Luminescent materials containing multiple benzoxaphosphole units

Shanshan Wu,^a Arnold L. Rheingold^b and John D. Protasiewicz*^a

^{*a*} Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106 USA.; Corresponding author: Tel: 216-368-5060; E-mail: protasiewicz@case.edu.

^b Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.; E-mail: arheingold@ucsd.edu.

Table of Contents

1.	General considerations	S2
2.	Experimental	S3
3.	X-ray crystallographic data	S7
4.	NMR spectra	S13
5.	UV-vis absorption and emission spectra	S19
6.	DFT calculation	S23
7.	References	S32

1. General considerations

All operations were performed under nitrogen atmosphere, using Schlenk line or within a Vacuum Atmospheres MBraun glove box unless otherwise stated. Tetrahydrofuran, hexanes, and toluene were dried by distillation from sodium benzophenone ketyl. Triethylamine was purified by distillation and degassed with nitrogen prior to use. Hexanes was dried by passing through neutral alumina column and degassed with nitrogen prior to use for UV-vis and fluorescence measurements. Dichloromethane was dried by distillation from CaH₂ prior to use for UV-vis and fluorescence measurements. Terephthaloyl chloride, naphthalene-2,6-dicarbonyl dichloride, thiophene-2,5-dicarbonyl dichloride and 1,3,5benzenetricarbonyl trichloride were prepared according to the literature.¹ 3,5-di-tert-butyl-2phosphinophenol was synthesized by published procedure.² ¹H, ${}^{13}C{}^{1}H{}$ and ${}^{31}P{}^{1}H{}$ NMR spectra were recorded on a Varian INOVA AS-400 or 600 spectrometers, and all chemical shifts are referred to residual CHCl₃ signals (for ¹H and ¹³C{¹H} NMR spectra) or to an external sample of 85% H₃PO₄ (for ³¹P{¹H} NMR spectra). Melting points were measured on a Mel-temp melting point apparatus. High resolution mass spectrometry was performed by the University of Michigan Mass Spectrometry facility using a VG (Micromass) 70-250-S magnetic sector spectrometer. UV-Vis and fluorescence data were recorded using a Cary 50 Bio UV-Visible spectrophotometer and a Cary Eclipse spectrometer, respectively. Excitation wavelengths were chosen for fluorescence measurements to be at the adsorption maxima for each compound. Anthracene in ethanol was used as the quantum yield standard for 4, 9,10diphenylanthracene in cyclohexane was used as the quantum yield standard for 1 and 2, and fluorescein in 0.1 M NaOH was used as the quantum yield standard for $3.^3$

2. Experimental

1,4-Bis(4',6'-di-tert-butylbenzoxaphospholyl)benzene (1)

To a solution of 3,5-di-*tert*-butyl-2-phosphinophenol (1.3 g, 5.5 mmol) in 10 mL THF was added triethylamine (0.77 mL, 5.5 mmol), followed by a solution of terephthaloyl chloride (0.57 g, 2.8 mmol) in 10 mL THF. The mixture was stirred at room temperature overnight to give a yellow cloudy solution. A white precipitate was removed by filtration and the solvent was removed under vacuum to yield a yellow solid. The solid was dissolved in 10 mL toluene, and the solution was refluxed for 72 hours to yield a yellow cloudy solution. After the reaction was cooled to room temperature, the solvent was removed under vacuum to give a yellow solid. The solid was extracted with hexanes and then the solution was passed through basic alumina twice to give a yellow solution. The solvent was removed *in vacuo* to yield a yellow solid. Yield: 0.43 g (27%). mp: 225-227 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.07 (s, 4H, Ar), 7.65 (s, 2H, Ar), 7.33 (s, 2H, Ar), 1.61 (s, 18H, *t*-Bu), 1.42 (s, 18H, *t*-Bu). ³¹P{¹H} NMR (161 MHz, CDCl₃): δ 93.3 (s, 1P). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.4 (d, $J_{pc} = 55.5$ Hz), 161.5, 151.4, 135.4, 135.3, 130.8 (d, $J_{pc} = 46.5$ Hz), 125.0, 117.4, 108.1, 37.0, 35.3, 31.5, 31.1. UV (CH₂Cl₂): λ_{max}/mm 418, 437sh ($\epsilon/M^{-1} \cdot cm^{-1}$ 11305, 9205). Fluorescence (CH₂Cl₂): λ_{em}/mm 462, 485sh. Quantum Yield (CH₂Cl₂): Φ 0.31. HRMS (EI, 70 ev): m/z 570.2813 (Calc. 570.2817).

