#### **Electronic Supplementary Information**

### Hexaphenylbenzene based AIEE active probe for the preparation of ferromagnetic α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles: Facile Synthesis and catalytic applications

Subhamay Pramanik, Vandana Bhalla\* and Manoj Kumar\*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar 143005, and Punjab, India

vanmanan@yahoo.co.in, mksharmaa@yahoo.co.in

| S4-S5 | General Experimental Procedures. |
|-------|----------------------------------|
|       |                                  |

- S6 Synthesis of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles and catalysis in photo degradation the aqueous solution Rhodamine B (RhB) dye and C-C Sonogashira-Hagihara coupling reactions.
- S7 Synthetic route and characteristic data of compound **3**.
- **S8-S9** Comparison of present synthesis method over other reported procedure in literature for the preparation of ferromagnetic  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles.
- **S10** Comparison of present probe **3** for  $Fe^{3+}$  ions detection over other reported chemosensors for  $Fe^{3+}$  ion reported in the literature.
- S11 Comparison of present method over other reported procedure in literature for the C-C Sonogashira coupling reactions by  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>/other iron oxide nanoparticles prepared by derivative **3**.
- **S12** Comparison of present method over other reported procedure in literature for photocatalytic degradation Rhodamine B (RhB) dye by ferromagnetic  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles prepared by derivative **3**.
- **S13** Comparison of catalytic activity  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles for the Sonogashira coupling reactions over other noble metal catalysts like Pd, Au, Ag, Ru etc. reported in the literature.
- **S14** UV-vis and fluorescence spectra of **3** in the presence of in different percentage of water in ethanol.

- S15 Fluorescence spectra of **3** at different concentration in Ethanol.
- **S16** Fluorescence spectra of **3** in the presence of in different percentage TEG in Ethanol and Variation in quantum yield value with the variation of water fractions in ethanol solution of derivative **3**.
- **S17** Time resolved fluorescence decays of **3** with increasing water fraction upto 70% and the table showing the radiative, non-radiative decay rate constants.
- **S18** Concentration dependent <sup>1</sup>H NMR spectra of compound **3** in DMSO- $d_6$ .
- **S19** Graphical representation of rate constant of formation of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles.
- S20 UV-vis spectra of compound 3 upon additions of various metal ions as their perchlorate and chloride salt in H<sub>2</sub>O/ EtOH (7:3, v/v).
- **S21** UV-vis spectral changes of **3** on addition of  $Fe^{3+}$  ions at different pH; the effect of pH on the UV-vis spectrum of **3**.
- S22 Plot of fluorescence quenching efficiency of the ratiometric probe 3 as a function of the  $Fe^{3+}$  ions concentration.
- **S23** Detection limit of  $Fe^{3+}$  by using compound **3** in H<sub>2</sub>O/EtOH (7:3, v/v).
- S24 Competitive and selectivity graph of derivative 3 towards various metal ions as their perchlorate and chloride salt in H2O/ EtOH (7:3, v/v).
- S25 Time resolved fluorescence decays of 3 in H<sub>2</sub>O/EtOH (7:3, v/v) mixture on addition of Fe<sup>3+</sup> ions.
- **S26** Photographs of fluorescence response of derivative **3** coated fluorescent paper strip in presence of aqueous solution of  $Fe^{3+}$ .
- S27 Overlay <sup>1</sup>H NMR spectra of **3** and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles of **3** after filtration with THF.
- **S28** Photographs of SEM images of aggregates of **3** in presence of  $Fe^{3+}$  ions. TEM images of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles and size distribution bar diagram.
- **S29** EDX spectra and XRD pattern of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>-nanoparticles.
- S30 Dynamic light scattering (DLS) results showing the particle size diameter of the aggregates of 3 in H<sub>2</sub>O/EtOH (7:3, v/v) mixture and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles.

- **S31** FT-IR spectrum of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles.
- **S32** The magnetic hysteresis loop of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanorods at room temperature.
- **S33** UV-vis spectrum showing the photo catalytic degradation of RhB solutions (0.1 mM) in the presence of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticle (2  $\mu$ M) with 2 mM H<sub>2</sub>O<sub>2</sub> and the rate constant of photo catalytic degradation of RhB dye by  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles.
- **S34** Catalytic application of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles in palladium, CuI and amine free Sonogashira cross coupling reactions.
- **S35-S36** Comparison of catalytic activity  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles for the mentioned Sonogashira coupling reactions over other reported procedure in literature.
- **S37** <sup>1</sup>H and <sup>13</sup>C NMR of spectrum of 5a.
- **S38** ESI-MS spectrum of 5a.
- **S39**  $^{1}$ H and  $^{13}$ C NMR of spectrum of 5b.
- S40 ESI-MS spectrum of 5b.
- S41 <sup>1</sup>H NMR of spectrum of derivative 3.
- S42 <sup>13</sup>C NMR of spectrum of derivative 3.
- **S43** ESI-MS spectrum of derivative **3**.
- S44 FT-IR spectrum of compound 3.

