SUPPORTING INFORMATION

Room-Temperature Palladium-Catalyzed Direct 2-Arylation of Benzoxazoles with Aryl and Heteroaryl Bromides

Feng Gao,^{a,b} Byeong-Seon Kim,^b Patrick J. Walsh*^{,b}

^a Dpartment of Medicinal Plants, Agronomy College, Sichuan Agricultural University, Chengdu 611130, P. R. China.

^bRoy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

pwalsh@sas.upenn.edu

TABLE OF CONTENTS

1.	General Methods	.S2
2.	Preparation of benzoxazoles	.S2
3.	Procedure and characterization of Pd-catalyzed arylation of benzoxazoles	S4
4.	Reference	.S14
5.	NMR spectra	S 16

1. General Methods

All reactions were conducted under an inert atmosphere of dry nitrogen. Anhydrous dioxane and cyclopentyl methyl ether (CPME) were purchased from Sigma-Aldrich and used without further purification. Dimethoxyethane (DME) tetrahydrofuran (THF) and toluene were dried through activated alumina columns under nitrogen. Unless otherwise stated, Silica gel (Silicaflash, P60, 40-63 μ m, Silicycle) was used for air-flashed chromatography. Solvents were commercially available and used as received without further purification. Chemicals were purchased from Sigma-Aldrich, Acros, or Matrix Scientific and solvents were obtained from Fisher Scientific. Thin-layer chromatography was performed on Whatman precoated silica gel 60 F-254 plates and visualized by ultraviolet light. Flash chromatography was performed with Silica gel (Silicaflash, P60, 40-63 μ m, Silicycle). NMR spectra were obtained using a Brüker 500 MHz Fourier-transform NMR spectrometer at the University of Pennsylvania NMR facility. The infrared spectra were obtained with KBr plates using a Perkin-Elmer Spectrum 1600 Series spectrometer. High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (model LCT-XE Premier) using chemical ionization (CI) or electrospray ionization (ESI) in positive or negative mode, depending on the analyte. Melting points were determined on a Unimelt Thomas-Hoover melting point apparatus and are uncorrected. Benzoxazole (99%) was purchased from Acros (Alfa Aesar) and used as received. Benzoxazole derivatives were synthesized according to known procedures starting from commercially available 2-amino-phenol derivatives.¹

2. Preparation of benzoxazoles

General Procedure A for the synthesis of benzoxazoles: In a 25 mL two-necked flask under N_2 was added the 2-aminophenol derivatives (1.0 g) and triethyl orthoformate (10 mL). The resulting mixture was refluxed for 4–8 h until TLC showed complete consumption of 2-aminophenol derivatives. The excess triethyl orthoformate was then removed under reduced pressure. The residue was purified by flash on silica gel column to obtain desired products. CI **5-Chlorobenzoxazole (1b):** The reaction was performed following General Procedure A with 2-amino-4-chlorophenol (1.0 g, 6.99 mmol) in triethyl orthoformate (10 mL). The crude product was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:40) to give the product (0.90 g, 85% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.06 (s, 1H), 7.72 (s, 1H), 7.45 (d, *J* = 9.0 Hz, 1H), 7.30 (d, *J* = 9.0 Hz, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 153.6, 148.4, 141.0, 130.0, 125.9, 120.5, 111.6 ppm. The spectroscopic data match the previously reported data.²

F 5-Fluorobenzoxazole (1c): The reaction was performed following General procedure A with 2-amino-4-fluorophenol (1.0 g, 7.87 mmol) in triethyl orthoformate (10 mL). The crude product was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:40) to give the product (0.95 g, 88% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.09 (s, 1H), 7.50 (dd, $J_1 = 9.0$ Hz, J_2 = 4.0 Hz, 1H), 7.45 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.5$ Hz, 1H), 6.98 (dt, $J_1 = 9.0$ Hz, $J_2 = 2.5$ Hz, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.0 (d, J = 239.6 Hz), 153.9, 146.2, 140.8 (d, J = 12.8 Hz), 113.4 (d, J = 26.3 Hz), 111.2 (d, J = 10.0 Hz), 106.8 (d, J = 25.3 Hz), ppm. The spectroscopic data match the previously reported data.^{1c}