2,6-Bis(4',6'-di-*tert*-butylbenzoxaphospholyl)naphthalene(2)

To a solution of 3,5-di-*tert*-butyl-2-phosphinophenol (1.4 g, 5.9 mmol) in 10 mL THF was added triethylamine (0.83 mL, 5.9 mmol), followed by a solution of naphthalene-2,6-dicarbonyl dichloride (0.75 g, 3.0 mmol) in 10 mL THF. The mixture was stirred at room temperature overnight to produce a yellow cloudy solution. A white precipitate was removed by filtration and the solvent was removed under vacuum to yield a yellow solid. The solid was dissolved in 10 mL toluene, and the solution was refluxed

for 72 hours to give a yellow cloudy solution. After the reaction was cooled to room temperature, the solvent was removed *in vacuo* to give a yellow solid. The solid was extracted with hexanes and then the solution was passed through basic alumina to give a yellow solution. The solvent was removed under vacuum to give a yellow solid. Yield: 0.37 g (20%). mp: 309-312 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.46 (s, 2H, Ar), 8.15 (m, 2H, Ar), 7.93 (m, 2H, Ar), 7.69 (s, 2H, Ar), 7.34 (s, 2H, Ar), 1.63 (s, 18H, *t*-Bu), 1.43 (s, 18H, *t*-Bu). ³¹P{¹H} NMR (161 MHz, CDCl₃): δ 95.0 (s, 1P). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.8 (d, $J_{pc} = 55.5$ Hz), 161.6, 151.5, 151.4, 133.9, 132.8, 132.7, 130.7 (d, $J_{pc} = 43.5$ Hz), 129.2, 124.2, 122.5, 117.4, 108.1, 37.0, 35.3, 31.5, 31.1. UV (CH₂Cl₂): λ_{max}/mm 412, 438sh ($\epsilon/M^{-1} \cdot cm^{-1}$ 11570, 10194). Fluorescence (CH₂Cl₂): λ_{em}/mm 462sh, 473. Quantum Yield (CH₂Cl₂): Φ 0.50. HRMS (EI, 70 ev): m/z 620.2959 (Calc. 620.2973).

2,5-Bis(4',6'-di-*tert*-butylbenzoxaphospholyl)thiophene (3)

To a solution of 3,5-di-*tert*-butyl-2-phosphinophenol (1.0 g, 4.2 mmol) in 10 mL THF was added triethylamine (0.59 mL, 4.2 mmol), followed by a solution of thiophene-2,5-dicarbonyl dichloride (0.44 g, 2.1 mmol) in 10 mL THF. The mixture was stirred at room temperature overnight to produce a brown cloudy solution. A white precipitate was removed by filtration and the solvent was removed under vacuum to yield a red solid. The solid was dissolved in 10 mL toluene, and the solution was refluxed overnight to give a red solution. After the reaction was cooled to room temperature, the solvent was removed under vacuum to give a red solid. The solid was extracted with hexanes and then the solution was passed through basic alumina three times to give a red solution. The solvent was removed *in vacuo* to yield a red solid. Yield: 0.19 g (16%). mp: 178-182 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.62 (s, 2H, Ar), 7.58 (s, 2H, Ar), 7.31 (s, 2H, Ar), 1.59 (t, 18H, *t*-Bu), 1.41 (s, 18H, *t*-Bu). ³¹P{¹H} NMR (161 MHz, CDCl₃): δ 91.2 (s, 1P). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 185.8 (d, J_{pc} = 52.5 Hz), 160.8, 151.5, 151.4, 138.7, 130.9 (d, J_{pc} = 48 Hz), 125.9, 117.6, 108.0, 37.0, 35.3, 31.5, 31.1. UV (CH₂Cl₂): λ_{max}/mm 457 (ε /M⁻¹·cm⁻¹ 32283). Fluorescence (CH₂Cl₂): λ_{em}/mm 533. Quantum Yield (CH₂Cl₂): Φ 0.12. HRMS (EI, 70

ev): m/z 576.2401 (Calc. 576.2381).

1,3,5-Tris(4',6'-di-tert-butyl-benzoxaphospholyl)benzene (4)

To a solution of 3,5-di-tert-butyl-2-phosphinophenol (1.0 g, 4.2 mmol) in 10 mL THF was added triethylamine (0.59 mL, 4.2 mmol), followed by a solution of 1,3,5-benzenetricarbonyl trichloride (0.37 g, 1.4 mmol) in 10 mL THF. The mixture was stirred at room temperature overnight to produce a yellow cloudy solution. A white precipitate was removed by filtration and the solvent was removed under vacuum to yield a yellow solid. The solid was dissolved in 10 mL toluene, and the reaction was refluxed for 96 hours to produce a yellow cloudy solution. After the reaction was cooled to room temperature, the solvent was removed under vacuum to give a yellow solid. The solid was extracted with hexanes twice, and the combined filtrates were evaporated under vacuum to yield a yellow solid. The crude product was purified by flash column chromatography using hexanes as the eluant. The solvent was removed under vacuum to give a yellow solid. Yield: 0.21 g (18%). mp: > 320 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.65 (s, 3H, Ar), 7.78 (s, 3H, Ar), 7.37 (s, 3H, Ar), 1.65 (s, 27H, *t*-Bu), 1.45 (s, 27H, *t*-Bu). ³¹P{¹H} NMR (161 MHz, CDCl₃): δ 94.9 (s, 1P). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 192.0 (d, J_{pc} =54.0 Hz), 161.6 (d, J_{pc} = 15.0 Hz), 151.5, 151.4, 135.9, 130.6 (d, J_{pc} = 45.0 Hz), 121.0, 117.5, 108.4, 37.0, 35.3, 31.5, 31.2. UV (CH₂Cl₂): λ_{max} /nm 362 (ϵ /M⁻¹·cm⁻¹ 28214). Fluorescence (CH₂Cl₂): λ_{em} /nm 437, 451sh. Quantum Yield (CH₂Cl₂): Φ 0.14. HRMS (EI, 70 ev): m/z 816.4010 (Calc. 816.3990).

