# Preparation of Highly Substituted ( $\beta$-Acylamino)acrylates via Iron-catalyzed Alkoxycarbonylation of $N$-Vinylacetamides with <br> Carbazates 

Ran Ding, ${ }^{\text {a }}$ Qiu-Chi Zhang, ${ }^{\text {a }}$ Yun-He Xu, ${ }^{\text {a } *}$ and Teck-Peng Loh ${ }^{\text {a,b }}$ *<br>${ }^{a}$ Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, University of Sciences and Technology of China, Hefei, Anhui 230026, P.R. China.<br>${ }^{b}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

## Supporting Information

## Table of Contents

1. General information .....  2
2. Typical procedure for the synthesis of compound $3 \mathrm{a}-3 \mathrm{r}$ ..... 2
3. Typical procedure for the synthesis of compound $4 a-41$ ..... 2
4. Procedure for the gram-scale synthesis of compound 3a ..... 3
5. Characterization data for the products ..... 3
6. References ..... 15
7. NMR spectra for the products ..... 16

## 1. General information

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at $25^{\circ} \mathrm{C}$ on Bruker Advance 400 M NMR spectrometers ( $\mathrm{CDCl}_{3}$ as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as $\delta$ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of $\mathrm{SiMe}_{4}(\delta 0.00$ singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplets) and etc. Coupling constants are reported as a $J$ value in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra are reported as $\delta$ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform-d ( $\delta 77.00$ triplet). High resolution mass spectral analysis (HRMS) was performed on Waters-XEVOG2 Q-TOF (Waters Corporation). IR spectra were recorded on a commercial FT/IR spectrometer. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system.

## 2. Procedure for the synthesis of compound $3 \mathrm{a}-3 \mathrm{r}$.

To a stirred solution of $\mathbf{1}(0.3 \mathrm{mmol}), \mathbf{2}(0.6 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol})$ and $[\mathrm{Fe}(\mathrm{Pc})]$ ( 0.03 mmol ) in $\mathrm{MeCN}(1.5 \mathrm{~mL}$ ) was added TBHP ( $120 \mu \mathrm{~L}, 5-6 \mathrm{M}$ in decane ) slowly under an air atmosphere at room temperature. The mixture was heated at $60^{\circ} \mathrm{C}$ for 2 h and then cooled to room temperature. The excess solvent was removed under vacuum, then the residue was directly purified by silica gel column chromatography (petroleum/ethyl acetate $=4: 1$ ) to give the desired product. The stereoselectivity $(E / Z)$ was determined from the ${ }^{1} \mathrm{H}$ NMR spectra recorded for the crude products.

## 3. Procedure for the synthesis of compound 4a-4l.

To a stirred solution of $\mathbf{1}(0.3 \mathrm{mmol}), \mathbf{2}(0.6 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol})$ and $[\mathrm{Fe}(\mathrm{Pc})]$ ( 0.03 mmol ) in $\mathrm{MeCN}(1.5 \mathrm{~mL}$ ) was added TBHP ( $120 \mu \mathrm{~L}, 5-6 \mathrm{M}$ in decane ) slowly under an air atmosphere at room temperature. The mixture was continued to react at
room temperature for 1 h . The excess solvent was removed under vacuum, and the residue was directly purified by silica gel column chromatography (petroleum/ethyl acetate $=4: 1$ ) to afford the desired product.