5-Methylbenzoxazole (1d): The reaction was performed following General Procedure A with 2-amino-4-methylphenol (1.0 g, 8.13 mmol) in triethyl orthoformate (10 mL). The crude product was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:40) to give the product (0.99 g, 92% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.04 (s, 1H), 7.57 (s, 1H), 7.45 (d, *J* = 11.5 Hz, 1H), 7.19 (d, *J* = 11.5 Hz, 1H), 2.48 (s, 3H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.5, 148.2, 140.2, 134.4, 126.7, 120.4, 110.2, 21.4 ppm. The spectroscopic data match the previously reported data.^{1c}

5-Methoxybenzoxazole (1e): The reaction was performed following General Procedure A with 2-amino-4-methoxyphenol (1.0 g, 7.19 mmol) in triethyl orthoformate (10 mL). The crude product was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 1:40) to give the product (0.96 g, 90% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.05 (s, 1H), 7.45 (d, *J* = 12.5 Hz, 1H), 7.25 (d, *J* = 3.5 Hz, 1H), 6.98 (dd, *J*₁ = 12.5 Hz, *J*₂ = 3.5 Hz, 1H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.4, 153.2, 144.6, 140.9.4, 114.5, 111.0, 103.2, 55.9 ppm. The spectroscopic data match the previously reported data ^{1c}

3. Procedure and characterization of Pd-catalyzed arylation of benzoxazoles

General Procedure B for the Pd-catalyzed arylation of benzoxazoles:

An oven-dried 10 mL reaction vial equipped with a stir bar was charged with benzoxazole (0.12 mmol) and NaOtBu (23.0 mg, 0.24 mmol, 2 equiv) in a dry box under a nitrogen atmosphere. A solution (from a stock solution) of Pd(OAc)₂ (1.12 mg, 0.0050 mmol) and NiXantphos (4.14 mg, 0.0075 mmol) in 1 mL of dry DME was taken up by syringe and added to the reaction vial. The vial was then sealed with a septum and removed from the dry box. After stirring for 5 min at 24 °C, aryl bromide (0.1 mmol, 1.0 equiv) was added to the reaction mixture by syringe. Note that solid aryl bromides were added to the reaction vial prior to addition of NaOtBu. The reaction mixture was stirred for 12 h at room temperature (24 °C), quenched with two drops of H₂O, diluted with 3 mL of ethyl acetate, and filtered over a pad of MgSO₄ and silica. The pad was rinsed with additional ethyl acetate, and the solution was concentrated *in vacuo*. The crude material was loaded onto a silica gel column and purified by flash chromatography.

2-(4-*tert***-Butylphenyl)benzoxazole (3a)**: The reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromo-4-*tert*-butylbenzene (**2a**, 17.5 μ L, 21.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 2:98) to give the product (24.5 mg, 98% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.20 (d, *J* = 8.0 Hz, 2H), 7.76–7.78 (m, 1H), 7.54–7.58 (m, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.26–7.34 (m, 2H), 1,38 (s, 9H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.2, 155.1, 150.7, 142.2, 127.5, 125.9, 124.8, 124.4, 124.4, 119.9, 110.5, 35.0, 31.1 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.³

2-Phenylbenzoxazole (3b): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and bromobenzene (**2b**, 10.5 μ L, 15.7 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 2:98) to give the product (17.8 mg, 92% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.23–8.27 (m, 2H), 7.75–7.77 (m, 1H), 7.55–7.58 (m, 1H), 7.51–7.54 (m, 3H), 7.32–7.36 (m, 2H) ppm; ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.9, 150.7, 142.0, 131.4, 128.8, 127.5, 127.1, 125.0, 124.4, 119.9, 110.5 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁴

Control Contro

performed following General Procedure B with benzoxazole (1a, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromo-4-methoxybenzene (2c, 12.5 μ L, 18.7 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 3:97) to give the product (19.8 mg, 88% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (d, J = 8.0 Hz, 2H), 7.71–7.74 (m, 1H), 7.51–7.55 (m, 1H), 7.29–7.33 (m, 2H), 7.00 (d, J = 8.0 Hz, 2H), 3.87 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.1, 162.2, 150.6, 142.2, 129.3, 124.5, 124.3, 119.6, 119.5, 114.2, 110.2, 55.3 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁵

