Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Stepwise assembly of an adamantanoid Ru₄Ag₆ cage by control of metal coordination geometry at specific sites.

Alexander J. Metherell and Michael D. Ward

Supporting Information

Preparations of complexes	S2
Crystallographic data	S3
Bond lengths from crystal structures	S4
Figs. S1 and S2 (additional illustrations of crystal structure)	S5-S6
Figs S3 – S7 (additional ¹ H NMR / COSY / DOSY spectra)	S6-S9

Preparations of complexes

Preparation of *fac*–[**Ru**(L^{ph})₃][**PF**₆]₂. A mixture of *fac*-[Ru(PyPzH)₃](PF₆)₂ (0.05 g, 0.05 mmol; preparation in ref. 12a) and intermediate **A** (0.11 g, 0.33 mmol; preparation in ref. S1), Cs₂CO₃ (0.15 g, 0.46 mmol), Bu₄NI (0.10 g, 0.27 mmol) and CH₂Cl₂ (20 cm³) was heated to reflux in the dark with stirring for 48 h. After cooling to room temperature, excess Cs₂CO₃ was filtered off and the solvent removed by rotary evaporation, before purification of the yellow solid by column chromatography on silica by elution with MeCN–water–saturated aqueous KNO₃ (100:10:5 ratio by volume). After removing acetonitrile by rotary evaporation, excess saturated aqueous KPF₆ was added and the product was extracted from the suspension into dichloromethane. The organic layer was separated, dried over MgSO₄, and the solvent removed *in vacuo* to yield *fac*–[Ru(L^{ph})₃][PF₆]₂ as a yellow solid in 68% yield. Slow diffusion of di-isopropyl ether vapour into a solution of the complex in acetone afforded the product as yellow needles.

¹H NMR (400 MHz, CD₃CN): δ 8.58 (1H, ddd, *J* = 4.7, 1.8, 0.8; pendant pyridyl H⁶), 8.00 (1H, td, *J* = 8.0, 1.0; pendant pyridyl H³), 7.83 (1H, d, *J* = 2.2; pendant pyrazolyl), 7.79 (1H, td, *J* = 7.8, 1.8; pendant pyridyl H⁴), 7.71 (1H, d, *J* = 2.9; coordinated pyrazolyl), 7.61 (1H, td, *J* = 7.8, 1.4; coordinated pyridyl H⁴), 7.27 (1H, ddd, *J* = 7.4, 4.9, 1.1; pendant pyridyl H⁵), 7.24 (1H, d, *J* = 8.0; coordinated pyridyl H³), 7.03 (1H, ddd, *J* = 7.9, 5.7, 1.4; coordinated pyridyl H⁵), 6.98 (1H, d, *J* = 2.2; pendant pyrazolyl), 6.94 (1H, d, *J* = 5.7; coordinated pyridyl H⁶), 6.88 (2H, d, *J* = 8.2; phenyl H³), 6.54 (1H, d, *J* = 2.9; coordinated pyrazolyl), 5.91 (2H, d, *J* = 8.2; phenyl H²), 5.48 (1H, d, *J* = 17.3; CH₂ closer to Ru, 5.29 (2H, s; CH₂ further from Ru), 4.78 (1H, d, *J* = 17.3; CH₂ closer to Ru). ESMS: *m/z* 1424 (M – PF₆)⁺, 639 (M – 2PF₆)²⁺. Found: C, 54.9; H, 3.9; N, 16.0. C₇₂H₆₀F₁₂N₁₈P₂Ru requires C, 55.1; H, 3.9; N, 16.1%. UV/Vis in MeCN [λ_{max}/nm (10⁻³ ε/M^{-1} cm⁻¹)]: 399 (12.6), 282 (64.4), 250 (66.3).

