589, 1508, 1462, 1433, 1403, 1361, 1324, 1270, 1256, 1217, 1193, 1155, 1143, 1068, 1028, 964, 879, 849, 816, 794, 772, 751, 735, 704, 687, 652, 631, 589, 566, 525 cm⁻¹; ¹H NMR (CDCl₃) δ 7.26-7.53 (m, 8H, Ar), 7.90-8.01 (4H, Ar); ³¹P NMR (CDCl₃) & 74.9; MS (EI) *m/z* 382 (M⁺); HRMS calcd for C₂₀H₁₂ClO₂FPS (M⁺) 381.9984, found 381.9973.

• Synthesis of binaphthylphosphorothioic acid esters

(Rax)-4-(L)-Menthyl-dinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide (Rax-3)

Chemical Formula: C₃₀H₃₁O₃PS Exact Mass: 502.1732 Molecular Weight: 502.6088 To a CH₂Cl₂ (10 mL) solution of (R_{ax})-BISPCl (1.91 g, 5.0 mmol) was added (L)-menthol (780 mg, 5.0 mmol), DMAP (1.22 g, 10.0 mmol) under an Ar atmosphere. The resulting solution was stirred at room temperature for 3 h and concentrated in vacuo. The reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20) to give the corresponding sulfide R_{ax} -3 (2.47 g, 98%) as a white solid.

mp 149-151 °C; IR (KBr): 3055, 2954, 2925, 2869, 1620, 1508, 1463, 1370, 1323, 1226, 1201, 1155, 1072, 1017, 958, 876, 845, 833, 812, 749, 721, 705 cm⁻¹; ¹H NMR (CDCl₃) δ 0.71 (d, J = 7.3 Hz, 3H, OCHCHCH(C<u>H</u>₃)₂), 0.73 (d, J = 7.3 Hz, 3H, OCHCHCH(C<u>H</u>₃)₂), 0.96 (d, J = 6.3 Hz, 3H, OCHCH₂CHC<u>H</u>₃), 0.70-0.90 (m, 1H, OCHC<u>H</u>), 0.95-1.30 (m, 3H), 1.47-1.51 (m, OCHCH₂C<u>H</u>CH₃, 1H), 1.60-1.68 (m, OCHCHC<u>H</u>₂, 2H), 1.86-1.89 (m, OCHCH₂CH(CH₃)C<u>H</u>₂, 1H), 2.40-2.43 (m, OCHC<u>H</u>₂CHCH₃, 1H), 4.60-4.67 (m, 1H, OC<u>H</u>), 7.18-7.98 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 15.8, 20.7, 22.0, 22.6, 25.4, 31.6, 33.9, 42.9, 47.9 (d, J = 8.3 Hz), 82.7 (d, J = 7.4 Hz, O<u>C</u>H), 120.79, 121.82, 121.42, 121.45, 121.9, 122.1, 125.6, 126.5, 126.6, 127.0, 127.2, 128.3, 128.5, 130.6, 130.9, 131.5, 131.9, 132.4, 146.4, 146.5, 147.9, 148.2 (Ar); ³¹P NMR (CDCl₃) δ 74.3; MS (EI) m/z 502 (M⁺); HRMS Calcd for C₃₀H₃₁O₃PS 502.6041, Found 502.1726; [α]²⁵_D - 320.1 (c 0.10, CHCl₃).

(S_{ax})-4-(L)-Menthyl-dinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide (S_{ax}-3)

Chemical Formula: C₃₀H₃₁O₃PS Exact Mass: 502.1732 Molecular Weight: 502.6088

To a CH₂Cl₂ (8 mL) solution of (S_{ax})-BISPCl (766 mg, 3.0 mmol) was added (L)-menthol (312 mg, 3.0 mmol), DMAP (488 mg, 4.0 mmol) under an Ar atmosphere. The resulting solution was stirred at room temperature for 3 h and concentrated in vacuo. The reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20) to give the corresponding sulfide S_{ax} -3 (865 mg, 86%) as a white solid.

mp 107-108 °C; IR (KBr): 2953, 2869, 1589, 1508, 1463, 1323, 1226, 1201, 1155, 1072, 1015, 982, 958, 875, 846, 833, 812, 749, 721, 678, 653, 569 cm⁻¹; ¹H NMR (CDCl₃) δ 0.74 (d, *J* = 6.8 Hz, 3H, OCHCHCH(C<u>H</u>₃)₂), 0.76 (d, *J* = 6.8 Hz, 3H, OCHCHCH(C<u>H</u>₃)₂), 0.98 (d, *J* = 6.3 Hz, 3H, OCHCH2CHC<u>H</u>₃), 0.73-1.05 (m, 1H), 1.21-1.37 (m, 3H), 1.48-1.53 (m, OCHCH2C<u>H</u>2C<u>H</u>CH₃, 1H), 1.59-1.66 (m, OCHCHCH(CH₃)₂C<u>H</u>₂, 2H), 1.88-1.92 (m, OCHCH2CH(CH₃)C<u>H</u>₂, 1H), 2.43-2.46 (m,

OCHC<u>H</u>₂CHCH₃, 1H), 4.64-4.68 (m, 1H, OC<u>H</u>), 7.19-8.00 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 15.8, 20.7, 22.0, 22.6, 25.4, 31.6, 33.9, 42.9, 47.8 (d, *J* = 8.3 Hz), 82.7 (d, *J* = 6.6 Hz, O<u>C</u>H), 120.8, 121.42, 121.45, 121.9, 122.2, 125.5, 126.5, 126.6, 127.1, 127.3, 128.3, 128.5, 130.6, 130.9, 131.6, 131.9, 132.4, 146.4, 147.8, 148.2 (Ar); ³¹P NMR (CDCl₃) δ 74.4; MS (EI) m/z 502 (M⁺); HRMS Calcd for C₃₀H₃₁O₃PS 502.6041, Found 502.1739; [α]²⁵_D + 259.9 (c 0.10, CHCl₃).

(R_{ax})-4-(D)-Menthyl-dinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide (R_{ax}-4)

to give the corresponding sulfide R_{ax} -4 (501 mg, 66%) as a white solid.

Chemical Formula: C₃₀H₃₁O₃PS Exact Mass: 502.1732 Molecular Weight: 502.6088

(*D*)-Menthol (234 mg, 1.5 mmol) was added to a solution of titanium *i*-propoxide (42 mg, 0.15 mmol) in CH₂Cl₂ (6 mL). DMAP (366 mg, 3.0 mmol) and (R_{ax})-BISPCl (574 mg, 1.5 mmol) were added sequentially under an Ar atmosphere. The resulting solution was stirred at room temperature for 1.5 h and concentrated in vacuo. The reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20)

mp 107-110 °C; IR (KBr): 2954, 2869, 1620, 1589, 1509, 1463, 1433, 1370, 1323, 1226, 1201, 1155, 1072, 1016, 982, 958, 875, 846, 833, 812, 772, 749, 721, 705 cm⁻¹; ¹H NMR (CDCl₃) δ 0.76 (d, J = 6.3 Hz, 3H, OCHCHCH(C<u>H</u>₃)₂), 0.88 (d, J = 7.3 Hz, 3H, OCHCHCH(C<u>H</u>₃)₂), 0.90 (d, J = 7.3 Hz, 3H, OCHCH₂CHC<u>H</u>₃), 0.64-1.16 (m, 1H), 1.15 (br s, 3H), 1.27-1.37 (m, 1H), 1.47-1.59 (m, 2H), 2.13-2.25 (m, 2H), 4.55-4.59 (m, 1H, OC<u>H</u>), 7.11-7.92 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 16.2, 20.9, 21.8, 22.9, 25.9, 31.5, 33.8, 42.2, 47.9 (d, J = 8.3 Hz), 83.2 (d, J = 7.4 Hz, O<u>C</u>H), 120.7, 121.3, 121.7, 122.2, 125.6, 127.0, 127.2, 128.3, 128.5, 130.6, 130.9, 131.5, 131.8, 132.3, 146.7, 146.8, 148.1, 148.2 (Ar); ³¹P NMR (CDCl₃) δ 74.5; MS (EI) m/z 502 (M⁺); HRMS Calcd for C₃₀H₃₁O₃PS 502.6041, Found 502.1726; [α]²⁵_D - 257.5 (c 0.10, CHCl₃).

(S_{ax})-4-(D)-Menthyl-dinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide (S_{ax}-4)

Chemical Formula: C₃₀H₃₁O₃PS Exact Mass: 502.1732 Molecular Weight: 502.6088

(*D*)-Menthol (313 mg, 2.0 mmol) was added to a solution of titanium *i*-propoxide (56 mg, 0.2 mmol) in CH₂Cl₂ (8 mL). DMAP (488 mg, 4.0 mmol) and (S_{ax})-BISPCl (765 mg, 2.0 mmol) were added sequentially under an Ar atmosphere. The resulting solution was stirred at room temperature for 1.5 h and concentrated in vacuo. The reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20)

to give the corresponding sulfide S_{ax} -4 (489 mg, 48%) as a white solid.

 3H, OCHCHCH(C<u>H</u>₃)₂), 1.01 (d, J = 6.4 Hz, 3H, OCHCH₂CHC<u>H</u>₃), 0.85-1.06 (m, 2H), 1.24-1.35 (m, 3H), 1.62-1.70 (m, 2H), 1.90-1.94 (m, 1H), 2.45-2.48 (m, 1H), 4.60-4.68 (m, 1H, OC<u>H</u>), 7.18-7.99 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 15.8, 20.7, 22.0, 22.8, 25.4, 31.6, 33.9, 42.9, 47.9 (d, J = 8.3 Hz), 82.8 (d, J = 7.4 Hz, O<u>C</u>H), 120.8, 121.4, 121.9, 122.2, 125.6, 127.0, 127.2, 128.3, 128.4, 130.6, 130.9, 131.5, 131.9, 132.4, 146.4, 147.95, 148.09 (Ar); ³¹P NMR (CDCl₃) δ 74.4; MS (EI) m/z 502 (M⁺); HRMS Calcd for C₃₀H₃₁O₃PS 502.6041, Found 502.1727; [α]²⁵_D + 352.9 (c 0.10, CHCl₃).