## 4. Procedure for the gram-scale synthesis of compound Зa.

To a stirred solution of $\mathbf{1 a}(1 \mathrm{~g}, 6.2 \mathrm{mmol}), \mathbf{2 a}(1.12 \mathrm{~g}, 12.4 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.02 \mathrm{~g}, 0.3$ $\mathrm{mmol})$ and $[\mathrm{Fe}(\mathrm{Pc})](0.35 \mathrm{~g}, 0.62 \mathrm{mmol})$ in $\mathrm{MeCN}(30 \mathrm{~mL})$ was added TBHP ( $2.48 \mathrm{~mL}, 5-6 \mathrm{M}$ in decane ) slowly under an air atmosphere at room temperature. The mixture was heated at $60^{\circ} \mathrm{C}$ for 2 h and then cooled to room temperature. The excess solvent was removed under vacuum, then the residue was directly purified by silica gel column chromatography (petroleum/ethyl acetate $=4: 1$ ) to give the desired product $3 \mathbf{a}$ in $61 \%$ yield, 0.83 g . The stereoselectivity (E/Z) was determined by the ${ }^{1} \mathrm{H}$ NMR spectra recorded for the crude product.

## 5. Characterization data for the products

## (Z)-methyl 3-acetamido-3-phenylacrylate (3a)


$3 \mathbf{a}^{[2]}$ was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 7.40-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $=169.12,168.51,154.86,135.97,129.75,128.18,127.19,100.67,51.53,24.92 \mathrm{ppm}$. HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 242.0793$, found: 242.0790 . FTIR: $3289,3059,2950,1723,1678,1624,1289,1174,770,697,585,517 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(2-methoxyphenyl)acrylate (3b)



3b was obtained as a white solid . ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.35$ $(\mathrm{ddd}, J=8.3,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.56,167.53,156.83,152.73,130.63,128.84$, $125.74,120.50,110.35,98.86,55.74,51.39,24.81 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 272.0899, found: 272.0893. FTIR: $3263,3078,2958,1728,1667,1625,1491,1302,1194,750,588,502 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(4-methoxyphenyl)acrylate (3c)



3c was obtained as white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.56(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.17$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.23,168.74,161.05,154.51,128.79$, $128.03,113.65,99.62,55.41,51.44,25.03 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 272.0899$, found: 272.0895 . FTIR: $3332,2969,2833,1682,1624,1508,1286,1165,1026,823,560,489 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(o-tolyl)acrylate (3d)



3d was obtained as white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.03(\mathrm{~s}, 1 \mathrm{H}), 7.29$ $-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=169.53,167.52,155.00,136.21,135.23,129.76$, $128.82,127.48,125.61,98.83,51.44,24.73,19.54 \mathrm{ppm}$.

HRMS (ESI): m/z calculated forC ${ }_{13} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0950$, found: 256.0952.
FTIR: 3278, 3063, 2951, 1727,1677, 1620,1487, 1295, 1175, 770, 602, 585, $472 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(m-tolyl)acrylate (3e)



3e was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 7.32$ $7.13(\mathrm{~m}, 4 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.15,168.54,155.03,137.88,135.93,130.60,128.05,127.73$, 124.39, 100.56, 51.51, 24.93, 21.55 ppm .

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0950$, found: 219.0948.
FTIR: 3289, 3059, 2950, 1723,1678, 1624, 1289, 1174, 770, 697,5 85, $517 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(p-tolyl)acrylate (3f)



3f was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.16$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=169.16,168.60,154.88,139.99,133.00$, 128.92, 127.14, 100.16, 51.46, 24.94, 21.50 ppm .

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0950$, found: 256.0944 . FTIR: 3263, 3078, 2958, 1728, 1667, 1625, 1491, 1275, 1022, 750, 588, $502 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(naphthalen-2-yl)acrylate (3g)


$3 g$ was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.71(\mathrm{~s}, 1 \mathrm{H}), 7.94-$ $7.77(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.40(\mathrm{~m}, 3 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.17,168.60,154.86,134.00,133.70,133.00,128.63$, $127.85,127.57,127.02,126.53,124.93,100.91,51.60,24.94 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 292.0950, found: 292.0950 . FTIR: 3277, 3057, 2922, 1722, 1674, 1617, 1286, 1167, 818, 745, $480 \mathrm{~cm}^{-1}$.