3. X-ray crystallographic data

Single crystal X-ray details for compound **1** are accessible in the accompanying cif file (CCDC 1007938). For further details see Table S1-S5. A severely disordered solvent molecule (hexane) was located in the asymmetric unit, but modeling it proved impossible. The solvent contributions were treated using SQUEEZE which found 37 electrons corresponding to approximately one molecule of hexane; it is included in the formula and the computation of the intensive properties.

Table S1 Crystal data and structure refinement for 1.				
Empirical formula	$C_{42}H_{58}O_2P_2$			
Formula weight	656.82			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	$a = 6.5471(4) \text{ Å} a = 100.773(2)^{\circ}$			
	$b = 10.5862(6) \text{ Å} \beta = 101.934 (2)^{\circ}$			
	$c = 14.3323(9) \text{ Å } \gamma = 107.345(2)^{\circ}$			
Volume	895.07 (9) Å ³			
Z	1			
Calculated density	1.219 Mg/m ³			
Absorption coefficient	0.157 mm ⁻¹			
F(000)	356			
Crystal size	0.24×0.20×0.11 mm			
θ range for data collection	1.51 to 26.49°			
Limiting indices	-8≤h≤8, -11≤k≤13,			
	-17 <u><</u> 1<			
Reflections collected	11737			
Completeness to $\theta = 26.49^{\circ}$	98.7 %			
Absorption correction	Multi-Scan			
Max. and min. transmission	0.9829 and 0.9633			
Refinement method	Full-matrix least-squares on F ²			
Data/restraints/parameters	3677/0/187			
Goodness-of-fit on F ²	1.002			
Final R indices [I>2 σ (I)]	R1=0.0352, wR2=0.1204			
R indices (all data)	R1=0.0419, wR2=0.1273			
Largest diff. peak and hole	0.347 and -0.175 e.A ⁻³			

	Х	у	Z	U(eq)
P(1)	6622(1)	1916(1)	1593(1)	14(1)
O(1)	6088(2)	-663(1)	1499(1)	14(1)
C(1)	1405(2)	-3278(1)	3398(1)	22(1)
C(2)	1126(2)	-1875(1)	3620(1)	15(1)
C(3)	2477(2)	-889(1)	3122(1)	14(1)
C(4)	3685(2)	-1288(1)	2513(1)	14(1)
C(5)	4859(2)	-314(1)	2109(1)	13(1)
C(6)	7105(2)	438(1)	1179(1)	14(1)
C(7)	8548(2)	194(1)	564(1)	14(1
C(8)	9326(2)	-900(1)	561(1)	16(1
C(9)	9237(2)	1083(1)	-3(1)	16(1
C(10)	1919(2)	-1260(2)	4745(1)	20(1
C(11)	2513(2)	478(1)	3299(1)	14(1)
C(12)	3716(2)	1459(1)	2916(1)	12(1
C(13)	4921(2)	1035(1)	2271(1)	13(1)
C(14)	3873(2)	2963(1)	3214(1)	14(1)
C(15)	3138(2)	3459(1)	2300(1)	18(1)
C(16)	2404(2)	3179(2)	3892(1)	20(1
C(17)	6311(2)	3856(1)	3780(1)	20(1)
C(18)	-1358(2)	-2081(2)	3242(1)	21(1)

Table S2 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^{2} \times 10^3$) for **1**.