(*R*_{ax})-4-((1*S*)-1-Methylheptyloxy)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-sulfide (*R*_{ax}-8b)

Chemical Formula: C₂₈H₂₉O₃PS Exact Mass: 476.1575 Molecular Weight: 476.5708

(S)-(+)-Octanol (0.24 mL, 1.5 mmol) was added to a solution of titanium *i*-propoxide (42 mg, 0.15 mmol) in CH₂Cl₂ (6 mL). DMAP (366 mg, 3.0 mmol) and (R_{ax})-BISPCl (574 mg, 1.5 mmol) were added sequentially under an Ar atmosphere. The resulting solution was stirred at room temperature for 1.5 h and concentrated in vacuo. The reaction mixture was purified by column

chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20) to give the corresponding sulfide R_{ax} -**8b** (491 mg, 69%) as a white pulpy solid.

mp 137-138 °C; IR (KBr): 3055, 2932, 2857, 1619, 1589, 1507, 1464, 1433, 1378, 1323, 1256, 1227, 1202, 1155, 1071, 1017, 957, 876, 818, 751, 705, 670, 651, 566, 528 cm⁻¹; ¹H NMR (CDCl₃) δ 0.80 (t, J = 6.8 Hz, 3H, OCH(CH₂)₅CH₃), 1.20 (d, J = 5.9 Hz, 3H, OCHCH₃), 1.14-1.70 (m, 10H, OCH(CH₂)₅), 4.84-4.91 (m, 1H, OCH), 7.06-7.88 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 14.1 ((CH₂)₅CH₃), 21.2 (d, J = 3.3 Hz, (CH₂)₄CH₂CH₃), 22.5 (OCHCH₃), 25.0 (CH₂(CH₂)₃CH₃), 29.0 (CH₂(CH₂)₂CH₃), 31.5 (CH₂CH₂CH₃), 37.1 (d, $J_{C-P} = 6.6$ Hz, OCHCH₂), 79.9 (d, $J_{C-P} = 5.8$ Hz, OCH), 120.6, 121.2, 121.3, 121.7, 122.1, 125.4, 126.4, 126.5, 126.9, 127.1, 128.3, 128.4, 130.6, 131.0, 131.4, 131.8, 132.3, 146.5, 147.9, 148.1; ³¹P NMR (CDCl₃) δ 74.4; MS (EI) m/z 476; HRMS Calcd for C₂₈H₂₉O₃PS 476.1575, Found: 476.1602; [α]²⁵_D - 329.1 (c 0.10, CHCl₃).

(S_{ax})-4-((1S)-1-Methylheptyloxy)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-sulfide (S_{ax}-8b)

(*S*)-(+)-Octanol (0.32 mL, 2.0 mmol) was added to a solution of titanium *i*-proposide (56 mg, 0.2 mmol) in CH₂Cl₂ (8 mL). DMAP (488 mg, 4.0 mmol) and (S_{ax})-BISPCl (766 mg, 2.0 mmol) were added sequentially under an Ar atmosphere. The resulting solution was stirred at room temperature for 1.5 h and concentrated in vacuo. The reaction mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.20) to give the corresponding sulfide

Chemical Formula: C₂₈H₂₉O₃PS Exact Mass: 476.1575 Molecular Weight: 476.5708 S_{ax} -**8b** (591 mg, 62%) as a white pulpy solid.

mp 125-127 °C; IR (KBr): 3066, 2934, 2855, 1912, 1829, 1767, 1619, 1590, 1508, 1464, 1432, 1402, 1379, 1362, 1324, 1225, 1198, 1154, 1119, 1070, 1004, 957, 909, 861, 817, 777, 748, 705, 669, 651, 630, 552, 526 cm⁻¹; ¹H NMR

(CDCl₃) δ 0.74 (t, *J* = 6.8 Hz, 3H, OCH(CH₂)₅CH₃), 1.42 (d, *J* = 6.3 Hz, 3H, OCHCH₃), 1.08-1.63 (m, 10H, OCH(CH₂)₅), 4.86-4.91 (m, 1H, OCH), 7.15-7.96 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 14.0 ((CH₂)₅CH₃), 21.2 (d, *J* = 3.3 Hz, (CH₂)₄CH₂CH₃), 22.4 ((CH₂)₃CH₂CH₂CH₂CH₃), 31.5 (CH₂Ph), 37.0 (d, *J*_{C-P} = 6.6 Hz, CHCH₂), 79.7 (d, *J*_{C-P} = 5.8 Hz, OCH), 120.7, 121.30, 121.33, 121.8, 122.2, 125.6, 126.5, 126.7, 127.0, 127.2, 128.3, 128.4, 128.5, 130.7, 131.5, 131.6, 131.8, 132.3, 146.4, 148.1; ³¹P NMR (CDCl₃) δ 74.2; MS (EI) m/z 476; HRMS Calcd for C₂₈H₂₉O₃PS 476.1575, Found: 476.1576; [α]²⁵_D + 339.5 (c 0.10, CHCl₃).

(*R*_{ax})-4–Cholesteryl dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-sulfide (*R*_{ax}-8c)

Chemical Formula: C₄₇H₅₇O₃PS Exact Mass: 732.3766 Molecular Weight: 733.0038

Cholesterol (773 mg, 2.0 mmol) was added to a solution of titanium *i*-propoxide (56 mg, 0.2 mmol) in CH₂Cl₂ (8 mL). DMAP (488 mg, 4.0 mmol) and (R_{ax})-BISPCl (765 mg, 2.0 mmol) were added sequentially under an Ar atmosphere. The resulting solution was stirred at room temperature for 1.5 h and concentrated in vacuo. The reaction mixture

was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.35) to give the corresponding sulfide R_{ax} -8c (933 mg, 64%) as a white solid.

(S_{ax})-4–Cholesteryl dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-sulfide (S_{ax}-8c)

Cholesterol (580 mg, 1.5 mmol) was added to a solution of titanium *i*-propoxide (42 mg, 0.15 mmol) in CH₂Cl₂ (6 mL). DMAP (366 mg, 3.0 mmol) and (S_{ax})-BISPCl (574 mg, 1.5 mmol) were added sequentially under an Ar atmosphere. The resulting solution was stirred at room temperature for 1.5 h and concentrated in vacuo. The reaction mixture

was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3, Rf = 0.35) to give the corresponding sulfide S_{ax} -8c (774 mg, 70%) as a white solid.

(Rax)-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(octyloxy)-, 4-sulfide (Rax-10a)

Chemical Formula: C₂₈H₂₉O₃PS Exact Mass: 476.1575 Molecular Weight: 476.5708

To a CH₂Cl₂ solution (5 mL) of (R_{ax})-BISPCl (1.0 mmol, 0.38 g) were added 1-octanol (1.0 mmol, 0.16 mL) and DMAP (1.2 mmol, 0.15 g) under Ar atmosphere. The resulting solution was stirred at room temperature for 5.5 h and concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (CH₂Cl₂: hexane =

1: 3) to give the corresponding sulfide R_{ax} -10a (0.99 mmol 0.47 g, 99%) as colorless oil.

IR (KBr) 3061, 2957, 2923, 2851, 1955, 1902, 1840, 1761, 1620, 1589, 1508, 1463, 1433, 1402, 1361, 1323, 1272, 1225, 1201, 1156, 1070, 1023, 983, 958, 876, 845, 814, 768, 749, 703, 670, 646, 630, 568 cm⁻¹; ¹H NMR (CDCl₃) δ 0.80 (t, 1H, CH₃), 1.18-1.30 (m, 10H, (C<u>H₂)₅CH₃), 1.66 (quin, 2H, C<u>H₂(CH₂)₅CH₃), 4.19-4.33 (m, 2H, OCH₂), 7.20-7.52 (m, 8H, Ar), 7.87-7.98 (m, 4H, Ar); ¹³C</u></u>

NMR (CDCl₃) δ 14.1, 22.6, 25.4, 29.0, 29.1, 30.1 (d, $J_{C-P} = 6.6$ Hz), 31.7, 70.5 (d, $J_{C-P} = 5.8$ Hz, OCH₂), 120.5, 121.2, 122.1, 125.7, 126.6, 126.7, 127.0, 127.2, 128.4, 128.5, 130.8, 131.0, 131.6, 131.9, 132.3, 132.4, 146.3, 146.4, 147.9, 148.0 (Ar); ³¹P NMR (CDCl₃) δ 75.3; MS (EI) *m/z* 476 (M⁺); HRMS calcd for C₂₆H₂₃O₃PS (M⁺) 476.1575, found 476.1575; [α]¹⁹_D -336.6 (c 1.0, CHCl₃).

(S_{ax})-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(octyloxy)-, 4-sulfide (S_{ax}-10a)

To a CH₂Cl₂ solution (5 mL) of (S_{ax})-BISPCl (1.0 mmol, 0.38 g) were added 1-octanol (1.0 mmol, 0.16 mL) and DMAP (1.2 mmol, 0.15 g) under Ar atmosphere. The resulting solution was stirred at room temperature for 4.5 h and concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (CH₂Cl₂: hexane =

1: 3) to give the corresponding sulfide S_{ax} -**10a** (0.92 mmol 0.44 g, 92%) as colorless oil. IR (KBr) 3059, 2958, 2925, 2851, 2331, 1955, 1901, 1840, 1762, 1689, 1620, 1589, 1508, 1463, 1433, 1402, 1361, 1323, 1272, 1225, 1201, 1155, 1070, 1021, 983, 949, 873, 844, 814, 768, 750, 704, 671, 646, 630, 568, 544, 526 cm⁻¹; ¹H NMR (CDCl₃) δ 0.86-0.89 (t, J = 6.8 Hz, 3H, CH₃), 1.26-1.38 (m, 10H, (CH₂)₅CH₃), 1.74 (quin, J = 6.9 Hz, 2H, OCH₂CH₂), 4.28-4.42 (m, 2H, OCH₂), 7.27-7.59 (m, 8H, Ar), 7.94-8.06 (m, 4H, Ar); ¹³C NMR (CDCl₃) δ 14.1, 22.6, 25.4, 29.0, 29.1, 30.0 (d, $J_{C-P} = 7.4$ Hz), 31.7, 70.4 (d, $J_{C-P} = 5.8$ Hz, OCH₂), 120.5, 121.2, 122.1, 125.7, 126.6, 126.7, 127.0, 127.2, 128.4, 128.5, 130.8, 131.0, 131.6, 131.9, 132.3, 132.4, 146.3, 146.4, 147.9, 148.0 (Ar); ³¹P NMR (CDCl₃) δ 75.3; MS (EI) *m/z* 476 (M⁺); HRMS calcd for C₂₈H₂₉O₃PS (M⁺) 476.1575, found 476.1576; [α]¹⁹_D+338.7 (c 1.0, CHCl₃).