## (E)-methyl 3-acetamido-3-(naphthalen-2-yl)acrylate (3g')



3g' obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 7.79 (s, 1H), $7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}$, $1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.02,167.72$, 149.19, 134.15, 133.65, 133.01, 128.39, 128.19, 127.99, 127.15, 127.13, 126.73, 126.15, 103.88, 51.16, 25.14ppm.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 292.0950, found: 292.0952 . FTIR: 3276, 3135, 2947, 1716, 1678, 1513, 1284, 1142, 820, $747,474 \mathrm{~cm}^{-1}$.

## (Z)-methyl 3-acetamido-3-(4-fluorophenyl)acrylate(3h)



3h was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.62(\mathrm{~s}, 1 \mathrm{H}), 7.48-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=169.03,168.58,163.66(\mathrm{~d}, J=249 \mathrm{~Hz}), 153.73,131.92$ $(\mathrm{d}, J=4 \mathrm{~Hz}), 129.16(\mathrm{~d}, J=9 \mathrm{~Hz}), 115.31(\mathrm{~d}, J=22 \mathrm{~Hz}), 100.66,51.59,24.95 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 260.0699$, found: 260.0694 . FTIR: $3263,3044,2956,1724,1623,1509,1295,1172,844,779,544 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(4-chlorophenyl)acrylate (3i)


$3 i$ was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.60(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta=168.93,168.53,153.54,135.73,134.38,128.49,128.45$, 100.93, 51.61, 24.87 ppm.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 276.0403$, found: 276.0401 . FTIR: 3270, 2952, 1723, 1673, 1624, 1491, 1290, 1177, 813, 529, $474 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(4-bromophenyl)acrylate (3j)



3j was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.60(\mathrm{~s}, 1 \mathrm{H}), 7.49$ (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.94,168.55,153.62,134.88,131.43,128.74,124.05$, $100.95,51.64,24.89 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 319.9898$, found: 319.9898 FTIR: 3286, 2950, 1723, 1681, 1622, 1488, 1288, 1176, 820, 717, $522 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(4-iodophenyl)acrylate (3k)



3k was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.59(\mathrm{~s}, 0 \mathrm{H}), 7.69$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 0 \mathrm{H}), 3.76(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ $(\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.94,168.54,153.74,137.36$, 135.51, 128.82, 100.96, 95.99, 51.65, 24.88 ppm .

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 367.9760$, found: 367.9758 FTIR: 3435, 3242, 2957, 1727,1673, 1619, 1848, 1288, 1176, 816, 697, 520, $467 \mathrm{~cm}^{-1}$

## (Z)-methyl 4-(1-acetamido-3-methoxy-3-oxoprop-1-en-1-yl)benzoate

(3I)


31 was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.63(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.87,168.46,166.62,153.64,140.49$, $131.02,129.48,127.16,101.59,52.34,51.69,24.79 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 300.0848$, found: 300.0847 . FTIR: 3326, 2953, 1710, 1680, 1628, 1501, 1432, 1285, 1172, 1109, 855, 776, 709, $566 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(benzofuran-3-yl)acrylate (3m)



3m was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.15(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.75,168.74,155.02,149.67,142.47,128.00,126.10,123.29,121.93,111.46$, 109.77, 101.27, 51.64, 24.59 ppm.

HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 282.0742$, found: 282.0739 .

FTIR: 3293, 3014, 2946, 1711, 1692, 1630, 1556, 1283, 1217, 816, 755, 628, 512 $\mathrm{cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(furan-3-yl)acrylate (3n)



3n was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}$, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=3.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.52(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=169.03$, $168.78,147.38,137.74,128.58,128.10,127.38,100.89,51.59,24.90 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 232.0586$, found: 232.0583 . FTIR: 3290, 3101, 2949, 1681, 1616, 1510, 1273, 1171, 1042, 827, $710 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-(thiophen-3-yl)acrylate (3o)



3o was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}, J=3.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.22,168.78,148.08$, $144.23,142.54,113.93,112.02,98.73,51.61,24.77 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 248.0357$, found: 248.0358. FTIR: 3303, 3143, 2951, 1718, 1629, 1475, 1289, 1199, 822, 748, 592, $504 \mathrm{~cm}^{-1}$