#### **General Experimental Procedures:**

**Materials and reagents:** All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone as an indicator. UV–vis studies were performed in THF, absolute ethanol, distilled water and HEPES buffer (0.05 M) (pH = 7.05).

Instrumentation: UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25°C. The fluorescence spectra were recorded with a SHIMADZU-5301 PC spectrofluorimeter. UV-vis spectra were recorded on Shimadzu UV-2450PC spectrophotometer with a quartz cuvette (path length: 1 cm). The cell holder was thermostatted at 25 °C. The scanning electron microscope (SEM) images were obtained with a field-emission scanning electron microscope (SEM CARL ZEISS SUPRA 55). The TEM mages was recorded from Transmission Electron Microscope (TEM) - JEOL 2100F. The FT-IR spectra were recorded with VARIAN 660 IR Spectrometer. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). The Time resolved fluorescence spectra were recorded with a HORIBA Time Resolved Fluorescence Spectrometer. Elemental analysis was done using a Flash EA 1112 CHNS/O analyzer from Thermo Electron Corporation. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a BRUKER-AVANCE-II FT-NMR-AL400 MHz and 500 MHz spectrophotometer using CDCl<sub>3</sub>, DMSO-d<sub>6</sub>, D<sub>2</sub>O as solvent and tetramethylsilane, SiMe<sub>4</sub> as internal standards. Data are reported as follows: chemical shifts in ppm (1), multiplicity (s = singlet, br = broad signal, d =doublet, t = triplet, m = multiplet), coupling constants J (Hz), integration and interpretation. Silica gel 60 (60–120 mesh) was used for column chromatography.

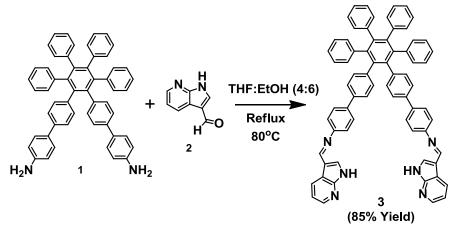
**Quantum yield calculations:** Fluorescence quantum yield was determined by using optically matching solution of diphenylanthracene ( $\Phi_{\rm fr} = 0.90$  in cyclohexane) as standard at an excitation wavelength of 373 nm and quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \times \frac{1 - 10^{-\rm ArLr}}{1 - 10^{-\rm AsLs}} \times \frac{N_s^2}{N_r^2} \times \frac{D_s}{D_r}$$

 $\Phi_{fs}$  and  $\Phi_{fr}$  are the radiative quantum yields of sample and the reference respectively,  $A_s$  and  $A_r$  are the absorbance of the sample and the reference respectively,  $D_s$  and  $D_r$  the respective areas of emission for sample and reference.  $L_s$  and  $L_r$  are the lengths of the absorption cells of sample and reference respectively.  $N_s$  and  $N_r$  are the refractive indices of the sample and reference solutions (pure solvents were assumed respectively).

UV–vis and fluorescence titrations: The concentration of HEPES buffer (pH = 7.05) is 0.05 M. For each experiment we have taken 3 ml solution which contains solution of derivative **3** in 15 µl of THF diluted with 885 µl of EtOH and 2.1 ml HEPES buffer (0.05 M, pH = 7.05) or double distilled water. UV–vis and fluorescence titrations were performed with 5.0 µM solutions of ligand (15 µl of THF are used to dissolve) in H<sub>2</sub>O/EtOH (7:3, v/v). Typically, aliquots of freshly prepared standard solutions ( $10^{-1}$ M to  $10^{-3}$ M) of metal ions such as Zn<sup>2+</sup>, Hg<sup>2+</sup>, Cu<sup>2+</sup>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Co<sup>2+</sup>, Pb<sup>2+</sup>, Ni<sup>2+</sup>, Cd<sup>2+</sup>, Ag<sup>+</sup>, Ba<sup>2+</sup>, Al<sup>3+</sup>, Mg<sup>2+</sup>, K<sup>+</sup> and Na<sup>+</sup> ions as their perchlorate [M(ClO<sub>4</sub>)<sub>x</sub>; X = 1-3]/chloride [M(Cl)<sub>x</sub>; X = 1-3] in EtOH were added to record the UV-vis and fluorescence spectra.

#### Synthesis of α-Fe<sub>2</sub>O<sub>3</sub> Nanoparticles:


Aqueous solution of 0.1 M FeCl<sub>3</sub> (150  $\mu$ L) was added to a 3 ml solution of compound **3** (0.2 mM) in H<sub>2</sub>O/EtOH (7:3, v/v). The reaction was stirred at room temperature for 30 min and formations of nanoparticles take place. These nanoparticles solution was used as such in the catalytic experiment.

### Measurement of photo catalytic degradation Rhodamine B (RhB) dye by $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> Nanoparticles:

The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic degradation of RhB pollutants at room temperature. The experimental procedures were performed as follows. 3 mL of  $5 \times 10^{-5}$  M RhB aqueous solution, 30  $\mu$ L of 2 mM H<sub>2</sub>O<sub>2</sub> and 5  $\mu$ L (2  $\mu$ M) of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles of derivative **3** were mixed. After stirring the reaction mixture for 26 min, fully colour change of the reaction mixture from pink to colourless was observed which indicate the degradation Rhodamine B.