(*R*_{ax})-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(cyclohexyloxy)-, 4-sulfide (*R*_{ax}-10b)

Chemical Formula: C₂₆H₂₃O₃PS Exact Mass: 446.1106 Molecular Weight: 446.5008 To a CH₂Cl₂ solution (3 mL) of (R_{ax})-BISPCl (1.0 mmol, 0.38 g) were added cyclohexanol (1.0 mmol, 0.11 mL) and DMAP (1.2 mmol, 0.14 g) under Ar atmosphere. The resulting solution was stirred at room temperature for 3.0 h and concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (CH₂Cl₂: hexane = 1 : 3) to give the corresponding sulfide R_{ax} -10b

(0.99 mmol 0.44 g, 99%) as a white solid.

mp 95-96 °C; IR (KBr) 3054, 2936, 2856, 2349, 1905, 1620, 1589, 1508, 1463, 1433, 1402, 1363, 1323, 1257, 1224, 1200, 1155, 1072, 1015, 981, 957, 876, 845, 813, 794, 772, 749, 720, 704, 678,

654, 631, 569, 553, 527 cm⁻¹; ¹H NMR (CDCl₃) δ 1.09-1.23 (m, 1H), 1.24-1.37 (m, 2H), 1.38-1.49 (m, 2H), 1.55-1.64 (m, 2H), 1.65-1.81 (m, 1H), 1.88-1.92 (m, 1H), 2.01-2.08 (m, 1H), 4.75-4.79 (m, 1H), 7.16-7.96 (m, 12H); ¹³C NMR (CDCl₃) δ 23.4, 23.6, 25.0, 32.9 (d, $J_{C-P} = 5.0$ Hz), 33.3 (d, $J_{C-P} = 4.1$ Hz), 80.7(d, $J_{C-P} = 5.8$ Hz), 120.6 (d, $J_{C-P} = 2.5$ Hz), 121.3 (d, $J_{C-P} = 2.5$ Hz), 121.8 (d, $J_{C-P} = 2.5$ Hz), 122.2 (d, $J_{C-P} = 2.5$ Hz), 125.6, 126.5, 126.6, 127.0, 127.2, 128.3, 128.5, 130.6, 131.0, 131.6, 131.9, 132.4, 146.4, 146.5, 148.0, 148.1 (Ar); ³¹P NMR (CDCl₃) δ 73.8; MS (EI) *m/z* 446 (M⁺); HRMS calcd for C₂₈H₂₉O₃PS (M⁺) 446.1106, found 446.1087; [α]¹⁹_D -340.4 (c 1.0, CHCl₃).

(S_{ax})-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(cyclohexyloxy)-, 4-sulfide (S_{ax}-10b)

Chemical Formula: C₂₆H₂₃O₃PS Exact Mass: 446.1106 Molecular Weight: 446.5008 To a CH₂Cl₂ solution (6 mL) of (S_{ax})-BISPCl (1.0 mmol, 0.38g) were added cyclohexanol (1.0 mmol, 0.11 mL) and DMAP (1.2 mmol, 0.14 g) under Ar atmosphere. The resulting solution was stirred at room temperature for 3.5 h and concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3) to give the corresponding sulfide S_{ax} -10b

(0.99 mmol 0.44 g, 99%) as a white solid.

mp 95-96 °C; IR (KBr) 3057, 2935, 2858, 1905, 1820, 1712, 1620, 1589, 1508, 1463, 1433, 1403, 1362, 1323, 1257, 1225, 1200, 1155, 1126, 1072, 1014, 981, 954, 865, 812, 795, 772, 750, 720, 704, 678, 653, 630, 621, 580, 568, 553, 526 cm⁻¹; ¹H NMR (CDCl₃) δ 1.12-1.29 (m, 1H), 1.30-1.47 (m, 2H), 1.48-1.58 (m, 2H), 1.63-1.72 (m, 2H), 1.73-1.82 (m, 1H), 1.97-2.01 (m, 1H), 2.13-2.16 (m, 1H), 4.84-4.4.87 (m, 1H), 7.25-8.05 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 23.4, 23.6, 25.0, 32.9 (d, $J_{C-P} = 5.0 \text{ Hz}$), 33.3 (d, $J_{C-P} = 4.1 \text{ Hz}$), 80.7(d, $J_{C-P} = 5.8 \text{ Hz}$), 120.6 (d, $J_{C-P} = 2.5 \text{ Hz}$), 121.8 (d, $J_{C-P} = 2.5 \text{ Hz}$), 122.2 (d, $J_{C-P} = 2.5 \text{ Hz}$), 125.6, 126.5, 126.6, 127.0, 127.2, 128.3, 128.5, 130.6, 131.0, 131.6, 131.9, 132.4, 146.4, 146.5, 148.0, 148.1 (Ar); ³¹P NMR (CDCl₃) δ 73.8; MS (EI) *m/z* 446 (M⁺); HRMS calcd for C₂₈H₂₉O₃PS (M⁺) 446.1106, found 446.1095; [α]¹⁹_D+335.6.

(R_{ax}) -Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(2-tricyclo[3.3.1.1^{3,7}]decyloxy)-, 4-sulfide (R_{ax} -10c)

To a CH₂Cl₂ solution (25 mL) of (S_{ax})-BISPCl (10 mmol, 3.9 g) were added 2-adamantanol (10 mmol, 1.5 g) and DMAP (20 mmol, 2.4 g) under Ar atmosphere. The resulting solution was stirred at

Chemical Formula: C₃₀H₂₇O₃PS Exact Mass: 498.1419 Molecular Weight: 498.5768

room temperature for 7.0 h and concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3) to give the corresponding sulfide R_{ax} -10c (9.8 mmol 4.9 g, 98%) as a white solid.

mp 143-144 °C; IR (KBr) 3060, 2906, 2855, 2679, 2572, 2487, 2434, 2364, 2299, 2183, 1960, 1910, 1827, 1738, 1688, 1620, 1589, 1507, 1463, 1452, 1433, 1403, 1383, 1363, 1323, 1260, 1227, 1201, 1156, 1142, 1126, 1116, 1100, 1072,1013, 940, 910, 829, 813, 772, 755, 725, 704, 684, 666, 653, 631, 580, 569, 552, 526 cm⁻¹; ¹H NMR (CDCl₃) δ 1.34-1.37 (m, 1H), 1.48-1.53 (m, 1H), 1.64-1.76 (m, 10H), 2.08 (br, 1H), 2.23 (br, 1H), 4.95-4.97 (m, 1H), 7.18-7.98 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 26.8 (d, *J*_{C-P} = 29.8 Hz), 31.3 (d, *J*_{C-P} = 31.4 Hz), 33.1 (d, *J*_{C-P} = 3.3Hz), 36.2 (d, *J*_{C-P} = 11.6 Hz), 37.2, 85.2 (d, *J*_{C-P} = 5.8 Hz), 120.6, 121.4, 121.9, 122.3, 125.6, 126.5, 126.6, 127.1, 127.3, 128.4, 128.5, 130.6, 131.0, 131.5, 131.9, 132.4, 148.1, 148.3 (Ar); ³¹P NMR (CDCl₃) δ 73.8; MS (EI) *m/z* 498 (M⁺); HRMS calcd for C₂₈H₂₉O₃PS (M⁺) 498.1419, found 498.1444; [α]¹⁹_D -314.0 (c 1.0, CHCl₃).

$(S_{ax})-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(2-tricyclo[3.3.1.1^{3,7}]decyloxy)-, 4-sulfide (S_{ax}-10c)$

Chemical Formula: C₃₀H₂₇O₃PS Exact Mass: 498.1419 Molecular Weight: 498.5768

2.4 g, 98%) as a white solid.

To a CH₂Cl₂ solution (20 mL) of (S_{ax})-BISPCl (5.0 mmol, 1.9 g) were added 2-adamantanol (5.0 mmol, 0.76 g), DMAP (10 mmol, 1.2 g) under Ar atmosphere. The resulting solution was stirred at room temperature for 2.5 h and concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (CH₂Cl₂ : hexane = 1 : 3) to give the corresponding sulfide S_{ax} -10c (4.9 mmol

mp 143-144 °C; IR (KBr) 3055, 2909, 2854, 2673, 2351, 2237, 1903, 1839, 1736, 1620, 1588, 1508, 1462, 1451, 1433, 1403, 1383, 1361, 1323, 1270, 1255, 1226, 1200, 1155, 1143, 1127, 1115, 1100, 1071, 1015, 956, 911, 877, 812, 771, 750, 725, 704, 685, 652, 631, 580, 568, 552, 526 cm⁻¹; ¹H NMR (CDCl₃) δ 1.37-1.40 (m, 1H), 1.46-1.55 (m, 1H), 1.65-1.92 (m, 10H), 2.10 (br, 1H), 2.26 (br, 1H), 5.22-5.24 (m, 1H), 7.18-8.00 (m, 12H, Ar); ¹³C NMR (CDCl₃) δ 26.8 (d, $J_{C-P} = 28.9$ Hz), 31.2 (d, $J_{C-P} = 31.4$ Hz), 33.1 (d, $J_{C-P} = 3.3$ Hz), 33.4 (d, $J_{C-P} = 4.1$ Hz), 36.2 (d, $J_{C-P} = 10.8$ Hz), 37.2, 85.2 (d, $J_{C-P} = 6.6$ Hz), 120.6, 121.3, 121.8, 125.6, 126.5, 127.1, 127.3, 128.4, 128.5, 130.6, 131.0, 131.5, 131.9, 132.3, 132.4, 146.5, 148.1 (Ar); ³¹P NMR (CDCl₃) δ 73.8; MS (EI) *m/z* 498 (M⁺); HRMS calcd for C₂₈H₂₉O₃PS (M⁺) 498.1419, found 498.1404; [α]¹⁹_D +308.4 (c 1.0, CHCl₃).