4-(Benzoxazol-2-yl)-*N*,*N*-**dimethylaniline** (3d): This reaction was performed following General Procedure B with benzoxazole (1a, 14.3 mg, 0.12 mmol, 1.2 equiv) and 4-bromo-*N*,*N*-dimethylaniline (2d, 20.0 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (20.4 mg, 86% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.09 (d, *J* = 9.0 Hz, 2H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.50 (d, *J* = 9.0 Hz, 1H), 7.24–7.28 (m, 2H), 6.75 (d, *J* = 9.0 Hz, 2H), 3.05 (s, 6H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.1, 152.3, 150.5, 142.5, 129.0, 124.0, 123.7, 119.0, 114.1, 111.5, 110.0, 40.0 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ⁶

2-(4-Chlorophenyl)benzoxazole (**3e**): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromo-4-chlorobenzene (**2e**, 19.1 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 2:98) to give the product (22.7 mg, 99% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.17 (d, J = 8.5 Hz, 2H), 7.73–7.76 (m, 1H), 7.53–7.57 (m, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.32–7.36 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.9, 150.7, 141.9, 137.6, 129.1, 128.7, 125.6, 125.2, 124.6, 120.0, 110.5 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁷

2-(4-Fluorophenyl)benzoxazole (3f): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromo-4-fluorobenzene (**2f**, 13.0 μ L, 17.5 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 2:98) to give the product (17.2 mg, 81% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.22–8.26 (m, 2H), 7.74–7.76 (m, 1H), 7.55–7.56 (m, 1H), 7.32–7.36 (m, 2H), 7.17–7.22 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 164.7 (d, *J* = 250.0 Hz), 162.0, 150.7, 142.0, 129.7 (d, *J* = 9.0 Hz), 125.0, 124.5, 123.4, 119.9, 116.1 (d, *J* = 22.0 Hz), 110.4 ppm. The 1H and ¹³C{1H} NMR data for this compound match the literature data.³

4-(Benzoxazol-2-yl)benzonitrile (3g): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 4-bormobenzonitrile (**2g**, 18.2 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (18.9 mg, 86% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d, *J* = 7.5 Hz, 2H), 7.76–7.83 (m, 3H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.38–7.42 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.8, 150.8, 141.8, 132.6, 131.0, 127.8, 126.0, 125.0, 120.5, 118.0, 114.6, 110.7 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.⁸

reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 4-bromo-*N*-methylbenzamide (**2h**, 21.4 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 8:92) to give the product (15.1 mg, 60% yield) as a

yellow solid. $R_f = 0.30$ (EtOAc:Hexane = 2:1); m.p. = 163–165 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.32 (d, J = 7.5 Hz, 2H), 8.18 (d, J = 7.5 Hz, 2H), 7.77–7.80 (m, 1H), 7.57–7.60 (m, 1H), 7.35–7.40 (m, 2H), 3.95 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 166.2, 161.8, 150.8, 141.9, 132.4, 130.9, 130.0, 127.4, 125.6, 124.8, 120.3, 110.6, 52.3 ppm. IR (thin film): 3434, 3091, 3065, 1612, 1575, 1515, 1448, 1406, 1365, 1277, 1055, 864, 798, 722, 590 cm⁻¹; HRMS calculated for C₁₅H₁₃N₂O₂, 253.0977, found 253.0978, [M+H]⁺.

