Organocatalytic Domino Michael–Alkylation Reaction: Highly

Enantioselective Construction of Spiro- cyclopentanoneoxindoles and

Tetronic acid Scaffolds

Jing Zhou,^{a,b} Qi-Lin Wang,^{a,b} Lin Peng,^a Fang Tian,^a Xiao-Ying Xu^{*a} and Li-Xin Wang^{*a}

 ^a Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu
 610041, China

^b University of Chinese Academy of Sciences, Beijing, China

E-mail: wlxioc@cioc.ac.cn; xuxy@cioc.ac.cn

Table of Contents

1.	Optimization	of	the	Reaction	Conditions	of	N-methyl	Protected
	Methyleneindo	linon	e 1b v	vith Ethyl 4-	chloroacetoac	etate 2	2a	S2
2.	General Metho	ds						S3
3.	Preparation of Materials and Catalysts						S3	
4.	. General Procedure for Asymmetric Domino Michael-Alkylation Reaction of						ion of	
	Methyleneindo	linon	es wit	hγ-halogena	ited-β-ketoeste	ers		S3
5.	Characterizatio	on Da	ta and	HPLC Conc	litions of Prod	ucts 4	and 5	S4
6.	References							S16
7.	NMR Spectra							S18
8.	HPLC Spectra							S41
9.	Single-Crystal	X-ray	/ Crys	tallography	of Products 4d	and	5f	S71

1. Optimization of the reaction conditions of N-methyl protected methyleneindolinone 1b with ethyl 4-chloroacetoacetate 2a

A series of catalysts, solvents and reaction temperature were examined, and the results were summarized in Table 1. Quinine based thiourea catalyst **3d** afforded better results than catalysts **3a-3c**, **3e** with chiral diamine scaffolds (Table 1, entry 4 vs entries 1-3, 5). All solvents provided **5a** as the main product with moderate to good yields and enantioselectivities (Table 1, entries 6-9). In terms of yield and stereoselectivity, chloroform was chosen as the suitable solvent (Table 1, entry 4). Increasing or decreasing reaction temperature allowed slight decreases in stereoselectivities (Table 1, entry 4 vs entries 10, 11). Based on these screenings, a set of optimal reaction conditions were established: 0.2 mmol of **1b**, 0.2 mmol of **2a** and catalyst **3d** (20 mol %) were stirred in chloroform (1.0 mL) for 24 h at room temperature, then 2 equivs of KHCO₃ was added and the crude mixture was stirred for other 48 h at room temperature.

Table 1. Optimization of the reaction condition	itions ^a
---	---------------------

	O N Me 1b	CI O O 2a	0 <u>1. Сат. 3</u> 2. КНСС	8 (20 mol %), solvent, 2 0 ₃ (200 mol %), rt, 48 h.	4h 0	OEt COP h Me ia
Entry	Cat.	solvent	T (°C)	yield (%) ^b	dr ^c	ee (%) ^d
1	3 a	CHCl ₃	25	70	1.0:1	51 ^e /49 ^e
2	3 b	CHCl ₃	25	68	1:1.2	58 ^e /51 ^e
3	3c	CHCl ₃	25	65	1.3:1	42/64
4	3d	CHCl ₃	25	72	1.2:1	84/>99
5	3e	CHCl ₃	25	50	1.5:1	36/55
6	3d	CH_2Cl_2	25	65	1.1:1	86/96
7	3d	PhCH ₃	25	70	1:1.6	87/85
8	3d	THF	25	50	1:1.4	46/48
9	3d	EtOAc	25	71	1:1.2	62/62
10	3d	CHCl ₃	45	70	1.3:1	82/94
11	3d	CHCl ₃	-5	73	1.6:1	84/95
^a Unless	otherwise	noted, the re	action was p	erformed on a 0	.2 mmol sca	ale in 1.0 mL
solvent. ^b Isolated yields of of mixture of diastereomers. ^c Determined by chiral HPLC						

analysis; dr and ee value of the major product **5a**. ^d The major diastereomers, determined by chiral HPLC analysis. ^eContrary configuration to **5f**.

2. General Methods.

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). Racemic products were obtained from corresponding substrates catalyzed by Et₃N or Na₂CO₃ at room temperature. NMR spectra were recorded with tetramethylsilane as the internal standard. ¹H NMR spectra were recorded at 300 MHz, and ¹³C NMR spectra were recorded at 75 MHz (Bruker Avance). Chemical shifts (δ) are reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) for ¹H NMR and relative to the central CDCl₃ resonance ($\delta = 77.0$ ppm) for ¹³C NMR spectroscopy. The following abbreviations were used to describe peak patterns where appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet. Coupling constants were reported in Hertz (Hz). Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were monitored by TLC and visualized with ultraviolet light. Optical rotations were measured on a Perkin-Elmer 341 polarimeter. The enantiomeric excess (ee) of the products were determined by HPLC using Daicel Chiralpak (AD, AD-H, AY or IC) columns. Owing to the difficulty to isolate the diastereomers, yield and optical rotation below refer to mixture of diastereomers.

3. Preparation of materials and catalysts

Methyleneindolinones **1** were prepared following literature procedures.^{1, 2} Ethyl 4-chloroacetoacetate **2a** was commercially available and purified by silica gel column chromatography. Methyl 4-chloroacetoacetate **2b** was commercially available and used as received. Methyl 4-bromoacetoacetate **2c** was prepared following literature procedures.³ Catalyst **3a** was synthesized according to literature procedure.⁵

4. General procedure for asymmetric domino Michael-Alkylation reaction of methyleneindolinones with γ-halogenated-β-ketoesters

Typical procedure for asymmetric Michael-Alkylation domino reaction with

N-Boc protected methyleneindolinones

A stirred solution of catalyst **3a** (5 mol %), N-Boc protected methyleneindolinones **1** (0.20 mmol) in THF (1.0 mL) was cooled to -30 °C and γ -halogenated- β - ketoesters **2** (0.2 mmol) was added at the same temperature. The reaction mixture was stirred at -30 °C for 2 days, then KHCO₃ (0.4 mmol) was added. The reaction solution was stirred for 1 day at rt, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to afford pure products **4**.

Typical procedure for asymmetric Michael-Alkylation domino reaction with N-alkyl protected methyleneindolinones

A solution of catalyst **3d** (20 mol %), N-alkyl protected methyleneindolinones **1** (0.20 mmol) and ethyl 4-chloro-acetoacetate **2a** (0.2 mmol) in CHCl₃ (1.0 mL) was stirred at rt for 1 days, then KHCO₃ (0.4 mmol) was added. The reaction solution was stirred for 2 day at the same temperature, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to afford pure products **5**.