### C-C cross coupling via the Sonogashira-Hagihara reaction by $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> Nanoparticles:

Here, we use  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> Nanoparticles (<20 nm) as an efficient catalyst for carboncarbon bond formation via the Sonogashira-Hagihara reaction under palladium, copper and amine-free conditions using ethylene glycol (EG) as a solvent and K<sub>2</sub>CO<sub>3</sub> as a base. The effect of different solvents upon the reaction of aryl-iodide (4a-b, 1 mmol) with phenylacetylene (100 mg, 1 mmol) as a model reaction in the presence of K<sub>2</sub>CO<sub>3</sub> (276 mg, 2 mmol) and 5 mol% of the Nano catalyst ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>) at 80°C was studied (Table 1). The results show that ethylene glycol (EG) is a suitable solvent for the reaction. EG possesses negligible vapour pressure, is thermally stable, and is not so expensive with a low toxicity. Ethylene glycol is highly soluble in water, and can be easily separated from the organic phase by addition of water to the reaction mixture. The products (5a-b) are purified by Silica gel 60 (60-120 mesh) and the isolated yield has been given. Synthetic scheme of compound 3:



Scheme 1. Synthesis of hexaphenylbenzene based derivative 3.

#### Synthesis of compound 3:

A clear solution of compound 1 (0.05 g, 0.07 mmol) and 2, 7-azaindole-3carboxaldehyde 2 (0.023 g, 0.15 mmol) in dry THF:MeOH (4:6) was stirred at 80°C. After 24 h, the reaction mixture turned turbid. The reaction mixture was concentrated under the reduced pressure and dry methanol was poured into it, solid appears. The solid was filtered and recrystallized from methanol to afford the light yellow coloured compound 3 (0.058 g, 85%); mp: >280°C (Scheme 1). The structure of compound 3 was confirmed from its spectroscopic and analytical data (Fig. S26-S29, ESI<sup>+</sup>). <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>, ppm)  $\delta$  = 12.36 (s, 2H, -NH), 9.46 (s, 2H,-HC=N), 8.74 (s, 2H, ArH), 8.69 (d, J = 8 Hz, 2H, ArH), 8.54 (s, 2H, ArH), 8.48-8.38 (m, 4H, ArH), 8.19 (s, 2H, ArH), 7.58 (s, 2H, ArH), 7.34 (d, J = 8 Hz, 2H, ArH), 7.26 (d, J = 8 Hz, 4H, ArH), 7.15 (t, J = 8 Hz, 8H, ArH), 7.06 (d, J = 8 Hz, 4H, ArH), 6.95-6.91 (m, 10H, ArH), 6.56 (d, J = 8 Hz, 2H, ArH). <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>, ppm)  $\delta =$ 161.10, 156.26, 150.55, 145.89, 143.82, 140.21, 139.94, 139.69, 135.77, 135.12, 131.42, 131.08, 130.81, 127.15, 126.26, 126.16, 124.80, 123.95, 117.37, 116.22, 114.88. ESI-MS mass spectrum of compound 3 showed a parent ion peak, m/z =973.3970  $[M+H]^+$  and fragmentation peaks  $m/z = 845.3595 [A+H]^+$  and m/z =717.3265  $[B+H]^+$ . The FT-IR spectrum of compound 3 showed stretching band at 1621 cm<sup>-1</sup> corresponding to -HC=N group and 3382 cm<sup>-1</sup> corresponds to -NH group. Elemental analysis: Calculated for C<sub>70</sub>H<sub>48</sub>N<sub>6</sub>: C 86.39; H 4.97; N 8.64; Found: C 86.38%; H 4.97%; N 8.63%.

# **Table S1**: Comparison of this method in present manuscript over other reported procedure in literature for the preparation of $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles.