 $U(\mbox{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Table 35 Boliu I		•
P(1)-C(6)	1.7117(14)	C(9)-H(5)	0.9300
P(1)-C(13)	1.7951(13)	C(10)-H(2)	0.9600
O(1)-C(6)	1.3701(16)	C(10)-H(17)	0.9600
O(1)-C(5)	1.3769(15)	C(10)-H(18)	0.9600
C(1)-C(2)	1.5334(19)	C(11)-C(12)	1.3812(18)
C(1)-H(15)	0.9600	C(11)-H(22)	0.9300
C(1)-H(1)	0.9600	C(12)-C(13)	1.4268(17)
C(1)-H(16)	0.9600	C(12)-C(14)	1.5366(18)
C(2)-C(10)	1.5344(19)	C(14)-C(16)	1.5358(18)
C(2)-C(18)	1.5381(18)	C(14)-C(15)	1.5387(19)
C(2)-C(3)	1.5404(17)	C(14)-C(17)	1.5424(19)
C(3)-C(4)	1.3825(17)	С(15)-Н(8)	0.9600
C(3)-C(11)	1.4157(18)	С(15)-Н(7)	0.9600
C(4)-C(5)	1.3880(18)	С(15)-Н(6)	0.9600
C(4)-H(3)	0.9300	С(16)-Н(9)	0.9600
C(5)-C(13)	1.3917(19)	С(16)-Н(10)	0.9600
C(6)-C(7)	1.4625(17)	С(16)-Н(11)	0.9600
C(7)-C(9)	1.3917(19)	С(17)-Н(14)	0.9600
C(7)-C(8)	1.3978(19)	С(17)-Н(12)	0.9600
C(8)-C(9)#1	1.3868(18)	С(17)-Н(13)	0.9600
C(8)-H(4)	0.9300	С(18)-Н(20)	0.9600
C(9)-C(8)#1	1.3868(18)	C(18)-H(21)	0.9600
С(18)-Н(19)	0.9600	C(5)-C(4)-H(3)	121.2
C(1)-C(2)-C(10)	108.16(11)	O(1)-C(5)-C(4)	119.63(12)
C(1)-C(2)-C(18)	108.77(11)	O(1)-C(5)-C(13)	115.32(11)
C(10)-C(2)-C(18)	109.25(11)	C(4)-C(5)-C(13)	125.05(12)
C(1)-C(2)-C(3)	111.86(11)	O(1)-C(6)-C(7)	114.63(11)
C(10)-C(2)-C(3)	109.53(10)	O(1)-C(6)-P(1)	116.22(9)
C(18)-C(2)-C(3)	109.23(10)	C(7)-C(6)-P(1)	129.08(10)
C(4)-C(3)-C(11)	118.52(12)	C(9)-C(7)-C(8)	118.68(12)
C(4)-C(3)-C(2)	122.25(12)	C(9)-C(7)-C(6)	120.27(12)
C(11)-C(3)-C(2)	119.22(11)	C(8)-C(7)-C(6)	121.01(12)
C(3)-C(4)-C(5)	117.54(12)	C(9)#1-C(8)-C(7)	120.16(12)
C(3)-C(4)-H(3)	121.2	C(6)-P(1)-C(13)	88.50(6)
C(9)#1-C(8)-H(4)	119.9	С(12)-С(11)-Н(22)	117.9

Table S3 Bond lengths [Å] and angles [°] for 1

C(7)-C(8)-H(4)	119.9	C(3)-C(11)-H(22)	117.9
C(8)#1-C(9)-C(7)	121.16(13)	C(11)-C(12)-C(13)	117.05(12)
C(8)#1-C(9)-H(5)	119.4	C(11)-C(12)-C(14)	121.85(11)
C(7)-C(9)-H(5)	119.4	C(13)-C(12)-C(14)	121.00(11)
C(2)-C(10)-H(2)	109.5	C(5)-C(13)-C(12)	117.60(12)
С(2)-С(10)-Н(17)	109.5	C(5)-C(13)-P(1)	109.66(9)
H(2)-C(10)-H(17)	109.5	C(12)-C(13)-P(1)	132.73(10)
С(2)-С(10)-Н(18)	109.5	C(16)-C(14)-C(12)	112.09(11)
H(2)-C(10)-H(18)	109.5	C(16)-C(14)-C(15)	107.46(11)
H(17)-C(10)-H(18)	109.5	C(12)-C(14)-C(15)	111.32(11)
C(12)-C(11)-C(3)	124.19(12)	C(16)-C(14)-C(17)	108.01(11)
C(12)-C(14)-C(17)	108.60(10)	C(14)-C(16)-H(11)	109.5
C(15)-C(14)-C(17)	109.27(11)	H(9)-C(16)-H(11)	109.5
С(14)-С(15)-Н(8)	109.5	H(10)-C(16)-H(11)	109.5
С(14)-С(15)-Н(7)	109.5	C(14)-C(17)-H(14)	109.5
H(8)-C(15)-H(7)	109.5	С(14)-С(17)-Н(12)	109.5
С(14)-С(15)-Н(6)	109.5	H(14)-C(17)-H(12)	109.5
H(8)-C(15)-H(6)	109.5	С(14)-С(17)-Н(13)	109.5
H(7)-C(15)-H(6)	109.5	H(14)-C(17)-H(13)	109.5
С(14)-С(16)-Н(9)	109.5	H(12)-C(17)-H(13)	109.5
С(14)-С(16)-Н(10)	109.5	C(2)-C(18)-H(20)	109.5
C(2)-C(18)-H(21)	109.5	C(2)-C(18)-H(19)	109.5
H(20)-C(18)-H(21)	109.5	H(20)-C(18)-H(19)	109.5
H(21)-C(18)-H(19)	109.5	C(2)-C(18)-H(21)	109.5
C(6)-O(1)-C(5)	110.30(10)	H(9)-C(16)-H(10)	109.5
C(2)-C(1)-H(15)	109.5	C(2)-C(1)-H(1)	109.5
C(2)-C(1)-H(1)	109.5	H(15)-C(1)-H(16)	109.5
H(15)-C(1)-H(1)	109.5	H(1)-C(1)-H(16)	109.5