5. Characterization Data and HPLC Conditions of Product 4 and 5

1'-tert-butyl 4-ethyl (18, 48, 58)-5-benzoyl-2', 3-dioxo-1', 2'-dihydrospiro

94% yield, $[\alpha]_D^{20}$ = +151.5 (c 1.2, CH₂Cl₂); (dr = 7.3:1, >99% ee for the major diastereomer, 90% ee for the minor diastereomer);

[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4a)

HPLC conditions: major diastereomer: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 27.20 min (major) and 22.11 min (minor); minor diastereomer: Chiralcel AD column, Hexane/EtOH (0.1% TFA) = 90:10, flow rate 1.0 mL/min, UV detection at 254 nm, retention time: major diastereomer: 7.77 min (major) and 10.37 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.31 (t, *J* = 7.11 Hz, 3H), 1.51 (s, 9H), 2.65 (d, *J* = 18.33 Hz, 1H), 3.24 (d, *J* = 18.33 Hz, 1H), 4.22-4.29 (m, 2H), 4.54 (d, *J* = 11.31 Hz, 1H), 5.12 (d, *J* = 11.31 Hz, 1H), 6.98 (d, *J* = 6.72 Hz, 1H), 7.11 (t, *J* = 7.56 Hz, 1H), 7.20 (d, *J* = 8.40 Hz, 1H),7.29 (t, *J* = 7.47 Hz, 2H), 7.36 (d, *J* = 7.38 Hz, 2H), 7.46 (d, *J* = 7.92 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.8, 50.0, 55.2, 57.7, 60.4, 62.2, 84.5, 114.1, 123.5, 124.9, 127.4, 128.1, 128.8, 132.7, 133.3, 136.1, 138.4, 147.7, 166.4, 176.1, 196.1, 204.6; HRMS (ESI) Calcd. for $C_{27}H_{27}NNaO_7 [M+Na]^+$: 500.1685; Found: 500.1669.

1'-tert-butyl 4-ethyl (18, 48, 58)-5-(4-fluorobenzoyl)-2', 3-dioxo-1', 2'-

Boc

Вос

dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4b)

92% yield, $[\alpha]_D^{20}$ = +68.5 (c 1.2, CH₂Cl₂); (dr = 8.1:1, 96% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0 mL/min, UV

detection at 220 nm, retention time: major diastereomer: 23.84 min (major) and 18.64 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.30 (t, *J* = 7.11 Hz, 3H), 1.54 (s, 9H), 2.66 (d, *J* = 18.33 Hz, 1H), 3.24 (d, *J* = 18.39 Hz, 1H), 4.23-4.30 (m, 2H), 4.53 (d, *J* = 11.31 Hz, 1H), 5.08 (d, *J* = 11.31 Hz, 1H), 6.95-7.01 (m, 3H), 7.13 (t, *J* = 7.50 Hz, 1H), 7.24 (t, *J* = 7.14 Hz, 1H), 7.41-7.50 (m, 3H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.8, 49.8, 55.6, 57.7, 60.4, 62.3, 84.9, 114.9, 115.4, 123.6, 124.8, 127.0, 128.9, 130.1, 132.5, 138.4, 147.7, 164.0, 166.3, 176.1, 194.5, 204.4; HRMS (ESI) Calcd. for C₂₇H₂₆FNNaO₇ [M+Na]⁺: 518.1591; Found: 518.1586.

1'-tert-butyl 4-ethyl (1S, 4S, 5S)-5-(4-chlorobenzoyl)-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4c)

> 95% yield, $[\alpha]_D^{20}$ = +49.0 (c 1.9, CH₂Cl₂); (dr = 10.2:1, 90% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0

mL/min, UV detection at 220 nm, retention time: major diastereomer: 24.02 min (major) and 22.84 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.31 (t, *J* = 7.14 Hz, 3H), 1.55 (s, 9 H), 2.65 (d, *J* = 18.33 Hz, 1H), 3.23 (d, *J* = 18.39 Hz, 1H), 4.23-4.30 (m, 2H), 4.52 (d, *J* = 11.31 Hz, 1H), 5.07 (d, *J* = 11.34 Hz, 1H), 6.98 (d, *J* = 7.41 Hz, 1H), 7.10-7.15 (m, 1H), 7.21-7.35 (m, 5H), 7.49 (d, *J* = 8.22 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.9, 49.8, 55.6, 57.8, 60.5, 62.3, 84.9, 114.1, 123.6, 124.8, 127.0, 128.5, 128.9, 129.7, 134.4, 138.3, 139.8, 147.6, 166.3, 176.0, 195.0, 204.3; HRMS (ESI) Calcd. for C₂₇H₂₆CINNaO₇ [M+Na]⁺: 534.1295; Found: 534.1286.

1'-tert-butyl

4-ethyl (1S, 4S, 5S)-5-(4-bromobenzoyl)-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', Br 4-dicarboxylate (4d)

Boc

93% yield, $[\alpha]_D^{20}$ = +46.3 (c 1.2, CH₂Cl₂); (dr = 7.7:1, 82% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0

mL/min, UV detection at 220 nm, retention time: major diastereomer: 24.47 min (major) and 19.78 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.32 (t, *J* = 7.14 Hz, 3H), 1.56 (s, 9H), 2.66 (d, *J* = 18.36 Hz, 1H), 3.24 (d, *J* = 18.39 Hz, 1H), 4.23-4.30 (m, 2H), 4.52 (d, *J* = 11.31 Hz, 1H), 5.07 (d, *J* = 11.31 Hz, 1H), 6.97 (d, *J* = 7.29 Hz, 1H), 7.12 (t, *J* = 7.47 Hz, 1H), 7.21-7.26 (m, 3H), 7.43-7.50 (m, 3H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 28.0, 49.9, 55.6, 57.8, 60.5, 62.4, 85.0, 114.9, 121.9, 123.6, 125.0, 127.0, 128.9, 129.8, 131.7, 134.8, 138.4, 147.7, 166.3, 176.0, 195.2, 204.3; HRMS (ESI) Calcd. for C₂₇H₂₆BrNNaO₇ [M+Na]⁺: 578.0790; Found: 578.0768.