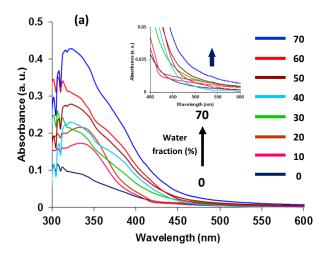
| S.<br>No. | Publication                                                    | Method of<br>formation of α-<br>Fe <sub>2</sub> O <sub>3</sub><br>nanoparticles            | Reagent Used                                                                                                                                  | Reducing/<br>Oxidising<br>agent<br>Used                | Reaction time<br>to prepare α-<br>Fe <sub>2</sub> O <sub>3</sub><br>nanoparticles | Temp.<br>(°C)           | Size                 | Shape of α-<br>Fe <sub>2</sub> O <sub>3</sub><br>nanoparticle<br>s | Recyclabili<br>ty by<br>magnet<br>after<br>reaction |
|-----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------|----------------------|--------------------------------------------------------------------|-----------------------------------------------------|
| 1         | Present<br>manuscript                                          | Wet Chemical<br>Method                                                                     | Compound 3 in<br>Water/EtOH and<br>FeCl <sub>3</sub>                                                                                          | No                                                     | 30 min                                                                            | Room<br>Temper<br>ature | 10-15 nm<br>(length) | Nanorods                                                           | Yes                                                 |
| 2         | Chem.<br>Commun.,<br>2014, <b>50</b> ,<br>8036                 | Microwave<br>followed by<br>heating and<br>reduction                                       | Graphite-Fe(CO) <sub>5</sub>                                                                                                                  | Yes (5%<br>H <sub>s</sub> /Ar)                         | 20 sec<br>followed by 2<br>h heating                                              | 600                     | 0.4-0.6 µm           | Submicron-<br>wires 0.4-0.6<br>µm (average:<br>0.49 µm)            | Yes                                                 |
| 3         | J. Mater.<br>Chem. A,<br>2014, <b>2</b> ,<br>10662             | Sequential<br>pulsing of TBF<br>in O <sub>2</sub> plasma<br>and atomic layer<br>deposition | Tertiary butyl<br>ferrocene (TBF)<br>and O <sub>2</sub> plasma in<br>He and 5% H <sub>2</sub> /He                                             | Yes (O <sub>2</sub><br>plasma)                         | 50 min                                                                            | 150-350                 | 16-45 nm             | film                                                               | No                                                  |
| 4         | Chem.<br>Commun.,<br>2014, <b>50</b> ,<br>1215                 | Hydrothermal<br>method and<br>nanocasting<br>technique                                     | Fe(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O<br>and Graphite<br>(GNS)                                                                 | No                                                     | 24h/10h                                                                           | 40/200                  | 2 nm                 | Nanocrystals                                                       | No                                                  |
| 5         | Energy<br>Environ.<br>Sci., 2014, <b>7</b> ,<br>451            | Bacterial iron<br>biomineralizat<br>and annealing                                          | Acidovorax sp.<br>Strain of<br>BoFeN1/g-<br>FeOOH under<br>N <sub>2</sub> /H <sub>2</sub> (95/5)<br>atmosphere (p(O <sub>2</sub> )<br>< 5 Pa) | Yes<br>(Bacteria)                                      | 1 h                                                                               | 700                     | 48±18<br>nm          | Hollow<br>bacteriomorp<br>hs                                       | No                                                  |
| 6         | Chem.<br>Mater.,<br>2014, <b>26</b> ,<br>2105                  | Reduction and<br>hydrothermal                                                              | TEOS, PLL,<br>CTAB, Gd-<br>DTPA,<br>FeCl <sub>3</sub> ,NaCl and<br>KH <sub>2</sub> PO <sub>4</sub>                                            | Yes<br>(KH <sub>2</sub> PO <sub>4</sub> )              | 72 h                                                                              | 100                     | 420 ± 20<br>nm       | Spindle<br>shaped                                                  | Yes                                                 |
| 7         | ACS Catal.,<br>2014, <b>4</b> , 990                            | Ammonia-<br>modified<br>hydrothermal<br>process and wet-<br>chemical<br>method             | FeCl <sub>2</sub> , HCl, N <sub>2</sub><br>atm.                                                                                               | No                                                     | 8 h                                                                               | 1100<br>(Inert<br>atm.) | ~16 nm               | Spherical                                                          | No                                                  |
| 8         | ACS Appl.<br>Mater.<br>Interfaces,<br>2014, <b>6</b> ,<br>1113 | Hydrothermal                                                                               | FeCl₃·6H₂O,<br>Na₂HPO₄·12H₂O,<br>Water, EtOH                                                                                                  | Yes                                                    | 14 h                                                                              | 105                     | 240 nm               | Spindle                                                            | Yes                                                 |
| 9         | ACS Appl.<br>Mater.<br>Interfaces,<br>2014, <b>6</b> ,<br>7189 | Chemical vapor<br>deposition                                                               | FeCl <sub>3</sub> , Water,<br>EtOH, Nanomesh<br>graphene (NMG)                                                                                | Yes<br>(NH <sub>3</sub> ·H <sub>2</sub> O,<br>25 wt %) | 1 h                                                                               | 450                     | 100 nm               | Spindle                                                            | No                                                  |
| 10        | Inorg.<br>Chem., 2014,<br>53, 2304                             | Thermal<br>Decomposition<br>Approach                                                       | Iron acetate<br>[Fe(ac) <sub>2</sub> ,<br>trioctylphosphine<br>oxide,<br>hexadecylamine,<br>1-octadecene                                      | No                                                     | 5 h                                                                               | 400                     | 12-45 nm             | Mesoporous<br>structure                                            | No                                                  |
| 11        | <i>Cryst. Eng.</i><br><i>Comm</i> , 2014,<br><b>16</b> , 1451  | Hydrothermal<br>growth                                                                     | FeCl <sub>3</sub> , NaH <sub>2</sub> PO <sub>4</sub> .<br>Solutions                                                                           | Yes                                                    | 7 days                                                                            | 100                     | $\leq$ 5 nm          | Spindles                                                           | No                                                  |