• Fluorinative hydrolysis of binaphthylphosphorothioic acid esters

N,N,N-Tributyl-1-butanaminium (*L*)-menthylphosphorofluoridothioate (*S*p-2)

To a THF solution (10 mL) of the (R_{ax}) -4-(*L*)-menthyldinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide R_{ax} -3 (2.01 g, 4.0 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (16.0 mL, 16.0 mmol) at room temperature under an Ar atmosphere. After the addition, the mixture was stirred for 5.5 h. The reaction

mixture was poured into water and extracted with Et_2O . The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt *S*p-2 (1.75 g, 88%; major : minor = 97 : 3) as a yellow oil.

IR (neat): 2960, 2872, 2205, 1711, 1459, 1384, 1199, 1110, 1021, 931, 882, 805, 775, 734, 660, 636 cm⁻¹; ¹H NMR(CDCl₃) δ 0.71-0.78 (m, 10H, Me and OCHC<u>H</u>), 0.90 (t, J = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₂C<u>H</u>₃), 0.86-0.97 (m, 2H), 1.15-1.21 (m, 1H), 1.35 (sext, J = 7.3 Hz, 8H, NCH₂CH₂CH₂CH₃), 1.30-1.39 (m, 1H, OCHCHCH₂C<u>H</u>₂), 1.51-1.59 (m, 10H, NCH₂C<u>H</u>₂CH₂CH₂CH₂CH₃ and OCHC<u>H</u>₂), 2.17-2.30 (m, 2H), 3.21 (t, J = 8.3 Hz, 8H, NC<u>H</u>₂), 4.09-4.12 (m, 1H, OC<u>H</u>); ¹³C NMR (CDCl₃) δ 13.6 (CH₂CH₃), 15.9, 19.7 (CH₂CH₃), 21.2, 22.1, 22.9, 24.0 (NCH₂CH₂), 25.2, 31.5, 34.5, 43.0, 48.6 (d, J = 8.3 Hz), 58.6 (NCH₂), 77.8 (d, J = 6.6 Hz, OCCH); ³¹P NMR (CDCl₃) δ 51.3 (d, $J_{P,F} = 1042.9$ Hz); ¹⁹F NMR (CDCl₃) δ -30.9 (d, $J_{P,F} = 1042.2$ Hz); MS (FAB⁻) m/z 253 (M⁺-Bu₄N); HRMS calcd for C₁₀H₁₉O₂FPS (M⁺ -Bu₄N⁺) 253.0833, found 253.0837.

 $[\alpha]^{25}_{D}$ - 31.9 (c 0.36, CHCl₃)

minor product: ³¹P NMR (CDCl₃) δ 51.7 (d, J_{P-F} = 1040.0 Hz); ¹⁹F NMR (CDCl₃) δ -30.3 (d, J_{P-F} = 1050.6 Hz)

N,N,N-Tributyl-1-butanaminium (L)-menthylphosphorofluoridothioate (R_p -2)

Chemical Formula: C₂₆H₅₅FNO₂PS Exact Mass: 495.3675 Molecular Weight: 495.7632 To a THF solution (5 mL) of the (S_{ax}) -4-(L)-menthyldinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide S_{ax} -3 (251 mg, 0.5 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (2.0 mL, 2.0 mmol) at room temperature under an Ar atmosphere. After the addition, the mixture was stirred for 6.0 h. The reaction mixture was poured into water and extracted

with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt R_p -2 (199 mg, 80%; major : minor = 92 : 8) as a yellow oil.

IR (neat): 2955, 2868, 2347, 1674, 1459, 1384, 1197, 1107, 1021, 931, 881, 805, 782, 661, 636 cm⁻¹; ¹H NMR(CDCl₃) δ 0.62-0.81 (m, 1H), 0.76 (d, *J* = 6.8 Hz, 3H, OCHCH₂CHC<u>H₃</u>), 0.79 (d, *J* = 6.8 Hz, 3H, OCHCH₂CHC<u>H₃</u>), 0.80 (d, *J* = 6.3 Hz, 3H, OCHCH₂CHC<u>H₃</u>), 0.92 (t, *J* = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₂CH₃), 0.91-1.03 (m, 2H), 1.19-1.25 (m, 1H), 1.33-1.42 (m, 1H), 1.36 (sext, *J* = 7.3 Hz, 8H, NCH₂CH₂CH₂CH₂CH₃)), 1.56-1.58 (m, 10H, NCH₂CH₂CH₂CH₃ and OCHC<u>H</u>₂ and OCHCHC<u>H₂</u>), 2.23-2.26 (m, 2H), 3.22 (t, *J* = 8.3 Hz, 8H, NC<u>H₂</u>), 4.11-4.20 (m, 1H, OC<u>H</u>); ¹³C NMR (CDCl₃) δ 13.6 (CH₂CH₃), 16.0, 19.6 (CH₂CH₃), 21.1, 22.1, 22.8, 23.9 (NCH₂CH₂CH₂), 25.1, 31.4, 34.4, 42.7, 48.5 (d, *J* = 8.3 Hz), 58.6 (NCH₂), 77.8 (d, *J* = 6.6 Hz, OCCH); ³¹P NMR (CDCl₃) δ 52.0 (d, *J*_{P-F} = 1040.0 Hz); ¹⁹F NMR (CDCl₃) δ -28.0 (d, *J*_{P-F} = 1042.5 Hz); MS (FAB⁻) m/z 253 (M⁺-Bu₄N); HRMS calcd for C₁₀H₁₉O₂FPS (M⁺ -Bu₄N⁺) 253.0833, found 253.0837.

 $[\alpha]^{25}_{D}$ - 33.6 (c 0.62, CHCl₃)

minor product: ³¹P NMR (CDCl₃): δ 51.5 (d, $J_{P-F} = 1040.0$ Hz); ¹⁹F NMR (CDCl₃): δ -29.4 (d, $J_{P-F} = 1050.6$ Hz)

N,N,N-Tributyl-1-butanaminium (*D*)-menthylphosphorofluoridothioate (*S*_p-5)

Chemical Formula: C₂₆H₅₅FNO₂PS Exact Mass: 495.3675 Molecular Weight: 495.7632 To a THF solution (3 mL) of the (R_{ax}) -4-(D)-menthyldinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide R_{ax} -4 (251 mg, 0.5 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (2.0 mL, 2.0 mmol) at room temperature under an Ar atmosphere. After the addition, the mixture was stirred for 5.0 h. The reaction mixture was poured into water and extracted

with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt S_p -5 (165 mg, 66%; major : minor = 94 : 6) as a yellow oil.

IR (neat): 2859, 1711, 1595, 1475, 1386, 1269, 1203, 1020, 930, 873, 769 cm⁻¹; ¹H NMR(CDCl₃) δ 0.61-0.81 (m, 1H), 0.76 (d, J = 6.8 Hz, 3H, OCHCH₂CHC<u>H</u>₃), 0.78 (d, J = 7.3 Hz, 3H, OCHCH₂CHC<u>H</u>₃), 0.80 (d, J = 6.3 Hz, 3H, OCHCH₂CHC<u>H</u>₃), 0.92 (t, J = 7.3 Hz, 12H, NCH₂CH₂CH₂C<u>H</u>₃), 0.91-1.05 (m, 2H), 1.17-1.27 (m, 1H), 1.34-1.42 (m, 1H), 1.36 (sext, J = 7.3 Hz, 8H, NCH₂CH₂CH₂C<u>H</u>₃), 1.54-1.62 (m, 10H, NCH₂CH₂CH₂CH₃ and OCHC<u>H</u>₂ and OCHCHC<u>H</u>₂), 2.23-2.27 (m, 2H), 3.24 (t, J = 8.3 Hz, 8H, NC<u>H</u>₂), 4.12-4.18 (m, 1H, OC<u>H</u>); ¹³C NMR (CDCl₃) δ 13.6 (CH₂CH₃), 16.0, 19.6 (CH₂CH₃), 21.1, 22.0, 22.8, 23.9 (NCH₂CH₂), 25.0,

31.4, 34.4, 42.7, 48.5 (d, J = 8.3 Hz), 58.6 (N<u>C</u>H₂), 76.9 (d, J = 8.3 Hz, O<u>C</u>H); ³¹P NMR (CDCl₃) δ 51.8 (d, $J_{P-F} = 1042.9 \text{ Hz}$); ¹⁹F NMR (CDCl₃) δ -27.8 (d, $J_{P-F} = 1043.7 \text{ Hz}$); MS (FAB⁻) m/z 253 (M⁺-Bu₄N).

 $[\alpha]^{25}_{D} + 34.3 \text{ (c } 0.83, \text{CHCl}_3)$

minor product ³¹P NMR (CDCl₃): δ 51.4 (d, $J_{P-F} = 1042.9$ Hz); ¹⁹F NMR (CDCl₃): δ -29.1 (d, $J_{P-F} = 1052.1$ Hz).

N,N,N-Tributyl-1-butanaminium (D)-menthylphosphorofluoridothioate (R_p -5)

To a THF solution (3 mL) of the (S_{ax}) -4-(D)-menthyldinaphtho [2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide S_{ax} -4 (251 mg, 0.5 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (2.0 mL, 2.0 mmol) at room temperature under an Ar atmosphere. After the addition, the mixture was stirred for 5.0 h. The reaction mixture was poured into water and extracted

Chemical Formula: C₂₆H₅₅FNO₂PS Exact Mass: 495.3675 Molecular Weight: 495.7632

with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt R_p -5 (181 mg, 73%; major : minor = 97 : 3) as a yellow oil.