1'-tert-butyl 4-ethyl (1S, 4S, 5S)-5-(4-methylbenzoyl)-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4e)

96% yield, $[\alpha]_D^{20}$ = +99.1 (c 1.5, CH₂Cl₂); (dr = 7.2:1, 91% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0 mL/min, UV

detection at 220 nm, retention time: major diastereomer: 32.60 min (major) and 28.75 min (minor).¹H NMR (CDCl₃, 300 MHz) δ 1.31 (t, *J* = 7.11 Hz, 3H), 1.53 (s, 9H), 2.30 (s, 3H), 2.66 (d, *J* = 18.30 Hz, 1H), 3.25 (d, *J* = 18.36 Hz, 1H), 4.22-4.29 (m, 2H), 4.56 (d, *J* = 11.31 Hz, 1H), 5.10 (d, *J* = 11.34 Hz, 1H), 6.99 (d, *J* = 6.93 Hz, 1H), 7.00-7.14 (d, *J* = 8.01 Hz, 3H), 7.19-7.26 (m, 1H), 7.32 (d, *J* = 8.16 Hz, 2H), 7.49 (d, *J* = 8.07 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.0, 21.5, 27.8, 49.9, 55.4, 57.4, 60.3, 62.2, 84.4, 114.8, 121.8, 123.6, 124.7, 127.2, 129.0, 133.4, 138.4, 144.1, 147.8, 166.4, 168.7, 176.1, 195.4, 204.8; HRMS (ESI) Calcd. for C₂₈H₂₉NNaO₇ [M+Na]⁺: 514.1842; Found: 514.1816.

1'-tert-butyl 4-ethyl (1S, 4S, 5S)-5-(4-methoxybenzoyl)-2', 3-dioxo-1', 2'-

Boc

dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4f)

92% yield, $[\alpha]_D^{20}$ = +71.2 (c 2.3, CH₂Cl₂); (dr = 12.1:1, 92% ee for the major diastereomer); HPLC conditions: Chiralcel AD column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate

1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 13.60 min (major) and 17.18 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.30 (t, *J* = 7.11 Hz, 3H), 1.52 (s, 9H), 2.66 (d, *J* = 18.30 Hz, 1H), 3.25 (d, *J* = 18.33 Hz, 1H), 3.79 (s, 3H), 4.21-4.28 (m, 2H), 4.56 (d, *J* = 11.34 Hz, 1H), 5.08 (d, *J* = 11.37 Hz, 1H), 6.78 (d, *J* = 8.82 Hz, 2H), 6.99 (d, *J* = 7.47 Hz, 1H), 7.11 (t, *J* = 7.56 Hz, 1H), 7.22 (t, *J* = 7.80 Hz, 1H), 7.43-7.50 (m, 3H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.8, 49.8, 52.1, 55.1, 55.4, 55.4, 62.2, 84.5, 113.5, 114.8, 123.7, 124.6, 127.2, 128.8, 129.7, 130.9, 138.3, 147.8, 163.7, 166.5, 176.3, 193.9, 204.9; HRMS (ESI) Calcd. for C₂₈H₂₉NNaO₈ [M+Na]⁺: 530.1791; Found: 530.1761.

1'-tert-butyl 4-ethyl (1S, 4S, 5S)-5-(2-methylbenzoyl)-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4g)

> 93% yield, $[\alpha]_D^{20}$ = +57.5 (c 2.5, CH₂Cl₂); (dr = 3.6:1, 84% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0 mL/min, UV

detection at 220 nm, retention time: major diastereomer: 27.96 min (major) and 17.57 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.34 (t, *J* = 7.11 Hz, 3H), 1.51 (s, 12H), 2.61 (d, *J* = 18.27 Hz, 1H), 3.20 (d, *J* = 18.30 Hz, 1H), 4.25-4.33 (m, 2H), 4.49 (d, *J* = 11.64 Hz, 1H), 5.12 (d, *J* = 11.64 Hz, 1H), 7.11-7.16 (m, 2H), 7.19-7.30 (m, 5H), 7.58 (d, *J* = 8.16 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 19.0, 28.0, 50.6, 55.1, 57.4, 59.5, 62.3, 84.4, 115.3, 121.9, 123.4, 124.8, 125.4, 127.8, 129.6, 131.2, 132.0, 135.2, 138.9, 147.7, 166.5, 168.2, 175.5, 198.0, 204.6; HRMS (ESI) Calcd. for C₂₈H₂₉NNaO₇ [M+Na]⁺: 514.1842; Found: 514.1823.

1'-tert-butyl 4-ethyl (18, 48, 58)-5-(3-methoxybenzoyl)-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4h)

92% yield, $[\alpha]_D^{20}$ = +105.7 (c 2.1, CH₂Cl₂); (dr = 12.2:1, >99% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 31.71 min (major) and 22.78 min (minor). ¹H

NMR (CDCl₃, 300 MHz) δ 1.32 (t, *J* = 7.11 Hz, 3H), 1.53 (s, 9H), 2.65 (d, *J* = 18.30 Hz, 1H), 3.24 (d, *J* = 18.33 Hz, 1H), 3.74 (s, 3H), 4.24-4.31 (m, 2H), 4.54 (d, *J* = 11.31 Hz, 1H), 5.10 (d, *J* = 11.31 Hz, 1H), 6.77 (s, 1H), 6.97-7.01 (m, 3H), 7.05-7.26 (m, 3H), 7.51 (d, *J* = 8.16 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.8, 50.0, 51.8, 55.2, 58.0, 60.4, 62.3, 84.7, 110.9, 114.1, 114.9, 120.4, 123.5, 124.7, 127.3, 128.7, 129.0, 137.4, 138.7, 147.8, 159.3, 166.4, 176.1, 196.1, 204.6; HRMS (ESI) Calcd. for C₂₈H₂₉NNaO₈ [M+Na]⁺: 530.1791; Found: 530.1788.