| 12 | Cryst. Eng.<br>Comm, 2014,<br><b>16</b> , 5566                    | Hydrothermal process                                                      | Iron(III) nitrate<br>with zinc and<br>cupric ions<br>additives                                                                                      | Yes                                       | 16 h          | 160           | 300 nm                              | Quasi-<br>thorhombic               | No  |
|----|-------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|---------------|-------------------------------------|------------------------------------|-----|
| 13 | Cryst.<br>Growth Des.,<br>2014, <b>14</b> ,<br>1039               | Solvothermal<br>process                                                   | Fe(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O,<br>Sucrose solution,<br>SBA-15                                                                | No                                        | 3 days        | 1100          | 40 nm                               | Nanorods                           | No  |
| 14 | <i>Cryst. Eng.</i><br><i>Comm.</i> ,<br>2014, <b>16</b> ,<br>1553 | Solvothermal<br>method by<br>controlled<br>hydrolysis                     | Fe(acac) <sub>3</sub> in ethanol and water                                                                                                          | No                                        | 24 h          | 150           | 20 nm                               | Disc-like<br>nanostructure<br>s    | No  |
| 15 | Phys. Chem.<br>Chem. Phys.,<br>2014, <b>16</b> ,<br>4284          | Electrodepositio<br>n (anodization<br>method)<br>followed by<br>annealing | FeCl <sub>2</sub> solution<br>(pH = 4.1,<br>adjusted by 1 M<br>HCl), EG, Water                                                                      | No                                        | 2 h           | 500           | 20-150 nm                           | Nanotubular                        | No  |
| 16 | Chem.<br>Commun.,<br>2013, <b>49</b> ,<br>8695                    | Spray drying<br>method followed<br>by annealing                           | $Fe(NO_3)_3 \cdot 9H_2O$ (10 mmol) and<br>sucrose (10<br>mmol), N <sub>2</sub> atm.                                                                 | No                                        | 5 h           | 400           | 30-3000 nm                          | Multishelled<br>hollow<br>spheres  | No  |
| 17 | Green<br>Chem., 2013,<br><b>15</b> , 3077                         | Hydrolysis<br>reaction,<br>coprecipitation<br>and dehydration             | FeCl <sub>2</sub> ·4H <sub>2</sub> O and<br>[Fe(NO <sub>3</sub> ) <sub>3</sub> ·9H <sub>2</sub> O<br>inert atmosphere                               | Yes                                       | 2 h           | 90            | 8-10 nm                             | Cubic                              | Yes |
| 18 | Chem.<br>Mater.,<br>2013, <b>25</b> ,<br>1549                     | Molten salt<br>syntheses<br>(pyrolysis)                                   | FeCl₃·6H₂O, HCl,<br>heat                                                                                                                            | No                                        | 24 h          | 100           | 425 ± 119                           | Hexagonal<br>nanoplates            | No  |
| 19 | J. Phys.<br>Chem. C,<br>2013, <b>117</b> ,<br>11242               | Hydrothermal method                                                       | FeCl <sub>3</sub> ·6H2O,<br>EtOH, NH <sub>3</sub><br>solution,<br>Autoclave                                                                         | Yes (NH <sub>3</sub> )                    | 24 h          | 180           | 200-400 nm                          | Nanoflowers                        | No  |
| 20 | J. Mater.<br>Chem. A,<br>2013, <b>1</b> , 830                     | Wet chemical<br>and<br>hydrothermal                                       | FeCl <sub>3</sub> and MgCl <sub>2</sub> ,<br>NaOH                                                                                                   | No                                        | 12 h          | 130           | 5-24 nm                             | Elongated<br>rugby ball-<br>like   | No  |
| 21 | J. Mater.<br>Chem. A,<br>2013, <b>1</b> ,<br>12400                | Microwave-<br>assisted<br>hydrothermal<br>method                          | FeCl <sub>2</sub> ·4H <sub>2</sub> O<br>sodium acetate<br>distilled water                                                                           | No                                        | 10 min - 2 h  | r.t - 500     | 50 nm                               | Nanorods                           | No  |
| 22 | Phys. Chem.<br>Chem. Phys.,<br>2013, <b>15</b> ,<br>11717         | Electrodepositio<br>n and thermally<br>annealed                           | FeSO <sub>4</sub> -7H <sub>2</sub> O,<br>98.0%,ascorbic<br>acid (C <sub>6</sub> H <sub>8</sub> O <sub>6</sub> ,<br>amidosulfonic<br>acid boric acid | No                                        | 6 h           | 500           | 250-900 nm                          | Nanosheet                          | No  |
| 23 | Cryst. Eng.<br>Comm.,<br>2013, <b>15</b> ,<br>8166                | Hydrothermal<br>method followed<br>by annealing                           | (Fe(ClO <sub>4</sub> ) <sub>3</sub> .xH <sub>2</sub> O,<br>NaH <sub>2</sub> PO <sub>4</sub> ,<br>(NH <sub>2</sub> ) <sub>2</sub> CO, Water          | Yes<br>(NaH <sub>2</sub> PO <sub>4)</sub> | 12 h          | 120           | 3-5 nm                              | Spindles                           | No  |
| 24 | ACS Appl.<br>Mater.<br>Interfaces,<br>2013, <b>5</b> ,<br>10246   | Chemical vapor<br>deposition                                              | Ferrocene and<br>sulphur, Argon,<br>H <sub>2</sub>                                                                                                  | Yes<br>(H <sub>2</sub> )                  | 10-30 minutes | 1100-<br>1150 | <20 nm                              | Rhombohedra<br>1                   | No  |
| 25 | <i>Cryst. Eng.</i><br><i>Comm.</i> ,<br>2012, <b>14</b> ,<br>7701 | Biphasic<br>interfacial<br>reaction                                       | Fe(acac) <sub>3</sub> , urea,<br>PVP, K30,<br>Benzene, Water                                                                                        | No                                        | 24 h          | 130           | 160–210<br>nm<br>microstruct<br>ure | Nanobundleb<br>ased flower<br>like | No  |