Me

2-*m***-Tolylbenzoxazole (3i):** This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromo-3-methylbenzene (**2i**, 12.2 μ L, 17.1 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 3:97) to give the product (17.7 mg, 85% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 8.08 (s, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.74–7.77 (m, 1H), 7.55–7.58 (m, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.32–7.35 (m, 3H), 2.44 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.1, 150.6, 142.0, 138.6, 132.2, 128.7, 128.1, 126.9, 124.9, 124.7, 124.4, 119.8, 110.4, 21.1 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.³

2-(Naphthalen-1-yl)benzoxazole (**3j**): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromonaphthalene (**2j**, 14.0 μ L, 20.7 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 2:98) to give the product (20.5 mg, 84% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 9.45 (d, *J* = 7.5 Hz, 1H), 8.42 (d, *J* = 7.5 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.87–7.88 (m, 1H) 7.70–7.72 (m, 1H), 7.62–7.64 (m, 1H), 7.60–7.62 (m, 3H), 7.38–7.40 (m, 2H) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 162.7, 150.1, 142.2, 133.9, 132.2, 130.6, 129.2, 128.5, 127.8, 126.3, 126.2, 125.2, 124.8, 124.4, 123.5, 120.2, 110.4 ppm. The ${}^{1}H$ and ${}^{13}C{}^{1}H$ NMR data for this compound match the literature data. 9

2-(2-(Trifluoromethyl)phenyl)benzoxazole (3k): This

reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 1-bromo-2-(trifluoromethyl)benzene (**2k**, 13.6 μ L, 22.5 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (22.3 mg, 85% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 8.51 (s, 1H), 8.42 (d, *J* = 7.5 Hz, 1H), 7.76–7.79 (m, 2H), 7.64 (t, *J* = 7.5 Hz, 1H), 7.56–7.60 (m, 1H), 7.35–7.39 (m, 2H)ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.4, 150.7, 141.8, 131.9, 131.8, 130.5, 129.4 (q, *J* = 32.5 Hz), 128.0, 127.8 (q, *J* = 3.5 Hz), 125.6, 124.8, 124.4 (q, *J* = 280.5 Hz), 120.2, 110.6 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹⁰

2-(Quinolin-4-yl)benzoxazole (3l): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 4-bromoquinoline (**2l**, 20.8 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (22.6 mg, 92% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 9.46 (d, *J* = 8.0 Hz, 1H), 9.42 (s, 1H), 9.36 (s, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 1H), 7.86-7.88 (m, 1H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.65–7.68 (m, 1H), 7.40–7.41 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.0, 155.6, 150.1, 145.2, 142.1, 132.8, 132.2, 128.4, 128.3, 127.9, 125.7, 125.6, 124.7, 120.3, 117.8,

110.7 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data.¹¹

2-(Furan-2-yl)benzoxazole (3m): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 2-bromofuran (**2m**, 9.0 μ L, 14.7 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 8:92) to give the product (18.2 mg, 98% yield) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 7.71–7.75 (m, 1H), 7.65 (s, 1H), 7.52–7.55 (m, 1H), 7.31–7.35 (m, 2H), 7.25 (d, *J* = 3.0 Hz, 1H), 6.59 (d, *J* = 3.0 Hz, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 155.2, 150.0, 145.6, 142.5, 141.5, 125.1, 124.7, 120.0, 114.1, 112.1, 110.4 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹²

2-(Pyridin-3-yl)benzoxazole (3n): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 3-bromopyridine (**2n**, 9.0 μ L, 15.8 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 10:90) to give the product (17.0 mg, 87% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 9.48 (s, 1H), 8.76 (d, *J* = 5.0 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 7.78–7.90 (m, 1H), 7.62–7.64 (m, 1H), 7.46 (dd, *J*₁ = 8.0 Hz, *J*₂ = 5.0 Hz, 1H), 7.36–7.40 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.7, 152.0, 150.7, 148.8, 141.8, 134.7, 125.7, 124.9, 123.6, 123.5, 120.3, 110.7 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹³

2-(Thiophen-2-yl)benzoxazole (3o): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 2-bromothiophene (**2o**, 10.0 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude

material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 8:92) to give the product (17.9 mg, 89% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, *J* = 4.5 Hz, 1H), 7.72–7.35 (m, 1H), 7.53–7.57 (m, 2H), 7.32–7.36 (m, 2H), 7.18 (t, *J* = 4.5 Hz, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.0, 150.4, 142.0, 130.2, 129.9, 129.6, 128.2, 125.0, 124.7, 119.8, 110.4 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹⁴

2-(Thiophen-3-yl)benzoxazole (3p): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 3-bromothiophene (**2p**, 9.5 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 8:92) to give the product (15.0 mg, 75% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 8.17 (s, 1H), 7.78 (d, *J* = 4.5 Hz, 1H), 7.72–7.35 (m, 1H), 7.52–7.56 (m, 1H), 7.42–7.45 (m, 1H), 7.31–7.34 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.6, 150.3, 141.8, 129.2, 127.9, 126.8, 126.5, 124.9, 124.4, 119.8, 110.3 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹⁴

2-(Benzo[b]thiophen-3-yl)benzoxazole (3q): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 3-bromobenzo[b]thiophene (**2q**, 13.0 μ L, 21.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 8:92) to give the product (23.8 mg, 95% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 9.02 (d, *J* = 8.0 Hz, 1H), 8.42 (s, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.83 (s, 1H), 7.55–7.59 (m, 2H), 7.47 (t, *J* = 8.0 Hz, 1H), 7.35–7.39 (m, 2) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.2, 149.9, 142.0, 140.2, 136.0, 131.3, 125.5, 125.3, 125.1, 124.9, 124.5, 123.6, 122.5, 120.1, 110.3 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹⁵

reaction was performed following General Procedure B in with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 4-bromo-2,3-dihydro-1*H*-inden-1-one (**2r**, 21.2 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 10:90) to give the product (18.7 mg, 75% yield) as a yellow solid. $R_f = 0.40$ (EtOAc:Hexane = 3:1); m.p. = 193–195 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.49 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.79–7.83 (m, 1H), 7.58–7.64 (m, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.36–7.40 (m, 2H), 3.70–3.73 (m, 2H), 2.78–2.81 (m, 2H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 206.4, 161.3, 154.6, 150.2, 141.9, 138.4, 134.0, 127.8, 126.3, 125.5, 125.4, 124.7, 120.3, 110.5, 36.1, 27.5 ppm; IR (thin film): 1710, 1469, 1240, 1152, 7430 cm⁻¹; HRMS calculated for C₁₆H₁₂NO₂, 250.0869, found 250.0868, [M+H]⁺.

2-(Benzofuran-5-yl)benzoxazole (3s): This reaction was performed following General Procedure B with benzoxazole (**1a**, 14.3 mg, 0.12 mmol, 1.2 equiv) and 5-bromobenzofuran (**2s**, 19.8 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 8:92) to give the product (21.2 mg, 90% yield) as a yellow solid. R_f = 0.30 (EtOAc:hexane = 3:1); m.p. = 145–147 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.53 (s, 1H), 8.24 (d, *J* = 9.0 Hz, 1H), 7.74–7.78 (m, 1H), 7.70 (s, 1H), 7.63 (d, *J* = 9.0 Hz, 1H), 7.54–7.58 (m, 1H), 7.28–7.31 (m, 2H), 6.87 (s, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.5, 156.7, 150.8, 146.3, 142.3, 128.0, 124.8, 124.5, 124.2, 122.2, 121.2, 119.8, 112.0, 110.4, 107.0 ppm; IR (thin film): 1614, 1558, 1529, 1454, 1441, 1244, 1261, 1158, 1128, 1108, 1025, 804, 747 cm⁻¹; HRMS calculated for C₁₅H₁₀NO₂, 236.0712, found 236.0710, [M+H]⁺.

Click N 5-Chloro-2-(thiophen-2-yl)benzoxazole (3t): This reaction was performed following General Procedure B with 5-chlorobenzoxazole (1b, 18.4 mg, 0.12 mmol, 1.2 equiv) and 2-bromothiophene (2o, 10.0 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (21.6 mg, 92% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 7.88 (d, *J* = 3.5 Hz, 1H), 7.67 (s, 1H), 7.56 (d, *J* = 3.5 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 1H), 7.17 (dd, *J*₁ = 5.0 Hz, *J*₂ = 3.5 Hz, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.2, 148.9, 143.1, 130.7, 130.4, 130.1, 129.0, 128.2, 125.2, 119.6, 111.0 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹⁶

5-Chloro-2-(thiophen-3-yl)benzoxazole (3u): This reaction was performed following General Procedure B with 5-chlorobenzoxazole (**1b**, 18.4 mg, 0.12 mmol, 1.2 equiv) and 2-bromothiophene (**2p**, 9.5 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 5:95) to give the product (20.2 mg, 86% yield) as a yellow solid. R_f = 0.40 (EtOAc:Hexane = 4:1); m.p. = 133–135 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.18 (d, *J* = 3.5 Hz, 1H), 7.75 (d, *J* = 5.0 Hz, 1H), 7.67–7.70 (m, 1H), 7.42–7.46 (m, 2H), 7.29 (d, *J* = 8.5 Hz, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.8, 148.8, 143.0, 129.9, 128.7, 128.6, 127.1, 126.5, 125.1, 119.7, 111.0 ppm. IR (thin film): 1721, 1553, 1453, 1409, 1277, 1194, 1108, 1053, 745 cm⁻¹; HRMS calculated for C₁₁H₇NCINOS, 235.9937, found 235.9939, [M+H]⁺.

with EtOAc:hexanes = 5:95) to give the product (20.1 mg, 88% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 9.43 (s, 1H), 8.76 (d, *J* = 5.0 Hz, 1H), 8.47 (d, *J* = 7.5 Hz, 1H), 7.75 (s, 1H), 7.51 (d, *J* = 9.0 Hz, 1H), 7.44–7.47 (m, 1H), 7.33 (d, *J* = 9.0 Hz, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.9, 152.3, 149.2, 148.8, 142.8, 134.7, 130.3, 125.9, 123.6, 123.0, 120.1, 111.4 ppm. The ¹H and ¹³C{¹H} NMR data for this compound match the literature data. ¹⁷

F 5-Fluoro-2-(thiophen-2-yl)benzoxazole (**3**w): This reaction was performed following General Procedure B with 5-fluorobenzoxazole (**1c**, 13.8 mg, 0.12 mmol, 1.2 equiv) and 2-bromothiophene (**2o**, 10.0 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 10:90) to give the product (19.7 mg, 90% yield) as a yellow solid. R_{*f*} = 0.50 (EtOAc:hexane = 3:1); m.p. = 127–129 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.86 (d, *J* = 4.0 Hz, 1H), 7.53 (d, *J* = 5.0 Hz, 1H), 7.42 (dd, *J*₁ = 9.0 Hz, *J*₂ = 4.0 Hz, 1H), 7.36 (dd, *J*₁ = 9.0 Hz, *J*₂ = 1.0 Hz, 1H), 7.14 (dt, *J*₁ = 5.0 Hz, *J*₂ = 1.0 Hz, 1H), 7.01 (t, *J* = 9.0 Hz, 1H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.1, 159.9 (d, *J* = 180.0 Hz), 146.6, 142.8 (d, *J* = 13.0 Hz), 130.6, 130.1, 129.1, 128.2, 112.4 (d, *J* = 26.0 Hz), 110.5 (d, *J* = 10.0 Hz), 106.1 (d, *J* = 25.0 Hz) ppm; IR (thin film): 1573, 1473, 1419, 1136, 1003, 853, 796, 772, 714, 697 cm⁻¹; HRMS calculated for C₁₁H₇FNOS, 220.0232, found 220.0234, [M+H]⁺.

5-Methyl-2-(thiophen-2-yl)benzoxazole (3x): This reaction was performed following General Procedure B with 5-methylbenzoxazole (**1d**, 16.0 mg, 0.12 mmol, 1.2 equiv) and 2-bromothiophene (**2o**, 10.0 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 3:97) to give the product (19.8 mg, 93% yield) as a yellow solid. ¹H NMR (500 MHz, CDCl₃): δ 7.85 (d, *J* = 3.0 Hz, 1H), 7.46–7.52 (m, 2H), 7.36 (d, *J* = 8.5 Hz, 1H), 7.13 (t, *J* = 5.0 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 1H), 2.43 (s, 3H)

ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 159.0, 148.6, 142.1, 134.4, 129.9, 129.7, 129.6, 128.0, 126.0, 119.6, 109.6, 21.4 ppm. The ${}^{1}H$ and ${}^{13}C{}^{1}H$ NMR data for this compound match the literature data. 18

5-Methoxy-2-(thiophen-2-yl)benzoxazole (3y): This reaction was performed following General Procedure B with 5-methoxybenzoxazole (**1e**, 17.9 mg, 0.12 mmol, 1.2 equiv) and 2-bromothiophene (**2o**, 10.0 μ L, 16.3 mg, 0.1 mmol, 1.0 equiv). The crude material was purified by flash chromatography on silica gel (eluted with EtOAc:hexanes = 3:97) to give the product (21.0 mg, 91% yield) as a yellow solid. R_f = 0.45 (EtOAc:Hexane = 3:1); m.p. = 88–90 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, *J* = 3.5 Hz, 1H), 7.49 (d, *J* = 5.0 Hz, 1H), 7.36 (d, *J* = 9.0 Hz, 1H), 7.18 (d, *J* = 2.5 Hz, 1H), 7.12 (t, *J* = 5.0 Hz, 1H), 6.88 (dd, *J*₁ = 9.0 Hz, *J*₁ = 2.5 Hz, 1H), 3.81 (s, 3H) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.6, 157.4, 144.9, 142.7, 129.9, 129.7, 129.5, 128.1, 113.4, 110.4, 102.7, 55.8 ppm; IR (thin film): 3117, 3005, 1611, 1584, 1481, 1438, 1421, 1339, 1289, 1153, 1006, 827 cm⁻¹; HRMS calculated for C₁₂H₁₀NOS, 232.0432, found 232.0432 [M+H]⁺.

References

- (1) (a) Peel, M. R.; Milstead, M. W.; Sternbach, D. D.; Besterman, J. M.; Leitner, P.; Morton, B.; Wall, M. E.; Wani, M. C. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 2129. (b) Williams, T. J.; Fairlamb, I. J. S. *Tetrahedron Lett.* **2013**, *54*, 2906. (c) Lee, J. J.; Kim, J.; Jun, Y. M.; Lee, B. M.; Kim, B. H. *Tetrahedron* **2009**, *65*, 8821.
- (2) Liu, Q.; Wu, P.; Yang, Y.; Zeng, Z.; Liu, J.; Yi, H.; Lei, A. Angew. Chem. Int. Edit. 2012, 51, 19, 4666.
- (3) Li, X.; Wan, B.; Yu, X. Org. Biomol. Chem. 2012, 10, 7479.
- (4) Nagarkar, J.; Sarode, S.; Shelkar, R. *Tetrahedron Lett.* **2013**, *54*, 6986.
- (5) Li, D.; Wang, L.; Wang, M.; Zhou, W.; Wang, L. *Tetrahedron* **2012**, *68*, 1926.
- (6) Kalkhambkar, R. G.; Laali, K. K. *Tetrahedron Lett.* **2012**, *53*, 4212.
- (7) Chen, F.; Yu, P.; Zhang, G.; Cheng, J. *Tetrahedron Lett.* **2012**, *53*, 4588.
- (8) Zhang, M.; Zhang, S.; Liu, M.; Cheng, J. Chem. Comm. 2011, 47, 11522.
- (9) Wu, X.-F.; Beller, M.; Neumann, H.; Neumann, S. Tetrahedron Lett. 2013, 54, 3040.