1'-tert-butyl	4-ethyl	(18,	4S,	
5S)-5-(naphthalen	e-2-carbonyl)	-2',	3-dioxo-1',	
2'-dihydrospiro[cy	vclopentane-1,	3'-indole]-1',		
4-dicarboxylate (4	li)			

92% yield, $[\alpha]_D^{20}$ = +6.9 (c 1.1, CH₂Cl₂); (dr = 10.1:1, 90% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 95:5, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 53.55 min (major) and 33.11 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.15 (s, 9H), 1.33 (t, *J* = 7.11 Hz, 3H), 2.70 (d, *J* = 18.27 Hz, 1H), 3.30 (d, *J* = 18.30 Hz, 1H), 4.25-4.32 (m, 2H), 4.63 (d, *J* = 11.34 Hz, 1H), 5.31 (d, *J* = 11.37 Hz, 1H), 7.04 (d, *J* = 7.38 Hz, 1H), 7.15-7.27 (m, 4H), 7.40 (d, *J* = 8.04 Hz, 1H), 7.53-7.57 (m, 3H), 7.67 (d, *J* = 8.58 Hz, 1H), 7.78 (d, *J* = 8.31 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.3, 44.1, 49.9, 55.3, 60.4, 62.3, 84.3, 114.0, 114.9, 123.3, 123.6, 124.9,

1'-tert-butyl 4-ethyl (18, 48, 58)-5-benzoyl-5'-fluoro-2', 3-dioxo-1',

2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4j)

92% yield, $[\alpha]_D^{20}$ = +81.5 (c 1.8, CH₂Cl₂); (dr = 7.0:1, 89% ee for the major diastereomer); HPLC conditions: Chiralcel AY column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 11.07 min (major) and 40.46 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.32 (t, *J* = 7.08 Hz, 3H), 1.51 (s, 9 H), 2.65 (d, *J* = 18.39 Hz, 1H), 3.25 (d, *J* = 18.42 Hz, 1H), 4.23-4.30 (m, 2H), 4.50 (d, *J* = 11.37 Hz, 1H), 5.12 (d, *J* = 11.37 Hz, 1H), 6.72 (d, *J* = 7.50 Hz, 1H), 7.27 (d, *J* = 7.11 Hz, 1H), 7.32 (d, *J* = 7.74 Hz, 2H), 7.40-7.52 (m, 4H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 28.0, 49.7, 55.4, 57.5, 60.5, 62.3, 84.8, 111.1, 115.9, 116.4, 127.5, 128.0, 128.7, 133.0, 133.5, 135.9, 147.7, 158.1, 166.2, 175.7, 195.8, 204.1; HRMS (ESI) Calcd. for C₂₇H₂₆FNNaO₇ [M+Na]⁺: 518.1591; Found: 518.1579.

1'-tert-butyl 4-ethyl (18, 48, 58)-5-benzoyl-5'-bromo-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4k)

90% yield, $[\alpha]_D^{20}$ = +25.2 (c 1.5, CH₂Cl₂); (dr = 2.0:1, 55% ee for the major diastereomer); HPLC conditions: Chiralcel AD column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major

diastereomer: 6.92 min (major) and 8.39 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.17 (t, *J* = 7.11 Hz, 3H), 1.63 (s, 9H), 2.74 (d, *J* = 18.12 Hz, 1H), 3.58 (d, *J* = 18.18 Hz, 1H), 4.12-4.14 (m, 2H), 4.37 (d, *J* = 11.76 Hz, 1H), 5.79 (d, *J* = 11.79 Hz, 1H), 7.25-7.30 (m, 5H), 7.62 (d, *J* = 7.20 Hz, 2H), 7.72 (d, *J* = 8.19 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.0, 28.0, 44.7, 51.6, 53.6, 56.7, 62.3, 85.1, 113.6, 114.5, 118.1, 127.6, 128.1, 128.9, 130.5, 133.3, 136.2, 142.4, 148.4, 166.8, 176.2, 196.8, 205.5; HRMS (ESI) Calcd. for C₂₇H₂₆BrNNaO₇ [M+Na]⁺: 578.0790; Found: 578.0785.

1'-tert-butyl 4-ethyl (18, 48, 58)-5-benzoyl-5'-methyl-2', 3-dioxo-1', 2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4l)

88% yield, $[\alpha]_D^{20}$ = +35.6 (c 1.8, CH₂Cl₂); (dr = 2.0:1, 66% ee for the major diastereomer); HPLC conditions: Chiralcel IC column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 12.95 min (major) and 14.42 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.32 (t, *J* = 7.08 Hz, 3H), 1.51 (s, 9H), 2.30 (s, 3H), 2.67 (d, *J* = 17.88 Hz, 1H), 3.25 (d, *J* = 18.30 Hz, 1H), 4.12-4.18 (m, 2H), 4.27 (d, *J* = 11.52 Hz, 1H), 5.11 (d, *J* = 11.31 Hz, 1H), 6.78 (s, 1H), 7.19 (t, *J* = 7.12 Hz, 1H), 7.18-7.26 (m, 1H), 7.27-7.36 (m, 4H), 7.59 (t, *J* = 8.31 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.9, 21.0, 28.0, 48.6, 51.9, 55.3, 57.6, 62.2, 84.3, 114.7, 115.3, 122.4, 127.2, 128.1, 128.3, 129.8, 133.3, 134.7, 136.2, 147.8, 166.5, 176.1, 196.2, 204.8; HRMS (ESI) Calcd. for C₂₈H₂₉NNaO₇ [M+Na]⁺: 514.1842; Found: 514.1836.

1'-tert-butyl4-ethyl(1S,4S,5S)-5-acetyl-2',3-dioxo-1',2'-dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4m)

80% yield, $[\alpha]_D^{20}$ = +30.2 (c 1.6, CH₂Cl₂); (dr = 1.3:1, 63% ee for the major diastereomer); HPLC conditions: Chiralcel AD column, Hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 7.13 min (major) and 10.17 min (minor). ¹H NMR (CDCl₃, 300 MHz)

δ 1.32 (t, J = 7.14 Hz, 3H), 1.63 (s, 9H), 1.93 (s, 3H), 2.73 (d, J = 18.66 Hz, 2H), 4.19-4.36 (m, 4H), 6.94 (d, J = 7.50 Hz, 1H), 7.24 (t, J = 7.50 Hz, 1H), 7.31-7.37 (m, 1H), 7.89 (t, J = 8.04 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 28.0, 28.9, 49.2, 51.2, 55.8, 60.1, 62.3, 84.7, 115.6, 122.9, 124.9, 127.6, 129.6, 140.3, 148.9, 168.3, 175.9, 201.7, 203.0; HRMS (ESI) Calcd. for C₂₂H₂₅NNaO₇ [M+Na]⁺: 438.1529; Found: 438.1539.