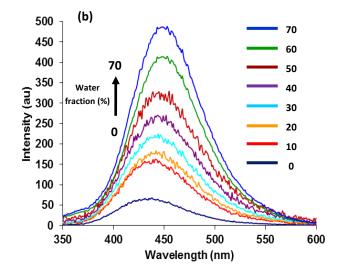
**Table S2**: Comparison of present probe **3** for  $Fe^{3+}$  ions detection over other reported chemosensors of  $Fe^{3+}$  ions reported in the literature:

| S. No | System                                                  | Utilization of<br>fluorescent<br>nanoaggregates<br>for Fe <sup>3+</sup> ions<br>detection | Ratiometric<br>fluorescence<br>response for<br>Fe <sup>3+</sup> ions<br>detection | Test strip for<br>detection of<br>trace amount<br>of Fe <sup>3+</sup> ions | Detection<br>Limit |
|-------|---------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|
| 1     | Present manuscript                                      | Yes                                                                                       | Yes                                                                               | Yes                                                                        | 64 nM              |
| 2     | <i>Chem. Commun.</i> , 2014, <b>50</b> , 8032           | No                                                                                        | Yes                                                                               | Yes                                                                        | -                  |
| 3     | J. Mater. Chem. C,<br>2014, <b>2</b> , 5576             | No                                                                                        | No (Turn-On<br>Fluorescence<br>response)                                          | No                                                                         | 126 nM             |
| 4     | <i>Chem. Commun.</i> , 2014, <b>50</b> , 4631           | No                                                                                        | No (Turn-On<br>Fluorescence<br>response)                                          | No                                                                         | 0.58 µM            |
| 5     | Inorg. Chem., 2014, <b>53</b> , 2144                    | No                                                                                        | No (Turn-On<br>Fluorescence<br>response)                                          | No                                                                         | 4.8 μΜ             |
| 6     | Chem. Commun., 2013,<br><b>49</b> , 7797                | No                                                                                        | Yes                                                                               | No                                                                         | 1.2 µM             |
| 7     | <i>Chem. Commun.</i> , 2013, <b>49</b> , 10739          | No                                                                                        | No (Turn-On<br>Fluorescence<br>response)                                          | No                                                                         | 10 <sup>-8</sup> M |
| 8     | Chem. Commun., 2013,<br><b>49</b> , 11557               | No                                                                                        | No                                                                                | No                                                                         | 0.001 M            |
| 9     | Anal. Chem. 2013, <b>85</b> ,<br>7441                   | No                                                                                        | No. only<br>quenching is<br>observed                                              | No                                                                         | 0.9 μΜ             |
| 10    | ACS Appl. Mater.<br>Interfaces 2013, <b>5</b> ,<br>1078 | No                                                                                        | No. only<br>quenching is<br>observed                                              | Yes                                                                        | 500 μM             |

| <b>Table S3</b> : Comparison of catalytic activity $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> /other iron oxide nanoparticles for |
|---------------------------------------------------------------------------------------------------------------------------------|
| the C-C Sonogashira coupling over other reported procedure in literature prepared by                                            |
| derivative <b>3</b> .                                                                                                           |