IR (neat): 2959, 2872, 2347, 1640, 1462, 1384, 1198, 1107, 1021, 931, 881, 805, 777, 663, 638 cm⁻¹; ¹H NMR(CDCl₃) δ 0.59-0.73 (m, 1H), 0.63 (d, *J* = 7.3 Hz, 3H, OCHCH₂CHC<u>H₃</u>), 0.71 (d, *J* = 6.3 Hz, 3H, OCHCH₂CHC<u>H₃</u>), 0.72 (d, *J* = 7.3 Hz, 3H, OCHCH₂CHC<u>H₃</u>), 0.84 (t, *J* = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₃), 0.80-1.02 (m, 2H), 1.13-1.20 (m, 1H), 1.25-1.30 (m, 1H), 1.27 (sext, *J* = 7.3 Hz, 8H, NCH₂CH₂CH₂CH₃), 1.43-1.54 (m, 10H, NCH₂CH₂CH₂CH₃ and OCHC<u>H₂ and OCHCHCH₂), 2.10-2.25 (m, 2H), 3.15 (t, *J* = 8.5 Hz, 8H, NCH₂), 4.00-4.10 (m, 1H, OC<u>H</u>); ¹³C NMR (CDCl₃) δ 13.4 (CH₂CH₃), 15.7, 19.4 (CH₂CH₃), 21.0, 21.9, 22.7, 23.8 (NCH₂CH₂CH₂), 25.0, 31.2, 34.3, 42.8, 48.5 (d, *J* = 7.4 Hz), 58.5 (NCH₂), 76.4 (d, *J* = 8.3 Hz, OCH); ³¹P NMR (CDCl₃) δ 51.4 (d, *J*_{P-F} = 1042.9 Hz); ¹⁹F NMR (CDCl₃) δ -29.6 (d, *J*_{P-F} = 1043.7 Hz); MS (FAB⁻) m/z 253 (M⁺-Bu₄N).</u>

$$[\alpha]^{25}_{D} + 38.4 (c \ 0.35, CHCl_3)$$

minor product ³¹P NMR (CDCl₃) δ 51.8 (d, $J_{P-F} = 1042.9 \text{ Hz}$); ¹⁹F NMR (CDCl₃) δ -28.3 (d, $J_{P-F} = 1042.9 \text{ Hz}$)

4-Methylpyridium (*L*)-menthylphosphorofluorothoate (*S*_p-7)

Amberlyst 15 ion-exchange resin (5 g) was added to a CH2Cl2 (20 mL) solution of

Chemical Formula: C₁₆H₂₇FNO₂PS Exact Mass: 347.1484 Molecular Weight: 347.4282 tetrabutylammonium salt S_p -2 (dr = 97 : 3) (0.56 mmol, 0.28 g) at room temperature. The mixture was stirred for 3 h at room temperature. The resulting mixture was filtered, washed with CH₂Cl₂ and concentrated *in vacuo* to give colorless oil. To a hexane solution of the oil, hexane (0.6 mL) solution of 4-methylpyridine (0.60 mmol, 0.06 mL) was added at room

temperature to give the corresponding 4-methylpyridium salt S_p -7 (dr = 96 : 4) (0.19 g, 0.55 mmol, 98%) as a white solid.

mp 87-88 °C; IR (KBr) 3079, 2950, 2922, 2866, 2457, 2024, 1639, 1502, 1454, 1388, 1349, 1317, 1263, 1236, 1142, 802, 708, 649, 594, 514 cm⁻¹; ¹H NMR (CDCl₃) δ 0.77-0.78 (m, 3H), 0.82-0.86 (m, 7H), 0.94-1.13 (m 3H), 1.30-1.43 (m, 2H), 1.59-1.62 (m, 2H), 2.15-2.22 (m, 1H), 2.33-2.36 (m, 1H), 2.62 (s, 3H, CH₃ (4-position of pyridine)), 4.20-4.29 (m, 1H, OCH), 7.64 (d, J = 5.8 Hz, 2H, NCCH), 8.72 (d, J = 5.8 Hz, 2H, NCH); ¹³C NMR (CDCl₃) δ 15.5, 20.7, 21.7, 22.0, 22.6, 25.1, 31.1, 33.9, 42.4, 48.2 (d, $J_{C-P} = 5.8$ Hz), 78.3 (d, $J_{C-P} = 7.4$ Hz, OC), 127.1, 141.1, 158.0; ¹⁹F NMR (CDCl₃) δ 33.8 (d, $J_{F-P} = 1047$ Hz), ³¹P NMR (CDCl₃) δ 55.5 (d, $J_{P-F} = 1045$ Hz); [α]²⁵_D -68.5 (c 1.0, CHCl₃).

minor product: ¹⁹F NMR (CDCl₃) δ -30.7 (d, $J_{F-P} = 1047$ Hz), ³¹P NMR (CDCl₃) δ 56.5 (d, $J_{P-F} = 1045$ Hz).

4-Methylpyridium (*L*)-menthylphosphorofluorothoate (*R*_p-7)

Chemical Formula: C₁₆H₂₇FNO₂PS Exact Mass: 347.1484 Molecular Weight: 347.4282

Amberlyst 15 ion-exchange resin (10 g) was added to a CH_2Cl_2 (20 mL) solution of tetrabutylammonium salt R_p -2 (dr = 95 : 5) (1.32 mmol, 0.654 g) at room temperature. The mixture was stirred for 3 h at room temperature. The resulting mixture was filtered, washed with CH_2Cl_2 and concentrated *in vacuo* to give colorless oil. To a hexane solution of the oil, hexane (1.3 mL)

solution of 4-methylpyridine (1.35 mmol, 1.35 mL) was added at room temperature to give the corresponding 4-methylpyridium salt R_p -7 (97 : 3) (0.341 g, 0.981 mmol, 74%) as a white solid. mp 126-127 °C; IR (KBr) 3079, 2950, 2922, 2866, 2457, 2024, 1639, 1502, 1454, 1388, 1349, 1317, 1263, 1236, 1142, 802, 708, 649, 594, 514 cm⁻¹; ¹H NMR (CDCl₃) δ 0.81-0.92 (m, 10H), 0.99-1.17 (m, 2H), 1.32-1.38 (m 1H), 1.44-1.52 (m, 1H), 1.64-1.66 (m, 2H), 2.20-2.22 (m, 1H), 2.26-2.29 (m, 1H), 2.66 (s, 3H, CH₃ (4-position of pyridine)), 4.28-4.36 (m, 1H, OCH), 7.67 (d, *J* = 5.6 Hz, 2H, NCCH), 8.74 (d, J = 5.4 Hz, 2H, NCH); ¹³C NMR (CDCl₃) δ 16.0, 20.8, 21.9, 22.2, 22.8, 25.3, 31.3, 34.0, 42.2, 48.3 (d, $J_{C-P} = 8.3$ Hz), 78.7 (d, $J_{C-P} = 7.4$ Hz, OCH), 127.2, 141.1, 158.3; ¹⁹F NMR (CDCl₃) δ -30.7 (d, $J_{F-P} = 1050$ Hz), ³¹P NMR (CDCl₃) δ 56.7 (d, $J_{P-F} = 1051$ Hz); MS (FAB⁻) m/z 253 (M⁻ -HNC₅H₅CH₃); HRMS calcd for C₁₀H₁₉FO₂PS 253.0833 (M⁺ -HNC₅H₅CH₃), found 253.0808; [α] ²⁵_D -47.6 (c 1.0, CHCl₃)

minor product: ¹⁹F NMR (CDCl₃) δ -34.0 (d, J_{F-P} = 1049 Hz), ³¹P NMR (CDCl₃) δ 55.6 (d, J_{P-F} = 1048 Hz)

N,N,N-Tributyl-1-butanaminium1-endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy-phosphorofluorothioic acid (Sp-9a)

Chemical Formula: C₂₆H₅₃FNO₂PS Exact Mass: 493.3519 Molecular Weight: 493.7472

То а THF solution (2 mL) of (R_{ax}) -Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy)-, 4-sulfide *R*_{ax}-8a (0.25 g, 0.5 mmol) was added tetrabutylammonium fluoride solution 1M in THF (2 mL) at 0 °C under Ar atmosphere. The resulting solution was stirred at

room temperature for 4 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc, CHCl₃: MeOH =10: 1) to give the corresponding ammonium salt S_p -9a (0.33 mmol, 0.16 g, 66%, dr = 98 : 2) as a white solid.

mp 123-125 °C; IR (KBr) 3411, 2959, 2874, 1489, 1475, 1386, 1300, 1196, 1111, 1052, 1038, 997, 981, 949, 923, 900, 871, 806, 770, 651, 634, 517 cm⁻¹; ¹H NMR (CDCl₃) δ 0.67 (s, 3H, CH₃), 0.70 (s, 3H, CH₃), 0.72 (s, 3H, CH₃), 0.84 (t, J = 7.3 Hz, 12H, N(CH₂)₃CH₃), 0.98-1.10 (m, 3H), 1.29 (sext, J = 7.3 Hz, 8H, N(CH₂)₂CH₂CH₃), 1.41-1.44 (m, 1H), 1.46-1.54 (m, 9H), 1.89-1.96 (m, 1H), 2.09-2.17 (m, 1H), 3.16 (t, J = 8.3 Hz, 8H, NCH₂), 4.46-4.51 (m, 1H); ¹³C NMR (CDCl₃) δ 12.9, 13.3 (N(CH₂)₃CH₃), 18.5, 19.3 N(CH₂)₂CH₂CH₃, 19.6, 23.7 (NCH₂CH₂), 26.4, 27.8, 37.1 (d, $J_{C-P} = 2.5$ Hz), 44.6, 47.1, 48.9 (d, $J_{C-P} = 5.8$ Hz), 58.4 (NCH₂), 81.1 (d, $J_{C-P} = 6.6$ Hz, OC); ¹⁹F NMR (CDCl₃) δ -31.3 (d, $J_{P-F} = 1043$ Hz); ³¹P NMR (CDCl₃) δ 52.4 (d, $J_{P-F} = 1042$ Hz); MS (FAB) *m*/*z* 251 (M⁺-Bu₄N); HRMS calcd for C₁₀H₁₇FO₂PS 251.0671 (M⁺-Bu₄N), found 251.0668; [α]¹⁹D -7.84 (c 1.0, CHCl₃).