1'-tert-butyl 4-ethyl 5-methyl (18, 48, 58)-2', 3-dioxo-1', 2'-dihydrospiro

[cyclopentane-1, 3'-indole]-1', 4, 5-tricarboxylate (4n)

Boc 93% yield, $[\alpha]_D^{20}$ = +182.8 (c 0.7, CH₂Cl₂); (dr = 1.9:1, 96% ee for the major diastereomer); HPLC conditions: Chiralcel AY column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 11.34 min (major) and 12.48 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.35 (t, *J* = 4.26 Hz, 3H), 1.66 (s, 9H), 2.64 (d, *J* = 17.04 Hz, 1H), 3.13 (d, *J* = 18.12 Hz, 1H), 3.31 (s, 3H), 4.14 (d, J = 11.01 Hz, 2H), 4.24-4.35 (m, 2H), 6.99 (d, J = 7.50 Hz, 1H), 7.12 (d, J = 7.56 Hz, 1H), 7.31-7.37 (m, 1H), 7.89 (t, J = 8.16 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 28.0, 43.1, 50.0, 51.5, 53.2, 56.4, 62.3, 84.9, 115.4, 122.3, 124.9, 128.2, 139.3, 148.8, 166.2, 167.9, 168.8, 175.6, 204.1; HRMS (ESI) Calcd. for C₂₂H₂₅NNaO₈ [M+Na]⁺: 454.1478; Found: 454.1474.

1'-tert-butyl 4, 5-diethyl (18, 48, 58)-2', 3-dioxo-1', 2'-dihydrospiro

[cyclopentane-1, 3'-indole]-1', 4, 5-tricarboxylate (40)

Boc 95% yield, $[α]_D^{20}$ = +145.2 (c 0.9, CH₂Cl₂); (dr = 1.6:1, 79% ee for the major diastereomer); HPLC conditions: Chiralcel AY column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 10.09 min (major) and 14.33 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 0.84 (t, *J* = 7.20 Hz, 3H), 1.32 (t, *J* = 7.14 Hz, 3H), 1.66 (s, 9H), 2.64 (d, *J* = 18.21 Hz, 1H), 3.12 (d, *J* = 18.12 Hz, 1H), 3.72-3.77 (m, 2H), 4.12 (d, *J* = 11.97 Hz, 1H), 4.24-4.34 (m, 3H), 6.99 (d, *J* = 7.47 Hz, 1H), 7.12 (t, *J* = 7.59 Hz, 1H), 7.34(t, *J* = 7.62 Hz, 1H), 7.90(d, *J* = 8.22 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.3, 14.1, 28.0, 43.3, 50.0, 53.1, 55.6, 61.5, 62.3, 84.9, 115.4, 122.3, 125.0, 129.5, 139.5, 148.8, 166.3, 168.3, 175.6, 177.3, 204.2; HRMS (ESI) Calcd. for C₂₃H₂₇NNaO₈ [M+Na]⁺: 468.1634; Found: 468.1633.

1', 5-di-tert-butyl 4-ethyl (1S, 4S, 5S)-2', 3-dioxo-1', 2'dihydrospiro[cyclopentane-1, 3'-indole]-1', 4, ³ 5-tricarboxylate (4p)

Boc 90% yield, $[\alpha]_D^{20} = \pm 106.2$ (c 0.8, CH₂Cl₂); (dr = 1.9:1, 90% ee for the major diastereomer); HPLC conditions: Chiralcel AY column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: major diastereomer: 7.00 min (major) and 6.21 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.00 (s, 9H), 1.31 (t, *J* = 3.12 Hz, 3H),1.64 (s, 9H), 2.61 (d, *J* = 18.15 Hz, 1H), 3.09 (d, *J* = 18.09 Hz, 1H), 4.25-4.30 (m, 4H), 7.00 (d, *J* = 7.41 Hz, 1H), 7.12 (t, *J* = 7.59 Hz, 1H), 7.35 (t, *J* = 7.14 Hz, 1H), 7.96 (d, *J* = 8.19 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.1, 27.1, 27.9, 50.5, 51.1, 53.6, 55.7, 62.2, 82.6, 84.8, 115.3, 122.3, 125.0, 129.4, 139.6, 148.9, 166.5, 167.8, 175.7, 177.0, 204.4; HRMS (ESI) Calcd. for C₂₅H₃₁NNaO₈ [M+Na]⁺: 496.1947; Found: 496.1950.

5-benzyl 1'-tert-butyl 4-ethyl (18, 48, 58)-2', 3-dioxo-1', 2'-

dihydrospiro[cyclopentane-1, 3'-indole]-1', 4, 5-tricarboxylate (4q)

91% yield, $[\alpha]_D^{20}$ = +76.4 (c 1.0, CH₂Cl₂); (dr = 1.4:1, 81% ee for the major diastereomer); HPLC conditions: Chiralcel AY column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 13.16 min (major) and 18.25 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.32 (t, *J* = 7.14 Hz, 3H), 1.58 (s, 9H), 2.60 (d, *J* = 18.12 Hz, 1H), 3.10 (d, *J* = 18.12 Hz, 1H), 4.15-4.29 (m, 2H), 4.40 (d, *J* = 11.85 Hz, 1H), 4.73 (s, 2H), 4.98 (d, *J* = 12.84 Hz, 1H), 6.95 (d, *J* = 8.25 Hz, 2H), 7.20-7.34 (m, 6H), 7.75 (d, *J* = 11.76 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.0, 27.9, 49.4, 50.4, 52.6, 55.7, 62.3, 67.4, 84.7, 115.5, 121.7, 122.0, 124.7, 127.7, 128.2, 128.5, 129.4, 134.2, 139.2, 148.5, 166.2, 168.4, 175.4, 204.0; HRMS (ESI) Calcd. for C₂₈H₂₉NNaO₈

[M+Na]⁺: 530.1791; Found: 530.1788.