- (10) Dong, J. J.; Doucet, H.; Le G. R.; Roger, J.; Hoarau, C.; Martin, T.; Verrier, C. Green Chem. 2010, 12, 2053.
- (11) Ozokan, K. G.; Gumus, M. K.; Kaban, S. J. Heterocyclic Chem. 2008, 45, 1831.
- (12) Chen, Y.-X.; Han, B.; Qian, L.-F.; Zhang, W. Angew. Chem. Int. Ed. 2008, 47, 9470.
- (13) Wu, M.; Hu, X.; Liu, J.; Liao, Y.; Deng, G.-J. Org. Lett. 2012, 14, 2722.
- (14) Amaike, K.; Itami, K.; Muto, K.; Yamaguchi, J. J. Am. Chem. Soc. 2012, 134, 13573.
- (15) Wu, X.-F.; Beller, M.; Neumann, H.; Neumann, S.; *Tetrahedron Lett.* **2013**, *54*, 3040.
- (16) Kumar, R.; Nair, R. R.; Prakash, O.; Dhiman, S. S.; Sharma, J. Med. Chem. Res. 2010, 19, 541.
- (17) Jung, M. H.; Park, J.-G.; Ryu, B.-S.; Cho, K.-W. J. Heterocyclic Chem. **1999**, *36*, 429.
- (18) Blacker, A. J.; Farah, M. M.; Marsden, S. P.; Hall, M. I.; Saidi, O.; Williams, J. M. J. *Org. Lett.*, **2009**, *11*, 2039.

2-(4-Tert-butylphenyl)benzoxazole (3a)

Fig. S1 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3a** in CDCl₃

2-Phenylbenzoxazole (3b)

Fig. S2 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3b** in CDCl₃

2-(4-Methoxyphenyl)benzoxazole (3c)

Fig. S3 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3c in CDCl₃

2-(4-N,N-Dimethylanilinephenyl)benzoxazole (3d)

Fig. S4 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3d in CDCl₃

2-(4-Chlorophenyl)benzoxazole (3e)

Fig. S5 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3e** in CDCl₃

2-(4-Fluorophenyl)benzoxazole (3f)

1.60

130 120 110

70 ea

4-(Benzoxazol-2-yl)benzonitrile (3g)

Fig. S7 ¹H (500 MHz) and ¹³C{¹H} NMR (125 MHz) NMR spectra of 3g in CDCl₃

4-(Benzoxazol-2-yl)-N-methylbenzamide (3h)

Fig. S8 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3h** in CDCl₃

2-o-Tolylbenzoxazole (3i)

Fig. S9 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3i** in CDCl₃

2-(Naphthalen-1-yl)benzoxazole (3j)

Fig. S10 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3j in CDCl₃

$\label{eq:constraint} 2-(2-(Trifluoromethyl)phenyl) benzoxazole~(3k) \hfill \$

Fig. S11 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3k in CDCl₃

2-(Quinolin-4-yl)benzoxazole (3l)

Fig. S12 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3l in CDCl₃

2-(Furan-2-yl)benzoxazole (3m)

Fig. S13 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3m** in CDCl₃

2-(Pyridin-3-yl)benzoxazole (3n)

Fig. S14 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3n** in CDCl₃

2-(Thiophen-2-yl)benzoxazole (30)

Fig. S15 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 30 in CDCl₃

2-(Thiophen-3-yl)benzoxazole (3p)

Fig. S16 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of **3p** in CDCl₃

2-(Benzo[b]thiophen-3-yl)benzoxazole (3q)

Fig. S17 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3q in CDCl₃

4-(Benzoxazol-2-yl)-2,3-dihydro-1*H*-inden-1-one (3r)

Fig. S18 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3r in CDCl₃

2-(Benzofuran-5-yl)benzoxazole (3s)

Fig. S19 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3s in CDCl₃

5-Chloro-2-(thiophen-2-yl)benzoxazole (3t)

Fig. S20 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3t in CDCl₃

5-Chloro-2-(thiophen-3-yl)benzoxazole (3u):

Fig. S21 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3u in CDCl₃

5-Chloro-2-(pyridin-3-yl)benzoxazole (3v)

Fig. S22 ¹H (500 MHz) and ¹³C{¹H} NMR (125 MHz) NMR spectra of 3v in CDCl₃

5-Fluoro-2-(thiophen-2-yl)benzoxazole (3w)

Fig. S23 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3w in CDCl₃

5-Methyl-2-(thiophen-2-yl)benzoxazole (3x)

Fig. S24 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3x in CDCl₃

5-Methoxy-2-(thiophen-2-yl)benzoxazole (3y)

Fig. S25 1 H (500 MHz) and 13 C{ 1 H} NMR (125 MHz) NMR spectra of 3y in CDCl₃