Minor product: ¹⁹F NMR (CDCl₃) δ -30.7 (d, J_{P-F} = 1047 Hz); ³¹P NMR (CDCl₃) d 53.2 (d, J_{P-F} =

1045 Hz).

N,N,N-Tributyl-1-butanaminium

1-endo-(18)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy

-phosphorofluorothioic acid (R_p-9a)

Bu₄N⁺ -S ^O F ^P O _{Rp}-9a

THF solution of То а (6 mL) (S_{ax}) -Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy)-, 4-sulfide (0.75)1.5 *S*_{ax}-8a g, mmol) was added tetrabutylammonium fluoride solution 1M in THF (6 mL) at

Chemical Formula: $C_{26}H_{53}FNO_2PS$ Exact Mass: 493.3519 Molecular Weight: 493.7472

0 °C under Ar atmosphere. The resulting solution was stirred at room temperature for 4.0 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc, CHCl₃: MeOH =10: 1) to give the corresponding ammonium salt R_p -9a (0.64 g, 82%, dr = 88 : 22) as a white solid.

mp 117-118 °C; IR (KBr) 3411, 2959, 2874, 1489, 1475, 1386, 1300, 1196, 1111, 1052, 1038, 997, 981, 949, 923, 900, 871, 806, 770, 651, 634, 517 cm⁻¹; ¹H NMR (CDCl₃) δ 0.72-0.73 (m, 3H), 0.75-0.78 (m, 6H), 0.85-0.91 (m, 12H), 1.03-1.15 (m, 3H), 1.30-1.37 (m, 8H), 1.47-1.55 (m, 10H), 1.92-2.00 (m, 1H), 2.13-2.16 (m, 1H), 3.20 (t, J = 8.8 Hz, 8H, NCH₂), 4.54-4.58 (m, 1H, OCH); ¹³C NMR (CDCl₃) d 13.1, 13.5 (N(CH₂)₃CH₃), 18.7, 19.5 (N(CH₂)₂CH₂), 19.8, 23.8 (NCH₂CH₂), 26.6, 27.9, 36.8, 44.7, 47.1, 49.0 (d, $J_{C-P} = 7.4$ Hz), 58.5 (NCH₂), 81.3 (d, $J_{C-P} = 4.9$ Hz, OCH); ¹⁹F NMR (CDCl₃) δ -30.3 (d, $J_{P-F} = 1042$ Hz); ³¹P NMR (CDCl₃) δ 53.1 (d, $J_{P-F} = 1042$ Hz); MS (FAB) m/z 251 (M⁻-Bu₄N); HRMS calcd for C₁₀H₁₇FO₂PS 251.0671 (M⁺ -Bu₄N), found 251.0668; [a] ${}^{1}_{D}{}^{9} = -9.78$ (c 1.0, CHCl₃).

minor product: ¹⁹F NMR (CDCl₃) δ -31.2 (d, $J_{P-F} = 1042$ Hz); ³¹P NMR (CDCl₃) δ 52.5 (d, $J_{P-F} = 1042$ Hz).

N,N,N-Tributyl-1-butanaminium

4-((1S)-1-methylheptyloxy)phosphorofluoridothioate

(Sp-9b)

$$F_{H} = O_{H} = O_{H$$

Chemical Formula: C₂₄H₅₃FNO₂PS Exact Mass: 469.3519 Molecular Weight: 469.7252 To a THF solution (3 mL) of the (R_{ax}) -4-((1S)-1-methylheptyloxy)dinaphtho[2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide R_{ax} -**8b** (238 mg, 0.5 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (2.0 mL, 2.0

mmol) at at room temperature under an Ar atmosphere. After the addition, the mixture was stirred for 4.0 h. The reaction mixture was poured into water and extracted with Et_2O . The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt *S*p-**9b** (171 mg, 73%; major : minor = 93 : 7) as a colorless oil.

IR (neat): 2959, 2874, 2348, 1710, 1640, 1468, 1380, 1201, 1063, 984, 885, 767, 663, 628 cm⁻¹; ¹H NMR (CDCl₃) δ 0.78 (t, J = 6.8 Hz, 3H, (CH₂)₅CH₃), 0.92 (t, J = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₂CH₃), 1.18 (d, J = 5.8 Hz, 3H, OCHCH₃) 1.17-1.39 (m, 10H, OCH(CH₂)₅), 1.34-1.39 (m, 8H, NCH₂CH₂CH₂CH₃), 1.57 (br s, 8H, NCH₂CH₂CH₂CH₃), 3.24 (t, J = 8.3 Hz, 8H, NCH₂), 4.41-4.51 (m, 1H, OCH); ¹³C NMR (CDCl₃) δ 13.5 (NCH₂CH₂CH₂CH₃), 13.9 ((CH₂)₅CH₃), 19.6 (NCH₂CH₂CH₂CH₃), 21.2 (d, J = 3.3 Hz, (CH₂)₄CH₂CH₃), 22.5 (OCHCH₃), 23.9 (NCH₂CH₂CH₂CH₃), 25.3 (CH₂(CH₂)₃CH₃), 29.3 (CH₂(CH₂)₂CH₃), 31.7 (CH₂CH₂CH₃), 37.7 (d, J = 6.6 Hz, OCHCH₂), 58.6 (NCH₂CH₂CH₂CH₃), 73.5 (d, J = 7.4 Hz, OCH); ³¹P NMR (CDCl₃) δ 52.0 (d, $J_{P-F} = 1042.9$ Hz); ¹⁹F NMR (CDCl₃) δ -29.7 (d, $J_{P-F} = 1041.4$ Hz); MS (FAB⁻) m/z 227(M⁺-Bu₄N).

 $[a]^{25}_{D}$ + 7.68 (c 0.25, CHCl₃)

minor product: ³¹P NMR (CDCl₃): δ 51.6 (d, $J_{P-F} = 1042.9 \text{ Hz}$); ¹⁹F NMR (CDCl₃): δ -30.3 (d, $J_{P-F} = 1042.9 \text{ Hz}$).

N,N,N-Tributyl-1-butanaminium

4-((1*S*)-1-methylheptyloxy)phosphorofluoridothioate

(*R*p-9b)

Chemical Formula: C₂₄H₅₃FNO₂PS Exact Mass: 469.3519 Molecular Weight: 469.7252 To a THF solution (3 mL) of the (S_{ax}) -4-((1S)-1-methylheptyloxy)dinaphtho[2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4-sulfide S_{ax} -8b (238 mg, 0.5 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (2.0 mL, 2.0 mmol) at at room temperature under an Ar atmosphere. After

the addition, the mixture was stirred for 4.0 h. The reaction mixture was poured into water and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt S_p -9b (84 mg, 36%; major : minor = 96 : 4) as a yellow oil.

IR (neat): 2959, 2875, 2348, 1712, 1641, 1467, 1380, 1198, 1059, 982, 884, 774, 664, 627 cm⁻¹; ¹H NMR (CDCl₃) δ 0.78 (t, *J* = 6.8 Hz, 3H, (CH₂)₅CH₃), 0.93 (t, *J* = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₃),

1.20 (d, J = 6.3 Hz, 3H, OCHC<u>H</u>₃) 1.19-1.43 (m, 10H, OCH(C<u>H</u>₂)₅), 1.38 (sext, J = 7.3 Hz, 8H, NCH₂CH₂CH₂CH₃), 1.55-1.63 (m, 8H, NCH₂C<u>H</u>₂CH₂CH₃), 3.24 (t, J = 8.3 Hz, 8H, NC<u>H</u>₂), 4.43-4.48 (m, 1H, OC<u>H</u>); ¹³C NMR (CDCl₃) δ 13.5 (NCH₂CH₂CH₂CH₂), 13.9 ((CH₂)₅CH₃), 19.6 (NCH₂CH₂CH₂CH₃), 21.4 (d, J = 4.1 Hz, (CH₂)₄CH₂CH₃), 22.5 (OCHCH₃), 23.9 (NCH₂CH₂CH₂CH₃), 25.2 (CH₂(CH₂)₃CH₃), 29.2 (CH₂(CH₂)₂CH₃), 31.7 (CH₂CH₂CH₂CH₃), 37.6 (d, J = 5.0 Hz, OCHCH₂), 58.6 (NCH₂CH₂CH₂CH₃), 73.6 (d, J = 6.6 Hz, OCH); ³¹P NMR (CDCl₃) δ 51.8 (d, $J_{P-F} = 1042.9$ Hz); ¹⁹F NMR (CDCl₃) δ -30.4 (d, $J_{P-F} = 1043.7$ Hz); MS (FAB⁻) m/z 227 (M⁺-Bu₄N).

 $[\alpha]^{25}_{D} + 10.9 (c \ 0.21, CHCl_3)$

minor product: ³¹P NMR (CDCl₃) δ 52.2 (d, $J_{P-F} = 1042.9 \text{ Hz}$); ¹⁹F NMR (CDCl₃) δ -29.8 (d, $J_{P-F} = 1046.0 \text{ Hz}$).

N,N,N-Tributyl-1-butanaminium cholesteryl –phosphorofluoridothioate (*S*p-9c)

To a THF solution (3 mL) of the (R_{ax})-4–cholesteryl dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-s ulfide R_{ax} -8c (366 mg, 0.5 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (2.0 mL, 2.0 mmol) at room temperature under an Ar atmosphere. After the addition, the mixture was stirred for 6.0 h. The reaction mixture was poured

into water and extracted with Et_2O . The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt *Sp*-**9c** (311 mg, 85%; major : minor = 99 : 1) as a white solid.

mp 34-42 °C; IR (neat): 2843, 1465, 1381, 1196, 1038, 959, 891, 803 cm⁻¹; ¹H NMR (CDCl₃) δ 0.59 (s, 3H, Me), 0.78 (d, J = 6.3 Hz, 3H, Me), 0.83 (d, J = 6.3 Hz, 3H, Me), 0.91 (t, J = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₂CH₃), 1.34 (sext, J = 7.3 Hz, 8H, NCH₂CH₂CH₂CH₃), 1.43-1.57 (m, 8H, NCH₂CH₂CH₂CH₃), 0.93-2.08 (m, 32H), 2.28-2.41 (m, 2H), 3.21-3.23 (m, 8H, NCH₂), 4.19-4.21 (m, 1H, OC<u>H</u>), 5.24 (br s, 1H, C=C<u>H</u>); ¹³C NMR (CDCl₃) δ 13.7 (CH₂CH₃), 19.2 (CH₂CH₃), 23.9 (NCH₂CH₂), 58.8 (NCH₂), 11.7, 18.6, 19.6, 20.9, 22.4, 23.6, 24.1, 27.8, 28.1, 31.8, 31.9, 35.6, 36.0, 36.3, 37.0, 39.3, 39.6, 40.0, 40.1, 42.1, 50.0, 55.9, 56.6, 76.6 (d, J = 8.3 Hz, OCH), 121.5 (C=CH), 140.6 (C=CH); ³¹P NMR (CDCl₃): δ 51.6 (d, $J_{P,F} = 1042.9$ Hz); ¹⁹F NMR (CDCl₃) δ -29.9 (d, $J_{P,F} = 1043.7$ Hz); Anal Calcd for C₄₃H₈₁FNO₂PS • 0.5 CHCl₃ C, 66.46; H, 10.45; N, 1.78. Found: C, 67.00; H, 10.37; N, 1.79.