1'-tert-butyl 4-methyl (1S, 4S, 5S)-5-benzoyl-2', 3-dioxo-1',2'-dihydrospiro[cyclopentane-1,3'-indole]-1',4-dicarboxylate (4r)

94% yield, $[\alpha]_D^{20}$ +70.3 (c 1.1, CH₂Cl₂); (dr = 6.3:1, 92% ee for the major diastereomer); HPLC conditions: Chiralcel AY column, Hexane/EtOH (0.1% Et₂NH) = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention time: major diastereomer: 17.55 min (major) and 44.55 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.52 (s, 9H), 2.66 (d, *J* = 17.37 Hz, 1H), 3.25 (d, *J* = 18.36 Hz, 1H), 3.82 (s, 3H), 4.58 (d, *J* = 11.25 Hz, 1H), 5.13 (d, *J* = 11.25 Hz, 1H), 6.97 (d, *J* = 7.50 Hz, 1H), 7.11 (t, *J* = 7.56 Hz, 1H), 7.20 (d, *J* = 7.89 Hz, 1H), 7.26 (t, *J* = 8.10 Hz, 2H), 7.36 (d, *J* = 7.41 Hz, 2H), 7.46 (t, *J* = 7.77 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 27.9, 44.0, 51.8, 53.2, 55.6, 57.4, 84.6, 114.9, 121.9, 123.5, 124.9, 127.4, 128.4, 129.4, 133.5, 136.0,

138.5, 147.7, 166.9, 176.1, 196.1, 204.6; HRMS (ESI) Calcd. for C₂₆H₂₅NNaO₇ [M+Na]⁺: 486.1529; Found: 486.1530.

1'-tert-butyl 4-ethyl (1S, 4S, 5R)-2', 3-dioxo-5-phenyl-1', 2'-

dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4s)

84% yield, $[\alpha]_D^{20}$ = +25.2 (c 1.5, CH₂Cl₂); (dr = 2.7:1, 36% ee for the major diastereomer, 41% ee for the minor diastereomer); HPLC conditions: Chiralcel AD column, Hexane/EtOH = 95:5, flow rate 1.0 mL/min, UV detection at 220 nm, retention time:

major diastereomer: 7.20 min (major) and 9.97 min (minor); minor diastereomer: 11.11 min (major) and 13.01 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.22 (t, *J* = 7.17 Hz, 3H), 1.50 (s, 9H), 2.94 (d, *J* = 7.23 Hz, 2H), 4.09-4.20 (m, 3H), 4.58 (d, *J* = 13.41 Hz, 1H), 6.87 (d, *J* = 6.99 Hz, 3H), 7.07-7.16 (m, 5H), 7.47 (d, *J* = 7.25 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.0, 27.9, 48.0, 55.1, 56.6, 57.7, 61.8, 84.2, 115.0, 122.1, 124.4, 127.1, 127.6, 128.0, 128.2, 129.2, 132.9, 140.0, 148.2, 168.2, 176.9, 205.6; HRMS (ESI) Calcd. for C₂₆H₂₇NNaO₆ [M+Na]⁺: 472.1736; Found: 472.1730.

1'-tert-butyl 4-ethyl (18, 48, 58)-2', 3-dioxo-5-propyl-1', 2'-

dihydrospiro[cyclopentane-1, 3'-indole]-1', 4-dicarboxylate (4t)

92% yield, $[\alpha]_D^{20}$ = +10.2 (c 1.2, CH₂Cl₂); (dr = 1.3:1, 16% ee for the major diastereomer, 15% ee for the minor diastereomer); HPLC conditions: Chiralcel AD column, Hexane/*i*-PrOH = 90:10, flow rate 1.0 mL/min, UV detection at 220 nm, retention

time: major diastereomer: 5.74 min (major) and 6.50 min (minor); minor diastereomer: 4.98 min (major) and 7.09 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 0.73 (t, J =6.48 Hz, 3H), 1.07-1.14 (m, 4H), 1.30 (t, J = 7.11 Hz, 3H), 1.65 (s, 9H), 2.54 (d, J =17.91 Hz, 1H), 3.14 (d, J = 17.91 Hz, 1H), 3.75 (d, J = 12.00 Hz, 1H), 4.21-4.28 (m, 3H), 6.97 (d, J = 7.50 Hz, 1H), 7.36 (t, J = 7.68 Hz, 2H), 7.91 (d, J = 8.22 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.9, 20.7, 28.0, 31.4, 32.7, 48.7, 50.3, 53.6, 58.9, 61.9, 84.9, 115.1, 122.8, 124.8, 128.9, 139.2, 140.2, 148.9, 169.7, 176.5, 207.5; HRMS (ESI) Calcd. for C₂₃H₂₉NNaO₆ [M+Na]⁺: 438.1893; Found: 438.1884.

(3S)-3-[(1S)-1-(2-ethoxy-4-oxo-4, 5-dihydrofuran-3-yl)-2-oxo-2-phenylethyl]-1-m

ethyl-2, 3-dihydro-1H-indol-2-one(5a)

72% yield, [α]_D²⁰= +10.6 (c 2.2, CH₂Cl₂); (dr = 1.2:1, 84% ee for the major diastereomer, >99% ee for the minor diastereomer);
HPLC conditions: Chiralcel IC column, Hexane/i-PrOH = 50:50, flow rate 0.7 mL/min, UV detection at 220 nm, retention time:

major diastereomer: 35.90 min (major) and 63.90 min (minor), minor diastereomer: 29.54 min (major). ¹H NMR (CDCl₃, 300 MHz) δ 1.35 (t, *J* = 7.11 Hz, 3H), 3.16 (s, 3H), 4.14 (m, 1H), 4.40-4.45 (m, 3H), 4.54 (d, *J* = 15.93 Hz, 1H), 4.71 (d, *J* = 15.96 Hz, 1H), 6.78 (d, *J* = 7.95 Hz, 1H), 6.87 (t, *J* = 7.47 Hz, 1H), 7.04 (d, *J* = 7.39 Hz, 1H), 7.26 (t, *J* = 7.82 Hz, 1H), 7.37-7.39 (m, 2H), 7.42-7.50 (m, 1H), 7.90 (d, *J* = 7.14 Hz, 1H), 8.03 (d, *J* = 7.20 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.6, 26.1, 42.2, 45.1, 66.7, 75.0, 89.2, 107.7, 122.1, 124.7, 126.9, 127.9, 128.3, 128.5, 133.2, 135.7, 144.0, 175.6, 181.6, 193.8, 195.1; HRMS (ESI) Calcd. for C₂₃H₂₁NNaO₅ [M+Na]⁺: 414.1317; Found: 414.1316.

