Carbon-Centered Radicals Add Reversibly to Histidine – Implications

Supplementary Information

Thomas Nauser^{*} and Anna Carreras

Laboratorium für Anorganische Chemie, Departement für Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog Weg 2, CH-8093 Zürich, Switzerland. E-mail: <u>nauser@ethz.ch</u>

Fig. S1: Absorption at 360 nm, 5 μ s after irradiation (50 Gy) of N₂O saturated aqueous solutions of 1 M *t*-BuOH containing variable amounts of HisNH₂. The optical pathlength is 6 cm. The curve represents a fit for K₅ = 3×10³ M⁻¹ and ϵ_{360nm} ([HisNH₂^{...}*t*-BuOH][•]) = 4 × 10² M⁻¹cm⁻¹. At [HisNH₂] > 3 mM the absorption increases unexpectedly.

Fig. S2: Plot of $1/k_{obs}$ vs. [HisNH₂] for the decay of absorption after irradiation (50 Gy) of N₂O saturated aqueous solutions of 1 M *t*-BuOH containing variable amounts of HisNH₂. Because we are using absorption data and not concentration data, the observed rate constant (k_{obs}) is dependent both on the difference in molar absorptivity between products and reactants ($\Delta \varepsilon$) and the optical pathlength (I), $k_{obs} = 2k_{2.O}/(\Delta \varepsilon \times I)$. Due to equilibrium 5, the second order rate constant $k_{2.O}$ is dependent on the availability of free *t*-[•]BuOH: $k_{2.O} = k_6/(1+K_5[\text{HisNH}_2])$. With $k_{obs} \times \Delta \varepsilon \times I = 2k_6/(1+K_5[\text{HisNH}_2])$, a plot $1/k_{obs}$ vs. [HisNH₂] follows the equation y = (($1+K_5[\text{HisNH}_2]$) × $\Delta \varepsilon \times I$) / $2k_6$. So, slope = $K_5 \times \Delta \varepsilon \times I / 2k_6$, offset = $\Delta \varepsilon \times I / 2k_6$ and K_5 = slope/offset. We find $K_5 \approx 4 \times 10^3 \text{ M}^{-1}$ at low concentrations. At [HisNH₂] \approx 3 mM, the slope changes distinctly and the chemical reactions responsible for the absorbance decay must change, too.

Fig. S3: Spectrum of N₂O saturated aqueous solutions containing 4.1 mM HisNH₂ and 10 % MeOH (v/v) , 2 μ s after irradiation (50 Gy, optical pathlength 6 cm). Under these conditions, H-atoms are scavenged quantitatively and the curve is dominated by the adduct of the hydroxymethyl radical to HisNH₂. Two maxima at around 300 nm and 360 nm are visible. Hydroxymethyl radicals contribute to the observed absorption at λ < 320 nm.