## (Z)-methyl 3-acetamido-3-cyclohexylacrylate (3p)



3p was obtained as white solid.1H NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 5.01$ (s, $1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.65$ $(\mathrm{m}, 3 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $170.22,168.52,164.68,92.69,51.16,39.41,32.18,26.40,26.30,25.72 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 248.1263$, found: 248.1260 . FTIR: 3429, 2927, 2853, 1717, 1674, 1628, 1493, 1250, 1222, 1165, 814, $670 \mathrm{~cm}^{-1}$

## (Z)-ethyl 3-acetamido-3-phenylacrylate (3q)


$3 q$ was obtained as colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.64(\mathrm{~s}, 1 \mathrm{H}), 7.49-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.70,168.52,154.59,136.00,129.65,128.13$, $127.15,101.18,60.39,24.88,14.36 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 256.0950$, found: 256.0948. FTIR: 3293, 2979, 1723, 1672, 1622, 1491, 1285, 1179, 1036, 769, $697 \mathrm{~cm}^{-1}$

## (Z)-N-(3-oxo-1,3-diphenylprop-1-en-1-yl)acetamide (3r)


$3 \mathbf{r}$ was obtained as yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 12.27(\mathrm{~s}, 1 \mathrm{H}), 8.00-$ $7.93(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 7 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=191.79,169.03,156.36,138.71,136.33,132.87,129.93$, $128.78,128.21,127.93,127.50,104.90,25.21 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 288.1000$, found: 288.0009. FTIR: $3294,3059,1718,1623,1570,1442,1289,1211,1043,759,694,525 \mathrm{~cm}^{-1}$


4a was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.18(\mathrm{~s}, 1 \mathrm{H}), 8.15-$ $8.17(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.32(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.56,167.74,151.38,143.75,137.96,128.79,126.94$, 126.72, 124.10, 112.89, 51.57, 35.51, 24.75 ppm .

HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 254.0793$, found: 254.0795 . FTIR: 3288, 2953, 1703, 1674, 1618, 1501, 1379, 1329, 1198, 762, 636, $528 \mathrm{~cm}^{-1}$

## methyl 3-benzamido-1H-indene-2-carboxylate (4b)



4b was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.20(\mathrm{~s}, 1 \mathrm{H}), 8.48-$ $8.25(\mathrm{~m}, 1 \mathrm{H}), 8.22-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.34(\mathrm{~m}, 6 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.15,165.13,151.98,143.92,137.87,133.86,132.62$, $129.03,128.89,128.07,127.23,126.80,124.17,113.29,51.71,35.61 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 316.0950$, found: 316.0948. FTIR: 3274, 2947, 1692, 1662, 1613, 1565, 1328, 1271, 1204, 1010, 757, 705, 762 $\mathrm{cm}^{-1}$

## methyl 3-pivalamido-1H-indene-2-carboxylate (4c)



4c was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.51(\mathrm{~s}, 1 \mathrm{H}), 8.22-$ $8.13(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.28(\mathrm{~m}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=177.42,167.86,151.99,143.87,138.06,128.72,127.11$, $126.65,124.06,112.83,51.59,40.18,35.54,27.77 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 296.1263$, found: 296.1254.

FTIR: 3306, 2965, 1702, 1677, 1617, 1491, 1255, 1204, 759, $554 \mathrm{~cm}^{-1}$
methyl 3-acetamido-5-methoxy-1H-indene-2-carboxylate (4d)


4d was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.60,167.75$, $158.75,151.41,139.03,136.19,124.56,116.97,113.85,110.75,55.66,51.56,34.75$, 24.80 ppm .