(3S)-3-[(1S)-1-(2-ethoxy-4-oxo-4,5-dihydrofuran-3-yl)-2-oxo-2-phenylethyl]-1-eth yl-2, 3-dihydro-1H-indol-2-one(5b)

70% yield, $[\alpha]_D^{20}$ = +20.7 (c 1.8, CH₂Cl₂); (dr = 1.1:1, 96% ee for the major diastereomer, 94% ee for the minor diastereomer); HPLC conditions: Chiralcel IC column, Hexane/i-PrOH = 50:50, flow rate 0.7 mL/min, UV detection at 220 nm, retention time: major diastereomer: major diastereomer: 32.44 min (major) and

44.41 min (minor), minor diastereomer: 28.24 min (major) and 22.54 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.14 (t, *J* = 7.08 Hz, 3H), 1.23 (t, *J* = 6.93 Hz, 3H), 3.70-3.74 (m, 2H), 4.07-4.10 (m, 1H), 4.38-4.40 (m, 3H), 4.58 (d, *J* = 8.10 Hz, 1H), 4.67 (d, *J* = 8.35 Hz, 1H), 6.77 (d, *J* = 7.89 Hz, 1H), 6.82 (t, *J* = 9.51 Hz, 1H), 7.05 (d, *J* = 8.35 Hz, 1H), 7.20 (t, *J* = 7.62 Hz, 1H), 7.39 (d, *J* = 6.48 Hz, 2H), 7.48-7.50 (m, 1H), 7.89 (d, *J* = 7.47 Hz, 1H), 8.02 (d, *J* = 7.53 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 12.5, 14.6, 34.5, 42.2, 45.2, 66.6, 75.0, 89.3, 107.9, 121.9, 124.9, 127.2, 127.8, 128.3, 128.8, 133.1, 135.6, 143.1, 175.3, 181.5, 193.9, 195.1; HRMS (ESI) Calcd. for C₂₄H₂₃NNaO₅ [M+Na]⁺: 428.1474; Found: 428.1474.

(3S)-1-benzyl-3-[(1S)-1-(2-ethoxy-4-oxo-4, 5-dihydrofuran-3-yl)-2-oxo-2-phenyl

ethyl]-2, 3-dihydro-1H-indol-2-one (5c)

78% yield, $[\alpha]_D{}^{20}$ = +36.2 (c 1.6, CH₂Cl₂); (dr = 19.0:1, 99% ee for the major diastereomer, 94% ee for the minor diastereomer); HPLC conditions: Chiralcel IC column, Hexane/i-PrOH = 50:50, flow rate 0.7 mL/min, UV detection at 220 nm, retention time:

major diastereomer: 21.36 min (major) and 19.63 min (minor), minor diastereomer: 25.65 min (major) and 29.40 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.36 (t, J = 7.08 Hz, 3H), 4.38 (d, J = 4.05 Hz, 1H), 4.50-4.69 (m, 4H), 4.84 (s, 2H), 5.20 (d, J = 4.25 Hz, 1H), 6.68 (t, J = 7.02 Hz, 1H), 6.84 (t, J = 7.58 Hz, 1H), 7.10 (d, J = 6.81 Hz, 2H), 7.24-7.33 (m, 5H), 7.38-7.43 (m, 2H), 7.92 (d, J = 7.29 Hz, 1H), 8.05 (d, J = 7.32 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.6, 29.6, 42.6, 45.2, 66.6, 75.0, 89.3, 108.7, 122.1, 124.8, 125.8, 127.3, 127.8, 128.1, 128.3, 128.5, 128.6, 132.8, 133.1, 135.8, 143.1, 175.8, 181.4, 193.8, 195.0; HRMS (ESI) Calcd. for C₂₉H₂₅NNaO₅ [M+Na]⁺: 490.1630; Found: 490.1631.

(3S)-3-[(1S)-1-(2-ethoxy-4-oxo-4,5-dihydrofuran-3-yl)-2-oxopropyl]-1-methyl-2,

3-dihydro-1H-indol-2-one(5d)

75% yield, $[\alpha]_D^{20}$ = +15.2 (c 1.5, CH₂Cl₂); (dr = 1.6:1, 91% ee for the major diastereomer, 89% ee for the minor diastereomer); HPLC conditions: Chiralcel AD-H column, Hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, UV detection at 220 nm, retention

time: major diastereomer: 10.30 min (major) and 11.88 min (minor), minor diastereomer: 9.10 min (major) and 13.09 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.35 (t, *J* = 7.11 Hz, 3H), 2.12 (s, 3H), 3.15 (s, 3H), 3.79 (d, *J* = 9.45 Hz, 1H), 4.28-4.33 (m, 2H), 4.44 (d, *J* = 4.44 Hz, 2H), 4.69 (d, *J* = 2.97 Hz, 1H), 6.73 (d, *J* = 7.53 Hz, 1H), 6.94-6.97 (m, 2H), 7.09 (d, *J* = 7.35 Hz, 1H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.7, 28.7, 29.7, 44.8, 47.9, 53.4, 66.8, 75.2, 107.3, 122.2, 124.5, 125.8, 127.9, 144.6, 176.7, 181.8, 194.4, 204.8; HRMS (ESI) Calcd. for C₁₈H₁₉NNaO₅ [M+Na]⁺: 352.1161; Found: 352.1161.

Ethyl (2S)-2-(2-ethoxy-4-oxo-4,5-dihydrofuran-3-yl)-2-[(3S)-1-methyl-2-oxo-2,3-

dihydro-1H-indol-3-yl] acetate (5e)

73% yield, $[\alpha]_D^{20}$ = +23.4 (c 0.8, CH₂Cl₂); (dr = 1.2:1, >99% ee for the major diastereomer, >99% ee for the minor diastereomer); HPLC conditions: Chiralcel AD-H column, Hexane/i-PrOH = 80:20, flow rate 1.0 mL/min, UV detection at 220 nm, retention

time: major diastereomer: 9.91 min (major), minor diastereomer: 12.73 min (major). ¹H NMR (CDCl₃, 300 MHz) δ 1.09 (t, *J* = 7.14 Hz, 3H), 1.38 (t, *J* = 7.11 Hz, 3H), 3.16 (s, 3H), 3.99-4.17 (m, 4H), 4.18-4.23 (m, 1H), 4.43-4.46 (m, 2H), 4.62 (s, 1H), 6.72-6.80 (m, 1H), 6.96 (t, *J* = 7.53 Hz, 1H), 7.20-7.32 (m, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 13.8, 14.7, 26.2, 39.2, 44.5, 53.4, 61.0, 66.5, 75.0, 107.7, 122.1, 124.5, 127.2, 128.8, 144.5, 170.2, 175.6, 181.4, 194.1; HRMS (ESI) Calcd. for C₁₉H₂₁NNaO₆ [M+Na]⁺: 382.1267; Found: 382.1270.