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
P(1)	17(1)	13(1)	17(1)	6(1)	11(1)	6(1)
O(1)	16(1)	13(1)	18(1)	5(1)	12(1)	6(1)
C(1)	26(1)	16(1)	30(1)	12(1)	16(1)	8(1)
C(2)	15(1)	16(1)	19(1)	8(1)	10(1)	6(1)
C(3)	12(1)	15(1)	14(1)	5(1)	4(1)	4(1)
C(4)	15(1)	11(1)	16(1)	4(1)	7(1)	5(1)
C(5)	12(1)	16(1)	12(1)	3(1)	6(1)	6(1)
C(6)	13(1)	16(1)	13(1)	6(1)	6(1)	4(1)
C(7)	12(1)	16(1)	12(1)	1(1)	5(1)	4(1)
C(8)	19(1)	17(1)	15(1)	8(1)	10(1)	7(1)
C(9)	19(1)	18(1)	17(1)	7(1)	9(1)	10(1)
C(10)	23(1)	21(1)	19(1)	10(1)	11(1)	7(1)
C(11)	14(1)	17(1)	13(1)	3(1)	7(1)	7(1)
C(12)	13(1)	14(1)	12(1)	3(1)	4(1)	5(1)
C(13)	12(1)	15(1)	13(1)	4(1)	5(1)	4(1)
C(14)	19(1)	12(1)	16(1)	4(1)	9(1)	6(1)
C(15)	22(1)	17(1)	21(1)	7(1)	10(1)	10(1)
C(16)	30(1)	15(1)	22(1)	6(1)	16(1)	11(1)
C(17)	23(1)	14(1)	22(1)	2(1)	6(1)	5(1)
C(18)	16(1)	24(1)	27(1)	13(1)	9(1)	5(1)

Table S4 Anisotropic displacement parameters (Å^{2×103}) for 1.

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(15)	2955	-3158	3614	32
H(1)	843	-3702	2699	32
H(16)	590	-3850	3741	32
H(3)	3710	-2175	2380	16
H(4)	8878	-1506	934	19
H(5)	8725	1812	-9	19
H(2)	1782	-373	4899	30
H(17)	3450	-1171	4987	30
H(18)	1021	-1851	5052	30
H(22)	1672	732	3699	17
H(8)	3304	4408	2507	27
H(7)	1605	2926	1959	27
H(6)	4047	3353	1866	27
H(9)	2531	4126	4052	30
H(10)	2882	2931	4489	30
H(11)	879	2616	3559	30
H(14)	6433	4800	3970	31
H(12)	7257	3758	3362	31
H(13)	6760	3567	4361	31
H(20)	-1554	-1210	3383	32
H(21)	-2201	-2673	3566	32
H(19)	-1871	-2490	2540	32

Table S5 Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å² ×10³) for 1.

4. NMR spectra

³¹P{¹H} NMR spectrum of 1,4-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)benzene (1)

³¹P{¹H} NMR spectrum of 2,6-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)naphthalene(**2**)

¹H NMR spectrum of 2,6-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)naphthalene(**2**)

¹³C{¹H} NMR spectrum of 2,6-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)naphthalene(**2**)

³¹P{¹H} NMR spectrum of 2,5-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)thiophene (**3**)

¹H NMR spectrum of 2,5-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)thiophene (**3**)

³¹P{¹H} NMR spectrum of 1,3,5-tris(4',6'-di-*tert*-butyl-benzoxaphospholyl)benzene (4)

 $^{13}C{^{1}H}$ NMR spectrum of 2,5-bis(4',6'-di-*tert*-butylbenzoxaphospholyl)thiophene (3)

¹³C{¹H} NMR spectrum of 1,3,5-tris(4',6'-di-*tert*-butyl-benzoxaphospholyl)benzene (4)

5. UV-vis absorption and emission spectra

Figure S1 UV-vis absorption and fluorescence of 1 in hexanes and CH_2Cl_2 (Conc. 0.5×10^{-6} M, top). Excitation wavelength for fluorescence measurements was the adsorption maxima. Beer's

Figure S2 UV-vis absorption and fluorescence of **2** in hexanes and CH_2Cl_2 (Conc. 0.5×10^{-6} M, top). Excitation wavelength for fluorescence measurements was the adsorption maxima. Beer's law plots of **2** in hexanes ($\lambda = 407$ nm, middle) and CH_2Cl_2 ($\lambda = 412$ nm, bottom).

Figure S3 UV-vis absorption and fluorescence of **3** in hexanes and CH_2Cl_2 (Conc. 0.5×10^{-6} M, top). Excitation wavelength for fluorescence measurements was the adsorption maxima. Beer's law plots of **3** in hexanes ($\lambda = 452$ nm, middle) and CH_2Cl_2 ($\lambda = 457$ nm, bottom).

Figure S4 UV-vis absorption and fluorescence of **4** in hexanes and CH_2Cl_2 (Conc. 2.5×10⁻⁶ M, top). Excitation wavelength for fluorescence measurements was the adsorption maxima. Beer's law plots of **4** in hexanes ($\lambda = 359$ nm, middle) and CH_2Cl_2 ($\lambda = 362$ nm, bottom).

6. DFT calculation

A. A series of DFT calculations (B3LYP 6-31G*) were conducted using Spartan '10 (Wavefunction, Inc., Irvine, CA) to minimize several possible conformations of the compounds.

i. For the compound **1**, two structures were minimized. The energy difference was only 0.00021 au (ca 0.1 kcal/mol), favoring the "*trans*" species.