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 284.0899$, found: 284.0896 FTIR: $3286,2957,1717,1668,1594,1570,1303,1258,1230,1030,819,764,554$ $\mathrm{cm}^{-1}$

## methyl 3-acetamido-5-methyl-1H-indene-2-carboxylate(4e)



4e was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 7.95$ (s, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.41$ $(\mathrm{s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.59,167.76,151.36,140.97$, 138.13, 136.38, 129.90, 127.15, 123.78, 113.29, 51.52, 35.11, 24.7421 .74 ppm.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 268.0950$, found: 268.0946. FTIR: 3278, 2946, 1688, 1593, 1432, 1304, 1253, 1193, 1084, 813, $682 \mathrm{~cm}^{-1}$
methyl 3-acetamido-7-acetoxy-1H-indene-2-carboxylate (4f)


4f was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.13(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}$, $2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.80,168.55$, $167.44,150.80,146.43,140.11,135.20,128.22,125.09,121.99,113.04,51.66,32.87$, 24.73, 21.02 ppm .

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 312.0848$, found: 312.0845 . FTIR: $3288,2954,1766,1701,1673,1504,1385,1210,953,750,672,551 \mathrm{~cm}^{-1}$

## methyl 3-acetamido-5-fluoro-1H-indene-2-carboxylate(4g)


$\mathbf{4 g}$ was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{dd}$, $J=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{td}, J=8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.58$, 167.47, $161.85(J=241), 150.58(J=3), 139.55(J=10), 139.06(J=2), 124.85(J=$ $8), 116.05(J=23), 114.55,114.03(J=25), 51.68,34.88,24.68 \mathrm{ppm}$.

HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 272.0699$, found: 272.0696 FTIR: $3219,2955,1713,1663,1575,1431,1298,1207,823,771,549 \mathrm{~cm}^{-1}$

## methyl 3-acetamido-6-bromo-1H-indene-2-carboxylate (4h)



4h was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6,1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.62,167.50,150.64,145.57,136.89,130.01$, $128.40,127.34,123.53,112.82,51.70,35.38,24.75 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 331.9898$, found: 331.9895 . FTIR: 3284, 2958, 1685, 1681, 1613, 1326, 1247, 1201, 854, $649 \mathrm{~cm}^{-1}$
methyl 7-acetamido-5H-indeno[5,6-d][1,3]dioxole-6-carboxylate (4i)

$4 i$ was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (s, $1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.63,167.41,151.54,149.37,147.01,139.63,131.60,111.71$, 107.13, 104.65, 101.64, 51.41, 35.34, 24.76 ppm.

HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}$: 298.0691 , found: 298.0695 FTIR: 3289, 2950, 1688, 1671, 1587, 1469, 1385, 1231, 1035, 933, $669 \mathrm{~cm}^{-1}$
methyl 3-acetamido-1-methyl-1H-indene-2-carboxylate (4j)


4j was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.26(\mathrm{~s}, 1 \mathrm{H}), 8.19-$ $8.04(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=168.62$, 167.86, 151.03, $150.18,136.38,129.06,126.99,126.79,123.00,118.34,51.47,41.47,24.78,17.33$ ppm.

HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 268.0950$, found: 268.0947 FTIR: 3302, 2950, 1715, 1664, 1614, 1568, 1385, 1254, 1196, 1091, 756, $536 \mathrm{~cm}^{-1}$

## methyl 1-acetamido-3,4-dihydronaphthalene-2-carboxylate (4k)



4k was obtained as white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.14(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{dd}$, $J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.57$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.64,169.12$,
$145.71,137.87,130.22,129.73,127.41,127.01,126.00,113.71,52.02,27.72,24.65$, 22.38 ppm .

HRMS (ESI): m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 268.0950$, found: 268.0942 FTIR: 3259, 2945, 2835, 1696, 1664, 1527, 1313, 1122, 997, 766, 729, $575 \mathrm{~cm}^{-1}$

## methyl 9-acetamido-6,7-dihydro-5H-benzo[7]annulene-8-carboxylate

 (41)

41 was obtained as white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.61(\mathrm{~s}, 1 \mathrm{H}), 7.31-$ $7.19(\mathrm{~m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-1.98(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=169.94,168.76,148.81,140.53,135.96,129.18,128.85$, $127.45,125.83,110.51,51.90,34.65,31.42,24.77,23.92 \mathrm{ppm}$.