Preparation of [Ru₄Ag₆(L^{Ph})₁₂](PF₆)₁₄. To a solution of *fac*-[Ru(L^{Ph})₃](PF₆)₂ (0.023 g, 0.015 mmol) in CH₃CN (1 cm³) was added a solution of AgPF₆ (0.007 g, 0.028 mmol, 1.8 eq) in CH₃CN (1 cm³). The solution was mixed vigorously for 16h and then evaporated to dryness. The yellow residue was washed with MeOH and dried *in vacuo*. Slow diffusion of di-isopropyl ether vapour into a solution of the complex in acetonitrile afforded the product as yellow blocks. ESMS: *m/z* 2452 {(Ru₄Ag₆(L^{Ph})₁₂)(PF₆)₁₁}³⁺; 1803 {(Ru₄Ag₆(L^{Ph})₁₂)(PF₆)₁₀}⁴⁺; 1678 {(RuAg(L^{Ph})₃)(PF₆)}⁺; 1154 {(Ru₄Ag₆(L^{Ph})₁₂)(PF₆)₈}⁶⁺; 892 {(RuAg₂(L^{Ph})₃)(PF₆)₂}²⁺; 546 {(RuAg₂(L^{Ph})₃)(PF₆)}³⁺. The vacuum-dried material gave elemental analyses consistent with absorption of large numbers of H₂O molecules. Anal. Calcd for [Ru₄Ag₆(L^{pPh})₁₂](PF₆)₁₄•9H₂O: C, 43.5; H, 3.3; N, 12.7%. Found: C, 43.8; H, 3.6; N, 12.8%. Yield based on this formulation: ca. 80%.

- S1 S. P. Argent, H. Adams, L. P. Harding, T. Riis-Johannessen, J. C. Jeffery and M. D. Ward, *New J. Chem.*, 2005, **29**, 904.
- S2 (a) http://spdbv.vital-it.ch; (b) N. Guex and M. C. Peitsch, *Electrophoresis*, 1997, **18**, 2714

Crystallographic data

Crystal data for *fac*-[Ru(L^{ph})₃][PF₆]₂•acetone: C₇₅H₆₆F₁₂N₁₈OP₂Ru, *M* = 1626.47 g mol⁻¹, orthorhombic, space group *P*bca, *a* = 23.2400(17), *b* = 13.2721(9), *c* = 47.443(3) Å, *U* = 14633.5(17) Å³, *Z* = 8, *T* = 100(2) K, λ (Mo-K α) = 0.71073 Å. 38114 reflections were collected ($2\theta_{max} = 44^{\circ}$) which after merging afforded 8193 independent reflections with *R*_{int} = 0.099. Final *R*1 [*I* > 2 σ (I)] = 0.133; *wR*2 (all data) = 0.310.

Crystal data for [{Ru(L^{ph})₃}₄Ag₆](PF₆)₁₄: C₂₈₈H₂₄₀Ag₆F₈₄N₇₂P₁₄Ru₄, *M* = 7790.59 g mol⁻¹, monoclinic, space group *P*2/n, *a* = 24.688(3), *b* = 30.324(4), *c* = 25.247(3) Å, *b* = 102.819°, *U* = 18430(4) Å³, *Z* = 2, *T* = 100(2) K, λ (Mo-K α) = 0.71075 Å. 167655 reflections were collected (2 θ _{max} = 45°) which after merging afforded 24082 independent reflections with *R*_{int} = 0.065. Final *R*1 [*I* > 2 σ (I)] = 0.141; *wR*2 (all data) = 0.429.

In both cases crystals scattered weakly due to the complexity of the molecules and the presence of solvation and disorder of solvents / anions; however the quality of the refinement is in each case sufficient to establish the structures and connectivities. Both structures contain a solvent-accessible void containing diffuse electron density that could not modelled satisfactorily and was removed from the final refinement using the SQUEEZE function in PLATON: full details are in the CIFs. The datasets were collected at the EPSRC National Crystallography Service at the University of Southampton (ref. S3) and solved / refined using the SHELX software package (ref. S4).

S3 S. J. Coles and P. A. Gale, *Chem. Sci.*, 2012, **3**, 683.