Figure S5 MO diagram for "trans" (left) and "cis" (right) isomers of 1 ($d_{P=C} = 1.737$ Å).

ii. For the compound **3**, three possible structures were minimized. The lowest energy was the "*cis*" species having the oxygen atoms nearest to the sulfur atom.

Figure S6 MO diagrams for "*cis* OSO" (left, $d_{P=C} = 1.741$ Å) and "*trans* PSP" (right, $d_{P=C} = 1.738$ Å) isomers of **3**.

B. The two lowest energy structures from the 6-31G* calculations (Spartan '10, Wavefunction, Inc., Irvine, CA) were then subjected to further refinement using DFT B3LYP 6-311+(d,p) Gaussian 09, Revision **D.01**.⁴ Following these optimizations, single point energy calculations were undertaken TDDFT CAM-B3LYP 6-311G+(d,p) using IEFPCM solvent correction (CH₂Cl₂).

Center	Atomic	Atomic	Со	ordinates (Ang	stroms)	-
Number	Number	Туре	Х	Y	Z	
	1			2 100120		
1	l	0	6.953335	-2.109129	-0.069879	
2	6	0	6.638577	-1.0/2031	-0.042869	
3	6	0	5.840941	1.642912	0.027571	
4	6	0	5.2/104/	-0./4/303	-0.032996	
5	6	0	7.581021	-0.054411	-0.017779	
6	6	0	7.185305	1.293862	0.017036	
7	6	0	4.912281	0.60/024	0.002366	
8	1	0	8.636773	-0.299591	-0.025235	
9	1	0	7.938209	2.073064	0.036011	
10	1	0	5.516108	2.675701	0.054380	
11	15	0	3.798510	-1.781492	-0.056789	
12	6	0	2.852501	-0.330334	-0.018154	
13	8	0	3.566947	0.834796	0.010646	
14	6	0	1.407726	-0.158931	-0.009542	
15	6	0	-1.407726	0.158931	0.009542	
16	6	0	0.551397	-1.274103	-0.053247	
17	6	0	0.823410	1.121861	0.043583	
18	6	0	-0.551397	1.274103	0.053247	
19	6	0	-0.823410	-1.121861	-0.043583	
20	1	0	0.971733	-2.272541	-0.096129	
21	1	0	1.460017	1.995800	0.078506	
22	1	0	-0.971733	2.272541	0.096129	
23	1	0	-1.460017	-1.995800	-0.078506	
24	6	0	-2.852501	0.330334	0.018154	
25	15	0	-3.798510	1.781492	0.056789	
26	6	0	-5.271047	0.747303	0.032996	
27	6	0	-7.185305	-1.293862	-0.017036	
28	6	0	-4.912281	-0.607024	-0.002366	
29	6	0	-6.638577	1.072031	0.042869	
30	6	0	-7.581021	0.054411	0.017779	
31	6	0	-5.840941	-1.642912	-0.027571	
32	1	0	-6.953335	2.109129	0.069879	
33	1	0	-8.636773	0.299591	0.025235	

i. "trans" isomer of 1

34	1	0	-5.516108	-2.675701	-0.054380	
35	1	0	-7.938209	-2.073064	-0.036011	
36	8	0	-3.566947	-0.834796	-0.010646	

HOMO #89

HOMO (-1) #88

LUMO #90

LUMO(+1) #91

Excitation energies and oscillator strengths:

Excited State 1:	Singlet-AU	2.9949 eV	413.99 nm	f=1.3973	<s**2>=0.000</s**2>
88 -> 91	-0.12139				
89 -> 90	0.68772				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1602.16657322

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2:	Singlet-AG	4.0249 eV	308.04 nm	f=0.0000	<s**2>=0.000</s**2>
88 -> 90	0.62369				
89 -> 91	-0.29120				
Excited State 3:	Singlet-AU	4.3931 eV	282.23 nm	f=0.0067	<s**2>=0.000</s**2>
85 -> 90	0.45284				
87 -> 90	-0.35253				
89 -> 92	0.33469				
89 -> 93	0.12484				
Excited State 4:	Singlet-AU	4.5549 eV	272.20 nm	f=0.1652	<s**2>=0.000</s**2>
85 -> 90	0.29342				
86 -> 91	-0.19927				
87 -> 90	0.51481				
88 -> 91	0.12552				
89 -> 92	0.17698				
89 -> 99	0.15778				
Excited State 5:	Singlet-AG	4.5559 eV	272.14 nm	f=0.0000	<s**2>=0.000</s**2>
86 -> 90	-0.40769				
87 -> 91	0.22403				
88 -> 90	0.22365				
89 -> 91	0.42733				
Excited State 6:	Singlet-AG	4.7451 eV	261.29 nm	f=0.0000	<s**2>=0.000</s**2>
84 -> 91	0.11990				
86 -> 90	0.43929				
87 -> 91	-0.13454				
88 -> 90	0.18148				
89 -> 91	0.44434				
89 -> 97	0.11426				
Excited State 7:	Singlet-AU	5.0981 eV	243.20 nm	f=0.2835	<s**2>=0.000</s**2>
85 -> 90	-0.37109				
88 -> 94	0.14594				