(3S)-3-[(1S)-2-(4-chlorophenyl)-1-(2-ethoxy-4-oxo-4,5-dihydrofuran-3-yl)-2-oxoet

68% yield, $[\alpha]_D{}^{20}$ = +67.5 (c 1.2, CH₂Cl₂); (dr = 1.5:1, >99% ee for the major diastereomer, 96% ee for the minor diastereomer); HPLC conditions: Chiralcel AD-H column, EtOH/Hexane = 30:70, flow rate 1.0 mL/min, UV

hyl]-1-methyl-2, 3-dihydro-1H-indol-2-one(5f)

detection at 254 nm, retention time: major diastereomer: 20.34 min (major) and 21.69 min (minor), minor diastereomer: 24.79 min (major) and 30.05 min (minor). ¹H NMR (CDCl₃, 300 MHz) δ 1.36 (t, J = 7.11 Hz, 3H), 3.15 (s, 3H), 4.15-4.19 (m, 2H), 4.38-4.43 (m, 2H), 4.71 (d, J = 16.02 Hz, 1H), 4.95 (d, J = 3.87 Hz, 1H), 6.79 (t, J = 8.55 Hz, 1H), 7.01 (d, J = 7.44 Hz, 1H), 7.33-7.37 (m, 4H), 7.97 (d, J = 8.52 Hz, 2H); ¹³C NMR (CDCl₃, 75 Hz) δ 14.6, 26.1, 42.3, 45.1, 66.8, 75.1, 89.0, 107.8, 122.2, 124.7, 126.8, 128.0, 128.4, 128.8, 134.0, 139.7, 144.1, 175.5, 181.7, 193.8, 195.6; HRMS (ESI) Calcd. for C₂₃H₂₀ClNNaO₅ [M+Na]⁺: 448.0928; Found: 448.0927.

6. References

1 E. M. Beccalli and A. Marchesini, Tetrahedron, 1993, 49, 4741.

- 2 B. Tan, N. R. Candeias and C. F. Barbas, J. Am. Chem. Soc., 2012, 133, 4672.
- 3 H. Y. Choi and D. Y. Chi, Org. Lett., 2003, 5, 411.

- 4 S. W. Wei, D. A. Yalalov, S. B. Tsogoeva and S. Schmatz, *Catalysis Today*, 2007, **121**, 151.
- 5 (a) B. Vakulya, A. Varga, S, Csámpai and T. Soós, Org. Lett., 2005, 7, 1967; (b) S.
- H. McCooey and S. J. Connon, Angew. Chem. Int. Ed., 2005, 44, 6367.

¹H and ¹³C NMR of 4a

S25

¹H and ¹³C NMR of 4r

0.0613

mdd

럽 Integral

ģ

:00

150

200

004

50

ò

¹H and ¹³C NMR of 5f

8. HPLC Spectra

HPLC of 4a

8135.778

144422.578

261197.547

11246038.000

2.2699

97.7301

17.385

23.752

1 2

HPLC of 4e

HPLC of 40

mV 500 450 10.093 400 350 300 250 200 150 100 4.328 50 0 11 ġ 10 12 13 14 17 15 16 18 19 20 8 min Height (mV* sec) Peak RT (min) Area (mV) Area (%) 10.093 368045.313 89.2708 1 14275149.000 2 14.328 25302.035 1715685.750 10.7292

140 120 100 80 60 22.542 44.408 40 20 0 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 min

180 160-

Peak	RT (min)	Height (mV* sec)	Area (mV)	Area (%)
1	22.542	5459.855	263388.313	1.4285
2	28.235	140907.328	8323254.500	45.1427
3	32.437	139765.078	9652497.000	52.3521
4	44.408	1972.644	198518.500	1.0767

S69

1 Det.A Ch1 / 215nm

[Detector A	Ch1 215nm		Haight	Area %	Height %
	Peak#	Ret. Time	Area	Height	25 202	20 783
1	1 00012	20 341	1868106	42128	25.393	29.705
	1.	20.541	10/3/18	38849	26.417	27.465
	2	21.005	1745410	24591	24 234	24,448
	3	24.787	1782877	34301	27.251	18 303
Ċ.	1	30.049	1762432	25889	23.950	10.303
	4 Total	30.047	7356832	141447	100.000	100.000

D	Ch 1 254mm					
Detector A	Ret Time	Area	Height	Area %	Height %	
1 Cak	10 130	29696795	697846	39.112	46.001	
1	21 797	681413	15741	0.897	1.038	
2	25.587	45541856	803258	59.980	52.950	
4	32,127	8016	170	0.011	0.011	
Total	52.127	75928080	1517015	100.000	100.000	

9. Single-Crystal X-ray Crystallography of Product 4d and 5f

Single-Crystal X-ray Crystallography of Product 4d (CDCC number: CCDC 1000582)

Correction method= MULTI-SCAN

 Data completeness= 1.64/0.86
 Theta(max)= 29.131

 R(reflections)= 0.0658(6446)
 wR2(reflections)= 0.1806(12422)

$$S = 1.002$$
 Npar= Npar = 669

Single-Crystal X-ray Crystallography of Product **5f (CDCC number: CCDC** 999669)

	C13 C14 C14 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10			O (S) (S) Me 5f	Et O CI
Bond precisio	on:	C-C = 0.00	086 A		Wavelength=0.71073
Cell:	cell: a=10.766 alpha=90		b0(7) b=8.7896(5) beta=108.706(7)		c=13.4136(9) gamma=90
Temperature:	291 K				
X7.1		Calculated			Reported
Volume		1202.26(14)			1202.26(14)
Space group		P 21			P 21
Hall group		P 2yb			P 2yb
Molety form	ula	C23 H20 Cl N O5, C2 H6 O			?
Sum formula		C25 H26 CI	N 06		C25 H26 CI N O6
Mr		4/1.92			471.92
Dx,g cm-3		1.304			1.304
		2			2
Mu (mm-1)		0.199			0.199
F000		496.0			496.0
F000 [°]		496.54			12 10 16
h,k,lmax		13,10,16			13,10,16
Nref		4899[2616]		4///	
Tmin,Tmax		0.931,0.942		0.779,1.000	
Tmin'		0.931			

Correction method= MULTI-SCAN
Data completeness= 1.83/0.98

Theta(max)= 26.369

R(reflections)= 0.0615(3268)

wR2(reflections)= 0.1532(4777)

S = 1.034 Npar= Npar = 300