S4 G. M. Sheldrick, *Acta Crystallogr., Sect. A*, 2008, **64**, 112.

Table S1: Metal-ligand bond distances (Å) in the structure of fac-[Ru(L^{ph})₃][PF₆]₂• acetone

Ru(1)-N(11B)	2.062(12)	
Ru(1)-N(22C)	2.070(12)	
Ru(1)-N(11A)	2.075(11)	
Ru(1)-N(22A)	2.092(12)	
Ru(1)-N(11C)	2.100(11)	
Ru(1)-N(22B)	2.103(12)	

Table S2: Metal-ligand bond distances (Å) in the structure of [Ru₄Ag₆(L^{Ph})₁₂](PF₆)₁₄

Ag(1)-N(52D)	2.288(7)	Ru(1)-N(21B)	2.053(5)
Ag(1)-N(41C)	2.328(7)	Ru(1)-N(22C)	2.058(7)
Ag(1)-N(52C)	2.332(6)	Ru(1)-N(11A)	2.073(7)
Ag(1)-N(41D)	2.354(7)	Ru(1)-N(11C)	2.087(5)
Ag(2)-N(52F)	2.288(7)	Ru(1)-N(11B)	2.095(6)
Ag(2)-N(52F)#1	2.288(12)	Ru(1)-N(22A)	2.096(7)
Ag(2)-N(41F)#1	2.328(7)	Ru(2)-N(22D)	2.051(7)
Ag(2)-N(41F)	2.328(7)	Ru(2)-N(22F)	2.049(6)
Ag(3)-N(41B)#1	2.317(6)	Ru(2)-N(22E)	2.052(7)
Ag(3)-N(41B)	2.317(6)	Ru(2)-N(11F)	2.080(7)
Ag(3)-N(52B)	2.330(7)	Ru(2)-N(11D)	2.094(5)
Ag(3)-N(52B)#1	2.330(12)	Ru(2)-N(11E)	2.120(7)
Ag(4)-N(41E)	2.293(6)		
Ag(4)-N(52A)	2.299(7)		
Ag(4)-N(41A)	2.308(6)		
Ag(4)-N(52E)	2.321(6)		

Figure S1. Two illustrations of how the encapsulated $[PF_6]$ - anions interact with the cavity of the cage of $[{Ru(L^{ph})_3}_4Ag_6](PF_6)_{14}$. (a) Location of one of the anions in the window in the centre of a Ru₃Ag₃ face with some of the shorter CH•••F interactions (C•••F separation ≤ 3.15 Å) shown by dotted lines; (b) a view of the cage (in wireframe mode) with the four anions shown in space-filling mode.

Figure S2. A view of the cavity in the centre of [{Ru(L^{ph})₃}₄Ag₆](PF₆)₁₄, shown in blue (generated with Swiss-PDB viewer, ref. S2).

Figure S3. ¹H NMR spectrum of fac-[Ru(L^{ph})₃][PF₆]₂ (MeCN, 400 MHz, RT). Top: complete spectrum. Bottom: expansion of central region. Assignments (given with experimental details) were made on the basis of the COSY spectrum (Fig. S4).

Figure S4. ¹H–¹H COSY spectrum of *fac*–[Ru(L^{ph})₃][PF₆]₂ (MeCN, 400 MHz, RT).

Figure S5. ¹H NMR spectrum of [{Ru(L^{ph})₃}₄Ag₆](PF₆)₁₄ (MeCN, 400 MHz, 75 °C).

Figure S6. Series of ¹H NMR spectra of [{Ru(L^{ph})₃}₄Ag₆](PF₆)₁₄ (MeCN, 400 MHz) at (from top down) 25, 35, 45, 55, 65, 75°C showing the sharpening at higher temperatures.

Figure S7. DOSY ¹H NMR spectra (MeCN, 400 MHz, RT) of *fac*–[Ru(L^{ph})₃][PF₆]₂ (left) and [{Ru(L^{ph})₃}₄Ag₆](PF₆)₁₄ (right)