89 -> 92	0.55418				
Excited State 8:	Singlet-AU	5.1371 eV	241.35 nm	f=0.0239	<s**2>=0.000</s**2>
81 -> 91	-0.28656				
82 -> 90	0.62505				
Excited State 9:	Singlet-AU	5.1822 eV	239.25 nm	f=0.0012	<s**2>=0.000</s**2>
84 -> 90	0.17149				
86 -> 94	-0.15741				
87 -> 90	0.11080				
87 -> 99	0.13532				
88 -> 91	0.18255				
88 -> 94	-0.14961				
88 -> 97	-0.22276				
89 -> 93	0.47709				
89 -> 99	-0.16225				
Excited State 10:	Singlet-AG	5.2021 eV	238.34 nm	f=0.0000	<s**2>=0.000</s**2>
81 -> 90	0.61268				
82 -> 91	-0.31132				
Excited State 11:	Singlet-AG	5.2445 eV	236.41 nm	f=0.0000	<s**2>=0.000</s**2>
86 -> 93	-0.11196				
87 -> 97	-0.10832				
88 -> 93	-0.28270				
88 -> 99	0.11117				
89 -> 94	0.55869				
89 -> 97	0.13843				
Excited State 12:	Singlet-AG	5.4298 eV	228.34 nm	f=0.0000	<s**2>=0.000</s**2>
88 -> 96	-0.18050				
88 ->102	0.10115				
89 -> 95	0.61184				
89 -> 98	0.11199				
89 ->104	0.11953				

ii. "cis OSO" isomer of 3

-

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
l	l	0	0.000000	7.104565	-0.860487	
2	6	0	0.000000	6.433804	-0.008789	
3	6	0	0.000000	4.702926	2.230941	
4	6	0	0.000000	5.041861	-0.204143	
5	6	0	0.000000	6.941304	1.282580	
6	6	0	0.000000	6.082597	2.394869	
7	6	0	0.000000	4.215908	0.928492	
8	1	0	0.000000	8.014010	1.437634	
9	1	0	0.000000	6.500168	3.394819	
10	1	0	0.000000	4.023521	3.074214	
11	15	0	0.000000	4.051464	-1.708153	
12	6	0	0.000000	2.641306	-0.695333	
13	8	0	0.000000	2.878118	0.651476	
14	6	0	0.000000	1.252903	-1.055912	
15	6	0	0.000000	0.701124	-2.328052	
16	1	0	0.000000	1.301990	-3.227882	
17	6	0	0.000000	-0.701124	-2.328052	
18	1	0	0.000000	-1.301990	-3.227882	
19	6	0	0.000000	-1.252903	-1.055912	
20	16	0	0.000000	0.000000	0.165534	
21	6	0	0.000000	-2.641306	-0.695333	
22	8	0	0.000000	-2.878118	0.651476	
23	6	0	0.000000	-4.215908	0.928492	
24	6	0	0.000000	-6.941304	1.282580	
25	6	0	0.000000	-4.702926	2.230941	
26	6	0	0.000000	-5.041861	-0.204143	
27	6	0	0.000000	-6.433804	-0.008789	
28	6	0	0 000000	-6 082597	2 394869	
29	1	0	0.000000	-4 023521	3 074214	
30	1	0	0.000000	-7 104565	-0 860487	
31	1	ů 0	0.000000	-6 500168	3 394819	
32	1	ů 0	0.000000	-8 014010	1 437634	
32	15	Û Û	0.000000	-4 051464	-1 708152	
	1.5	v	0.00000	-4.031404	-1./00133	

HOMO(-1) #89 HOMO #90

LUMO #91

LUMO(+1) #92

Excitation energies and oscillator strengths:

Excited State 1: Singlet-B2 2.6566 eV 466.71 nm f=1.3020 <S**2>=0.000

90 -> 91 0.69358

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -1922.98305625

Copying the excited state density for this state as the 1-particle RhoCI density.