HRMS (ESI): m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 282.1106$, found: 282.1102 FTIR: $3252,3016,2935,1708,1669,1620,1530,1427,1324,1199,767,561 \mathrm{~cm}^{-1}$

## 4. References

[1] Taniguchi, T.; Sugiura, Y.; Zaimoku, H.; Ishibashi, H. Angew.Chem., Int. Ed. 2010, 49, 10154.
[2] Ch Chen.; E Zhan.; Y Li.;W Shen. J. Mole .Cat A:Chemical.2013, 379,117.
6. NMR spectra for the products


3a

















$\stackrel{\leftrightarrow}{\stackrel{\leftrightarrow}{i}}$



3d








$$
\begin{aligned}
& \stackrel{-}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{i}{i} \\
& \begin{array}{l}
-24.94 \\
-21.50
\end{array}
\end{aligned}
$$








3g'




| L 169.02 |
| :--- |
| 167.72 |
| -149.19 |
| $\left[\begin{array}{l}134.15 \\ 133.65 \\ 133.01 \\ 128.39 \\ 128.19 \\ 127.99 \\ 127.15 \\ 127.13 \\ 126.73 \\ 126.15\end{array}\right.$ |
| -103.88 |



| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\underset{1}{100}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |









$3 i$






 ..... 

$\stackrel{\infty}{\infty}$


(


$$
\begin{aligned}
& \begin{array}{r}
3 \\
i \\
i \\
i \\
i
\end{array} \\
& \stackrel{\infty}{\stackrel{\infty}{+}} \stackrel{+}{1}
\end{aligned}
$$















3o


|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ¢ | $\begin{aligned} & \text { NO } \\ & \underset{\sim}{i} \end{aligned}$ | $\cdots$ | $\stackrel{\infty}{+}$ | $\bar{\square}$ |
| $\stackrel{\circ}{0}$ | ¢ J | $\stackrel{N}{=}$ | $\infty$ | 人N® | in |
| $\checkmark$ | $11 /$ | $1 /$ | \| | $\checkmark$ | , |



$\stackrel{\circ}{\underset{1}{=}}$





$3 q$





$-25.21$



4a







|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{m}{\infty}$ | $\cdots$ ¢ | $\stackrel{+}{+}$ | $\cdots$ | $\bar{\square}$ |
| $\bigcirc$ |  | Nペ | in | $\cdots$ |
| , | $\xrightarrow{\sim}$ | - |  |  |







|  |  | 1 |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\stackrel{W}{\aleph}$ |  |  |  | $\xrightarrow{7}$ | T | $\begin{aligned} & \text { Ț1 } \\ & \underset{\sim}{2} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3.0 | 11.511 .0 | 10.510 .0 | 9.5 | 9.0 | 8.5 | 8.0 | ${ }_{7}^{1} 5$ | 7.0 | 6.5 | 6. ${ }_{\text {f1 }}$ |  | 5.0 | 4. 5 | 4. 0 | 3.5 | 3.0 |  | 2.0 | 1.5 | 1. 0 | ${ }_{0}^{1} 5$ | ${ }^{1} .0$ | ${ }_{-0}$ |




$\stackrel{\text { I }}{\stackrel{y}{\infty}}$










$4 g$



$$
\begin{aligned}
& \begin{array}{ccc}
\infty & \infty & \infty \\
\stackrel{\infty}{n} & \dot{\infty} & \stackrel{\infty}{\sim} \\
\dot{\sim} & i & i
\end{array}
\end{aligned}
$$







(c)




4j






|  | $\stackrel{\infty}{\infty}$ | $\underbrace{\text { ancinginiog }}$ |
| :---: | :---: | :---: |
| $\|\mid$ |  | $\iint$ |