| S.<br>No | Publication                                                                     | Catalyst<br>used<br>(Nanopart<br>icles)             | Use of<br>Pd | Use of<br>CuI | Use of<br>Amine | Reaction<br>time<br>required | Temp.<br>required<br>(in °C) | Isolated<br>Yield<br>(Product,<br>%) |
|----------|---------------------------------------------------------------------------------|-----------------------------------------------------|--------------|---------------|-----------------|------------------------------|------------------------------|--------------------------------------|
| 1        | Present<br>manuscript                                                           | a-Fe <sub>2</sub> O <sub>3</sub>                    | No           | No            | No              | 24 h                         | 80                           | 84                                   |
| 2        | Green<br>Chem.,<br>2013, <b>15</b> ,<br>2132                                    | $Fe_{3}O_{4}@Si$ $O_{2}@PPh_{2}$ $@Pd(0)$           | Yes          | No            | No              | 3 h                          | 80                           | 90                                   |
| 3        | <i>Adv. Synth.</i><br><i>Catal.</i> , 2011,<br><b>353</b> , 125                 | Fe <sub>3</sub> O <sub>4</sub>                      | No           | No            | No              | 35 h                         | 125                          | 92                                   |
| 4        | Angew.<br>Chem. Int.<br>Ed. 2010,<br><b>49</b> , 1119                           | $Fe_{3}O_{4}@Si$ $O_{2}@PPh_{2}$ $@Pd(0)$           | Yes          | No            | No              | 5 h                          | 60                           | 94                                   |
| 5        | Journal of<br>Colloid and<br>Interface<br>Science,<br>2010, <b>349</b> ,<br>613 | Pd-Fe                                               | Yes          | Yes           | No              | 9 h                          | 80                           | 97                                   |
| 6        | ACS Nano,<br>2009, <b>3</b> 728                                                 | α-Fe <sub>2</sub> O <sub>3</sub><br>Nanopine-<br>Pd | Yes          | No            | No              | 45 min                       | 110                          | 85                                   |
| 7        | <i>Org. Lett.,</i> 2008, <b>10</b> , 3933                                       | Pd/Fe <sub>3</sub> O <sub>4</sub>                   | Yes          | No            | Yes             | 4 h                          | 130                          | 98                                   |
| 8        | Chem.<br>Commun.,<br>2005, 4435                                                 | γ-<br>Fe₂O₃ <sup>⁄</sup> NH<br>C-Pd                 | Yes          | Yes           | No              | 12 h                         | 50                           | 90                                   |

**Table S4**: Comparison of present method over other reported procedure in literature for photocatalytic degradation Rhodamine B (RhB) dye by  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles prepared by derivative **3**.


| S. No | Publication                                         | Degradation time required |
|-------|-----------------------------------------------------|---------------------------|
| 1     | Present manuscript                                  | 26 min                    |
| 2     | Nanoscale, 2014, <b>6</b> , 6603                    | 80 min                    |
| 3     | J. Mater. Chem. A, 2013, 1, 9837                    | 720 min                   |
| 4     | RSC Adv., 2013, <b>3</b> , 7912                     | 4 h                       |
| 5     | Scientific Reports, 2013, DOI:<br>10.1038/srep02204 | 100 min                   |
| 6     | Angew. Chem. Int. Ed., 2012, <b>51</b> ,<br>178     | 80-180 min                |
| 7     | J. Mater. Chem., 2012, <b>22</b> , 9704             | 60 min                    |

**Table S5:** Comparison of catalytic activity  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles for the Sonogashira coupling reactions over other noble metal catalysts like Pd, Au, Ag, Ru etc. reported in the literature.