Singlet-A1	3.9125 eV	316.89 nm	f=0.0000	<s**2>=0.000</s**2>
0.58985				
-0.35709				
Singlet-A1	4.1536 eV	298.50 nm	f=0.0053	<s**2>=0.000</s**2>
0.21368				
-0.13459				
0.10528				
0.33619				
0.53201				
Singlet-B2	4.3988 eV	281.86 nm	f=0.0062	<s**2>=0.000</s**2>
-0.18002				
0.64089				
0.13068				
0.11101				
Singlet-A1	4.5485 eV	272.58 nm	f=0.0282	<s**2>=0.000</s**2>
0.10535				
-0.18201				
0.58727				
-0.15668				
0.20665				
0.11418				
Singlet-A1	4 6589 eV	266 12 nm	f=0 1358	<\$**2>=0 000
0.62877	1.00007 07	200.12 1111	1 0.1550	5 2 0.000
0.17608				
-0 10869				
-0 12917				
Singlet-B2	5.0448 eV	245.77 nm	f=0.0579	<s**2>=0.000</s**2>
-0.16342				
0.14333				
-0.12510				
-0.15929				
0.16863				
0.15921				
0.54700				
	Singlet-A1 0.58985 -0.35709 Singlet-A1 0.21368 -0.13459 0.10528 0.33619 0.53201 Singlet-B2 -0.18002 0.64089 0.13068 0.11101 Singlet-A1 0.10535 -0.18201 0.58727 -0.15668 0.20665 0.11418 Singlet-A1 0.62877 0.15668 0.20665 0.11418 Singlet-A1 0.62877 0.17608 -0.10869 -0.12917 Singlet-B2 -0.16342 0.14333 -0.12510 -0.15929 0.16863 0.15921 0.54700	Singlet-A1 3.9125 eV 0.58985 -0.35709 Singlet-A1 4.1536 eV 0.21368 -0.13459 0.10528 0.33619 0.10528 0.33619 0.53201Singlet-B24.3988 eV -0.18002 0.64089 0.13068 0.11101 Singlet-A1 4.5485 eV 0.10535 -0.18201 0.58727 -0.15668 0.20665 0.11418 Singlet-A1 4.6589 eV 0.62877 0.17608 -0.10869 -0.12917 Singlet-B2 5.0448 eV -0.16342 0.14333 -0.12510 -0.15929 0.16863 0.15921 0.54700 0.54700	Singlet-A1 3.9125 eV 316.89 nm 0.58985 -0.35709 4.1536 eV 298.50 nm Singlet-A1 4.1536 eV 298.50 nm 0.21368 -0.13459 0.10528 0.33619 0.53201 4.3988 eV 281.86 nm -0.18002 0.64089 0.13068 0.11101 Singlet-B2 4.3988 eV 281.86 nm -0.18002 0.64089 0.13068 0.11001 Singlet-A1 4.5485 eV 272.58 nm 0.10535 -0.18201 0.58727 -0.15668 0.20665 0.11418 4.6589 eV 266.12 nm 0.62877 0.17608 -0.12917 5.0448 eV 245.77 nm Singlet-B2 5.0448 eV 245.77 nm -0.16342 0.14333 -0.12510 -0.15929 0.16863 0.15921 0.54700 -0.54700 -0.54700	Singlet-A1 3.9125 eV 316.89 nm $f=0.0000$ 0.58985 -0.35709 4.1536 eV 298.50 nm $f=0.0053$ 0.21368 -0.13459 0.10528 0.33619 0.53201 4.1536 eV 298.50 nm $f=0.0053$ Singlet-B2 -0.18002 0.64089 0.13068 0.11101 4.3988 eV 281.86 nm $f=0.0062$ Singlet-A1 0.16355 -0.18201 0.58727 -0.15668 0.20665 0.11418 4.5485 eV 272.58 nm $f=0.0282$ Singlet-A1 0.58727 -0.15668 0.20665 0.11418 4.6589 eV 266.12 nm $f=0.1358$ Singlet-A1 0.17608 -0.12917 4.6589 eV 266.12 nm $f=0.1358$ Singlet-B2 0.16342 0.14333 -0.12510 -0.15929 0.16863 0.15921 0.54700 5.0448 eV 245.77 nm $f=0.0579$

90 -> 97	0.14587				
Excited State 8:	Singlet-A1	5.0985 eV	243.18 nm	f=0.0383	<s**2>=0.000</s**2>
87 -> 93	0.12821				
89 -> 93	0.25079				
90 -> 94	0.59843				
90 -> 98	0.11344				
Excited State 9:	Singlet-B1	5.1312 eV	241.63 nm	f=0.0241	<s**2>=0.000</s**2>
82 -> 92	-0.27935				
83 -> 91	0.62606				
Excited State 10:	Singlet-A2	5.1321 eV	241.59 nm	f=0.0000	<s**2>=0.000</s**2>
82 -> 91	0.37703				
83 -> 92	-0.17314				
90 -> 95	0.48313				
90 -> 99	-0.21772				
Excited State 11:	Singlet-A2	5.1527 eV	240.62 nm	f=0.0000	<s**2>=0.000</s**2>
82 -> 91	0.49467				
83 -> 92	-0.22640				
90 -> 95	-0.33195				
90 -> 99	0.23915				
Excited State 12:	Singlet-B2	5.2143 eV	237.78 nm	f=0.1104	<s**2>=0.000</s**2>
85 -> 91	0.35356				
87 -> 92	0.11880				
88 -> 91	0.12448				
88 -> 93	-0.13416				
89 -> 92	0.10407				
89 -> 94	0.21066				
89 -> 98	-0.17560				
90 -> 93	0.30670				
90 -> 97	-0.33905				

7. References

- (a)A. M. C. H. van den Nieuwendijk, D. Pietra, L. Heitman, A. Göeblyös and A. P. IJzerman, J. Med. Chem., 2004, 47, 663-672. (b)R. Seto, T. Kojima, K. Hosokawa, Y. Koyama, G. Konishi and T. Takata, *Polymer*, 2010, 51, 4744-4749.
- 2. S. Wu, N. Deligonal and J. D. Protasiewicz, *Dalton. Trans.*, 2013, 42, 14866-14874.
- 3. J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991-1024.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Revision D.01), Gaussian Inc., Wallingford, CT, 2009.