 $[\alpha]^{25}_{D}$ - 20.4 (c 0.30, CHCl₃)

minor product: ³¹P NMR (CDCl₃): δ 51.8 (d, $J_{P-F} = 1042.9 \text{ Hz}$); ¹⁹F NMR (CDCl₃): δ -29.7 (d, $J_{P-F} = 1042.9 \text{ Hz}$).

N,N,N-Tributyl-1-butanaminium cholesteryl –phosphorofluoridothioate (*R*p-9c)

To a THF solution (3 mL) of the (S_{ax}) -4-cholesteryl

dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-s ulfide S_{ax} -8c (2.93 g, 4.0 mmol) was added tetrabutylammonium fluoride (1.0 M, THF) (16.0 mL, 16.0 mmol) at room temperature under an Ar atmosphere. After the addition, the mixture was

stirred for 6.0 h. The reaction mixture was poured into water and extracted with Et_2O . The organic layer was dried over MgSO₄, filtered, concentrated in vacuo and purified by column chromatography on silica gel (ethyl acetate then CHCl₃ : MeOH = 10 : 1, Rf = 0.08) to give an ammonium salt *R***p-9c** (2.33 g, 80%; major : minor = 99 : 1) as a white solid.

mp 37-41 °C; IR (neat): 2960, 2870, 1665, 1469, 1381, 1202, 1036, 959, 927, 891,870, 765, 649, 633 cm⁻¹; ¹H NMR (CDCl₃) δ 0.63 (s, 3H, Me), 0.81 (d, *J* = 6.8 Hz, 3H, Me), 0.83 (d, *J* = 6.3 Hz, 3H, Me), 0.87 (d, *J* = 6.8 Hz, 3H, Me), 0.97 (t, *J* = 7.3 Hz, 12H, NCH₂CH₂CH₂CH₂), 1.45 (sext, *J* = 7.3 Hz, 8H, NCH₂CH₂CH₂CH₃), 1.65 (quint, *J* = 7.9 Hz, 8H, NCH₂CH₂CH₂CH₃), 0.93-2.08 (m, 29H), 2.41-2.49 (m, 2H), 3.21-3.26 (t, *J* = 8.3 Hz, 8H, NCH₂), 4.25-4.27 (m, 1H, OCH), 5.27-5.30 (m, 1H, C=CH); ¹³C NMR (CDCl₃) δ 13.7 (CH₂CH₃), 19.7 (CH₂CH₃), 23.8 (NCH₂CH₂CH₂), 58.8 (NCH₂), 11.8, 18.7, 19.3, 21.0, 22.5, 23.7, 24.0, 27.9, 28.2, 31.8, 31.9, 35.8, 36.1, 36.4, 37.1, 39.5, 39.7, 40.1, 42.3, 50.4, 56.1, 56.7, 58.8, 76.6 (d, *J* = 8.3 Hz, OCH), 121.4 (C=CH), 140.4 (C=CH); ³¹P NMR (CDCl₃) δ 51.7 (d, *J*_{P-F} = 1042.9 Hz); ¹⁹F NMR (CDCl₃) δ -29.7 (d, *J*_{P-F} = 1044.5 Hz); Anal Calcd for C₄₃H₈₁FNO₂PS • 0.3 CHCl₃ C, 68.25; H, 10.75; N, 1.84. Found: C, 68.33; H, 10.81; N, 1.83.

 $[\alpha]^{25}{}_{D}$ - 19.3 (c 0.30, CHCl₃) minor product: ³¹P NMR (CDCl₃): δ 51.6 (d, J_{P-F} = 1042.9 Hz); ¹⁹F NMR (CDCl₃): δ -29.9 (d, J_{P-F} = 1042.9 Hz).

N,N,N-Tributyl-1-butanaminium 1-octylphosphorofluorothioic acid (*Sp*-11a)

$$F_{7, H}$$

Bu₄N⁺ -S^PO
 S_p -11a
Chemical Formula: C₂₄H₅₃FNO₂PS

Exact Mass: 469.3519

Molecular Weight: 469.7252

To a THF solution (1.0 mL) of (R_{ax})-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin,
4-(octyloxy)-, 4-sulfide R_{ax}-10a (0.25 mmol, 0.12 g) was added tetrabutylammonium fluoride solution 1M in THF

(1.0 mL) at 0 °C under Ar atmosphere. The resulting solution was stirred at room temperature for 5.0 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc-CHCl₃: MeOH =10: 1) to give the corresponding ammonium salt *S*p-**11a** (0.22 mmol, 0.10 g, 88%) as a colorless oil.

IR (neat) 2958, 2348, 1712, 1621, 1594, 1468, 1382, 1203, 1108, 1051, 922, 883, 770, 700, 663, 627, 532 cm⁻¹; ¹H NMR (CDCl₃) δ 0.85 (t, 3H, O(CH₂)₇CH₃), 1.00 (t, 12H, N(CH₂)₃CH₃), 1.20-1.37 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 1.44 (sext, 8H, N(CH₂)₂CH₂CH₃), 1.62-1.69 (m, 10H, OCH₂CH₂, NCH₂CH₂), 3.31 (t, 8H, NCH₂), 3.92-4.06 (m, 2H, OCH₂); ¹³C NMR (CDCl₃) δ 13.6 (N(CH₂)₃CH₃), 14.0, 19.6 (N(CH₂)₂CH₂CH₃), 22.5, 24.0 (NCH₂CH₂), 25.7, 29.2, 29.3, 30.5 (d, ³*J*_{C-P} = 7.4 Hz, OCH₂CH₂), 31.7, 58.7 (NCH₂), 66.5 (d, ²*J*_{C-P} = 6.6 Hz, OCH₂); ¹⁹F NMR (CDCl₃) δ -5.5 (d, ¹*J*_{P-F} = 1042 Hz) ³¹P NMR (CDCl₃) δ 52.4 (d, ¹*J*_{P-F} = 1039 Hz); MS (FAB) *m/z* 227 (M⁻-Bu₄N) ; HRMS calcd for C₈H₁₇O₂FPS⁻ (M⁺ -Bu₄N) 227.0676, found 227.0688.

N,N,N-Tributyl-1-butanaminium 1-octylphosphorofluorothioic acid (Rp-11a)

Bu₄N⁺ -S, $\stackrel{O}{\overset{H}{\underset{F}}}$ O R_p -11a Chemical Formula: C₂₄H₅₃FNO₂PS Exact Mass: 469.3519 Molecular Weight: 469.7252 To a THF (S_{ax}) -Dinaphthe 4-(octyloxy)-, 4-sulfide tetrabutylammonium flu

To a THF solution (2.0 mL) of (S_{ax})-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin,
4-(octyloxy)-, 4-sulfide S_{ax}-10a (0.5 mmol, 0.24 g) was added tetrabutylammonium fluoride solution 1M in THF (2.0 mL) at 0 °C under Ar atmosphere. The resulting solution was stirred

at room temperature for 5.0 h. The mixture was diluted with Et_2O and washed with water. The water layer was extracted with Et_2O . The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc-CHCl₃: MeOH =10: 1) to give the corresponding ammonium salt *R*p-**11a** (0.38 mmol, 0.18 g, 77%) as a colorless oil.

IR (neat) 2958, 2874, 2348, 1712, 1640, 1468, 1382, 1201, 1069, 920, 883, 775, 662, 627, 534 cm⁻¹; ¹H NMR (CDCl₃) δ 0.80 (t, 3H, O(CH₂)₇CH₃), 0.93 (t, 12H, N(CH₂)₃CH₃), 1.12-1.30 (m, 10H, O(CH₂)₂(CH₂)₅CH₃), 1.37 (sext, 8H, N(CH₂)₂CH₂CH₃), 1.53-1.62 (m, 10H, OCH₂CH₂, NCH₂CH₂), 3.23 (t, 8H, NCH₂), 3.87-3.98 (m, 2H, OCH₂); ¹³C NMR (CDCl₃) δ 13.6 (N(CH₂)₃CH₃), 14.0, 19.6 (N(CH₂)₂CH₂CH₃), 22.5, 23.9 (NCH₂CH₂), 25.6, 29.2, 29.3, 30.5 (d, ³J_{C-P} = 7.4 Hz, OCH₂CH₂), 31.7, 58.6 (NCH₂), 66.5 (d, ²J_{C-P} = 6.6 Hz, OCH₂); ¹⁹F NMR (CDCl₃) δ -5.5 (d, J_{P-F} = 1045 Hz) ³¹P NMR (CDCl₃) δ 52.7 (d, J_{P-F} = 1043 Hz); MS (FAB+) *m/z* 227 (M⁻ -Bu₄N); HRMS calcd for

C₈H₁₇O₂FPS⁻ (M⁺ -Bu₄N) 227.0676, found 227.0678.

N,*N*,*N*-Tributyl-1-butanaminium cyclohexylphosphorofluorothioic acid (*S*_p-11b)

stirred at room temperature for 4.5 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc, CHCl₃: MeOH =10: 1) to give the corresponding ammonium salt S_p -11b (0.86 mmol, 0.38 g, 86%) as a colorless oil.

IR (neat) 2934, 2874, 2347, 1711, 1641, 1468, 1382, 1259, 1205, 1128, 1048, 1021, 991, 926, 868, 826, 772, 699, 659, 636, 598, 547 cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (t, *J* = 7.3 Hz, 12H), 1.05-1.16 (m, 2H), 1.19-1.35 (m, 2H), 1.37-1.43 (m, 11H), 1.55-1.66 (m, 10H), 1.90-1.96 (m, 2H), 3.25 (t, *J* = 8.3 Hz, 8H), 4.30-4.37 (m, 1H); ¹³C NMR (CDCl₃) δ 13.6 (CH₃), 19.7 (<u>CH₂CH₃), 24.0 (NCH₂<u>CH₂), 25.5, 33.6 (d, ⁴*J*_{C-P} = 4.1 Hz), 33.7 (d, ³*J*_{C-P} = 5.0 Hz), 58.8 (NCH₂), 75.2 (d, ²*J*_{C-P} = 7.4 Hz, OCH); ¹⁹F NMR (CDCl₃) δ -0.9 (d, ¹*J*_{P-F} = 1047 Hz); ³¹P NMR (CDCl₃) δ 51.6 (d, ¹*J*_{P-F} = 1042 Hz); MS (FAB+) *m/z* 197 (M⁻-Bu₄N); HRMS calcd for C₆H₁₁O₂FPS⁻ (M⁻-Bu₄N) 197.0207, found 197.0221.</u></u>

N, N, N-Tributyl-1-butanaminium cyclohexylphosphorofluorothioic acid (R_p -11b)

To a THF solution (3.0 mL) of (S_{ax}) -Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(cyclohexyloxy)-, 4-sulfide S_{ax} -10b (1.3 mmol, 0.57 g) was added tetrabutylammonium fluoride solution 1M in THF (5.1 mL) at 0 °C under Ar atmosphere. The resulting solution was

stirred at room temperature for 3.0 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc-CHCl₃: MeOH =10: 1) to give the corresponding ammonium salt R_p -11b (0.90 mmol, 0.40 g, 70%) as a colorless oil.

IR (neat) 2935, 2874, 2386, 2348, 1640, 1468, 1382, 1258, 1197, 1127, 1048, 1021, 991, 927, 868, 827, 775, 658, 637, 597, 540 cm⁻¹; ¹H NMR (CDCl₃) δ 0.94 (t, *J* = 7.3 Hz, 12H, CH₃), 1.05-1.16 (m, 1H), 1.19-1.28 (m, 2H), 1.34-1.43 (m, 11H), 1.55-1.66 (m, 10H), 1.92-1.95 (m, 2H), 3.25 (t, *J* = 8.3 Hz, 8H, NCH₂), 4.29-4.37 (m, 1H, OCH); ¹³C NMR (CDCl₃) δ 13.6 (CH₃), 19.7 (<u>CH₂CH₃), 24.0 (NCH₂<u>CH₂), 25.5, 33.6 (d, ⁴*J*_{C-P} = 4.1 Hz), 33.7 (d. ³*J*_{C-P} = 5.8 Hz), 58.8 (NCH₂), 75.2 (d, ²*J*_{C-P} = 7.4 Hz); ¹⁹F NMR (CDCl₃) δ -0.9 (d, ¹*J*_{P-F} = 1047 Hz); ³¹P NMR (CDCl₃) δ 51.8 (d, ¹*J*_{P-F} = 1042 Hz); MS (FAB+) *m/z* 197 (M⁺ -Bu₄N) ; HRMS calcd for C₆H₁₁O₂FPS⁻ (M⁺ -Bu₄N⁺) 197.0207, found 197.0178.</u></u>

N, N, N-Tributyl-1-butanaminium 2-tricyclo[3.3.1.1^{3,7}]decylphosphorofluorothioic acid (S_p -11c)

To a THF solution (8.0 mL) of (R_{ax}) -Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(2-tricyclo[3.3.1.1^{3,7}]decyloxy)-, 4-sulfide $(R_{ax}$ -10c) (2.0 mmol, 1.0 g) was added tetrabutylammonium fluoride solution 1M in THF (8.0 mL) at 0 °C under Ar atmosphere. The

resulting solution was stirred at room temperature for 5.5 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc-CHCl₃ : MeOH =10: 1) to give the corresponding ammonium salt S_p -11c (1.8 mmol, 0.86 g, 88%) as a white solid.

mp 116-117 °C; IR (KBr) 2934, 2874, 2347, 1711, 1641, 1468, 1382, 1259, 1205, 1128, 1048, 1021, 991, 926, 868, 826, 772, 699, 659, 636, 598, 547 cm⁻¹; ¹H NMR (CDCl₃) δ 0.93 (t, *J* = 7.3 Hz, 12H, CH₃), 1.33-1.42 (m, 10H), 1.55-1.62 (m, 10H), 1.65-1.74 (m, 6H), 2.05 (br, 2H), 2.13-2.16 (br, 2H), 3.37(t, *J* = 8.3 Hz, 8H, NCH₂), 4.54-4.58 (m, 1H); ¹³C NMR (CDCl₃) δ 13.6 (CH₃), 19.6 (CH₂CH₃), 23.9 (NCH₂CH₂), 27.0, 27.3, 31.3 (d, *J*_{C-P} = 3.3 Hz), 33.0 (d, *J*_{C-P} = 3.3 Hz), 33.1, 36.4 (d, *J*_{C-P} = 4.1 Hz), 37.6, 58.6 (NCH₂), 79.4 (d, *J*_{C-P} = 7.4 Hz); ¹⁹F NMR (CDCl₃) δ -29.4 (d, *J*_{P-F} = 1041 Hz); ³¹P NMR (CDCl₃) δ 51.4 (d, *J*_{P-F} =1040 Hz); MS (FAB+) *m/z* 249 (M⁺ -Bu₄N); Anal. Calcd for C₂₆H₅₁FNO₂PS: C, 63.51; H, 10.54; N, 2.85. Found: C, 63.62; H, 10.57; N, 2.73; [α]²⁵_D +0.61 (c 0.50, CHCl₃).

N,N,N-Tributyl-1-butanaminium 2-tricyclo[3.3.1.1^{3,7}]decylphosphorofluorothioic acid (R_p -11c) (TH096)

Bu₄N⁺ -S $\stackrel{O}{F}$ O F O R_p -11c Chemical Formula: C₂₆H₅₁FNO₂PS Exact Mass: 491.3362 Molecular Weight: 491.7312 To a THF solution (12 mL) of (S_{ax}) -Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin, 4-(2-tricyclo[3.3.1.1^{3,7}]decyloxy)-, 4-sulfide $(S_{ax}$ -10c) (3.0 mmol, 1.5 g) was added tetrabutylammonium fluoride solution

1M in THF (12 mL) at 0 °C under Ar atmosphere. The

resulting solution was stirred at room temperature for 3.0 h. The mixture was diluted with Et₂O and washed with water. The water layer was extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, concentrated *in vacuo*. The mixture was purified by column chromatography on silica gel (EtOAc-CHCl₃ : MeOH =10: 1) to give the corresponding ammonium salt R_p -11c (2.6 mmol, 1.3 g, 86%) as a white solid.

mp 116-118 °C; IR (KBr) 2935, 2874, 2386, 2348, 1640, 1468, 1382, 1258, 1197, 1127, 1048, 1021, 991, 927, 868, 827, 775, 658, 637, 597, 540 cm⁻¹; ¹H NMR (CDCl₃) δ 0.96 (t, J = 7.3 Hz, 12H, CH₃), 1.36-1.45 (m, 10H), 1.58-1.65 (m, 10H), 1.68-1.77 (m, 6H), 2.08 (br, 2H), 2.16-2.19 (br, 2H), 3.29 (t, J = 8.6 Hz, 8H, NCH₂), 4.54-4.47 (m, 1H); ¹³C NMR (CDCl₃) δ 13.6 (CH₃), 19.6 (CH₂CH₃), 23.9 (NCH₂CH₂), 27.0, 27.3, 31.3 (d, $J_{C-P} = 4.1$ Hz), 33.0 (d, $J_{C-P} = 3.3$ Hz), 33.1, 33.1, 36.4 (d, $J_{C-P} = 4.1$ Hz), 37.6, 58.6 (NCH₂), 79.4 (d, $J_{C-P} = 7.4$ Hz); ¹⁹F NMR (CDCl₃) δ -29.3 (d, $J_{P-F} = 1041$ Hz); ³¹P NMR (CDCl₃) δ 51.4 (d, $J_{P-F} = 1040$ Hz); MS (FAB) *m/z* 249 (M⁺ -Bu₄N); Anal. Calcd for C₂₆H₅₁FNO₂PS: C, 63.51; H, 10.54; N, 2.85. Found: C, 63.21; H, 10.54; N, 2.90; [α]²⁵_D -0.61 (c 0.50, CHCl₃).

Figure S1 CD spectra of S_p -9a and R_p -9a

Figure S2 CD spectra of S_p -9b and R_p -9b

Figure S3 CD spectra of S_p -9c and R_p -9c

Figure S4 CD spectra of S_p -11a and R_p -11a

Figure S5 CD spectra of S_p -11b and R_p -11b

Figure S6 CD spectra of S_p -11c and R_p -11c

Figure S7 HPLC spectra of $S_{\rm p}$ 11c (major) and $R_{\rm p}$ -11c (minor)

Figure S8 HPLC spectra of S_p **11c** (minor) and R_p -**11c** (major)

X-ray crystallography. Single crystals of Sp-7 were obtained from solutions of AcOEt/CH₂Cl₂/hexane after slow evaporation of the solvent at room temperature. Diffraction data were collected on a Bruker Apex-II CCD diffractometer equipped with a graphite monochromated MoK α radiation source ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SHELXS-97), and refined by full-matrix least-square methods on *F*2 for all reflections (SHELXL-97)^{S1)} with all non-hydrogen atoms anisotropic and all hydrogen atoms isotropic. The crystal data are shown in Tables S1.

Empirical formula	C ₁₆ H ₂₇ FNO ₂ PS
Formula weight	347.41
Temperature	173 K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P21212
Unit cell dimensions	a = 34.891(4) Å
	b = 6.7332(7) Å
	c = 7.8957(9) Å
Volume	1854.9(4) Å ³
Ζ	4
Density (calculated)	1.244 g/cm ⁻³
Crystal size	$0.50 \ge 0.10 \ge 0.02 \text{ mm}^3$
Reflections collected	4198
Independent reflections	4016
Flack parameter	0.03(8)
Goodness-of-fit on F ²	1.186
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0346, wR_2 = 0.0942$
R indices (all data)	$R_1 = 0.0378, wR_2 = 0.1018$

Table S1. Crystal Data and Structure Refinement for S_p -7

Reference

S1) G. M. Sheldrick, SHELXL-97, *A Program for the Refinement of Crystal Structures*; University of Göttingen: Göttingen, Germany, **1997**.

160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 Chemical Shift (ppm)