| Seria<br>1 No. | Publication                                         | Catalyst used                                                                                                     | Use of<br>Noble<br>metal  | Use of<br>CuI | Use of<br>Amine | Solvent                                   | Nano<br>catalysis | Recyclin<br>g | Reaction<br>time | Temp.<br>required<br>(in °C) | Isolated<br>Yield<br>(Product,<br>%) |
|----------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|-----------------|-------------------------------------------|-------------------|---------------|------------------|------------------------------|--------------------------------------|
| 1              | Present<br>manuscript                               | α-Fe <sub>2</sub> O <sub>3</sub> ,<br>K <sub>2</sub> CO <sub>3</sub>                                              | No                        | No            | No              | Ethylene<br>glycol<br>(green<br>solvent)  | Yes               | Yes           | 24 h             | 80                           | 84                                   |
| 2              | Angew. Chem.<br>Int. Ed. 2013,<br><b>52</b> , 11554 | Pd(0)<br>nanoparticle,<br>KOAc                                                                                    | Yes<br>(Pd)               | No            | Yes             | NMP<br>(toxic)                            | Yes               | No            | 24 h             | 160                          | 83                                   |
| 3              | <i>Green Chem.</i> ,<br>2013, <b>15</b> , 2349      | Pd catalyst,<br>K <sub>2</sub> CO <sub>3</sub>                                                                    | Yes<br>(Pd)               | No            | No              | EtOH/Chlo<br>robenzene<br>(flammable<br>) | No                | Yes           | 18 h             | 60                           | 88                                   |
| 4              | Green Chem.,<br>2013, <b>15</b> , 2132              | Fe <sub>3</sub> O <sub>4</sub> @-<br>SiO <sub>2</sub> @PPh <sub>2</sub> @P<br>d(0), NaOH<br>(Very<br>complicated) | Yes<br>(Pd)               | No            | No              | Water                                     | No                | Yes           | 15 min-4 h       | 80                           | 91                                   |
| 5              | J. Mater.<br>Chem. A,<br>2014, <b>2</b> , 484       | $\begin{array}{c} Pd-PPh_2\text{-MCM-}\\ 41 @SiO_2 @Fe_3\\ O_4 (Very\\ complicated) \end{array}$                  | Yes<br>(Pd)               | No            | No              | Water                                     | No                | Yes           | 4 h              | 70                           | 95                                   |
| 6              | <i>Chem. Eur. J.</i><br>2013, <b>19</b> ,<br>14024  | 5% Pd-Au/C,<br>K <sub>3</sub> PO <sub>4</sub>                                                                     | Yes<br>(Pd,<br>Au)        | No            | No              | <i>i</i> PrOH/<br>H <sub>2</sub> O        | No                | No            | 20 h             | 80                           | 73                                   |
| 7              | Chem.<br>Commun.,<br>2010, <b>46</b> , 6524         | Pd@meso-SiO <sub>2</sub><br>(Very<br>complicated)                                                                 | Yes<br>(Pd)               | No            | No              | EtOH                                      | No                | Yes           | 30 h             | 80                           | 55                                   |
| 8              | Angew. Chem.<br>Int. Ed. 2007,<br><b>46</b> , 1536  | Au(I), K <sub>3</sub> PO <sub>4</sub>                                                                             | Yes<br>(Au)               | No            | No              | <i>O</i> -Xylene                          | No                | No            | 24 h             | 130                          | 54                                   |
| 9              | <i>Langmuir,</i><br>2010, <b>14</b> ,<br>12225      | Au-Ag-Pd<br>trimetallic<br>nanoparticles                                                                          | Yes<br>(Pd,<br>Au,<br>Ag) | No            | No              | DMF-H <sub>2</sub> O                      | No                | No            | 2 h              | 120                          | 94                                   |
| 10             | Org. Lett., <b>2</b> ,<br>2000, 2935                | Pd(PPh <sub>3</sub> ) <sub>2</sub> ,<br>Ag <sub>2</sub> O                                                         | Yes<br>(Pd,<br>Ag)        | No            | No              | THF                                       | No                | No            | 8 h              | 60                           | 60                                   |
| 11             | J. Comb.<br>Chem. 2004, <b>6</b> ,<br>297           | RuCl <sub>2</sub> (1-Me,4-<br><i>i</i> PrC <sub>6</sub> H <sub>4</sub> )(PPh <sub>3</sub> )                       | Yes<br>(Ru)               | Yes           | Yes             | THF                                       | No                | No            | 20 h             | 50                           | 10-100<br>(GC-Mass)                  |



**Fig. S1A:** UV-vis spectrum showing the change in absorbance of compound **3** (5  $\mu$ M) in Water/Ethanol mixture (0 to 70% volume fraction of water in Ethanol).



**Fig. S1B:** Fluorescence spectra of compound **3** (5  $\mu$ M) showing the variation of fluorescence intensity in Water/Ethanol mixture (0 to 70% volume fraction of water in Ethanol);  $\lambda_{ex}$ = 320 nm.

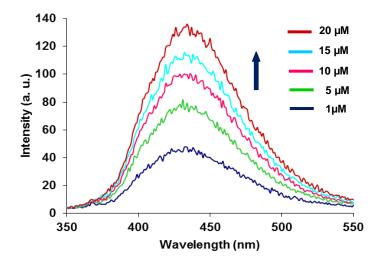
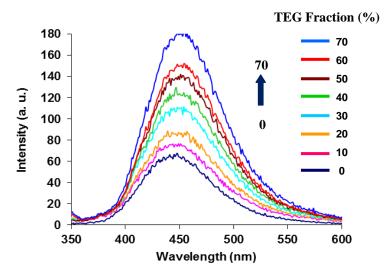
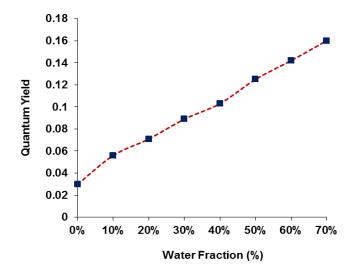





Fig. S2: Fluorescence spectra of compound 3 showing the variation of fluorescence intensity with different concentration of 3 (1 $\mu$ M - 20 $\mu$ M) in ethanol;  $\lambda_{ex}$ = 320 nm



**Fig. S3A:** Fluorescence spectra of compound **3** (5  $\mu$ M) showing the variation of fluorescence intensity in TEG/EtOH mixture (0 to 70% volume fraction of TEG in Ethanol);  $\lambda_{ex}$ = 320 nm.



**Fig. S3B:** Variation in quantum yield value with the variation of water fractions (0 to 70% volume fraction of water in Ethanol);  $\lambda_{ex}$ = 320 nm.

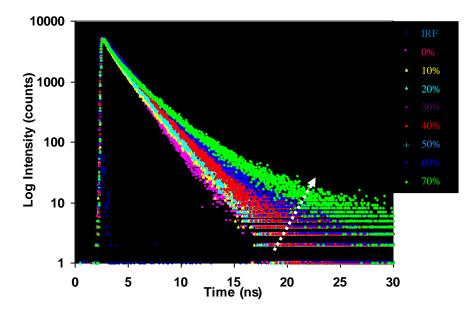
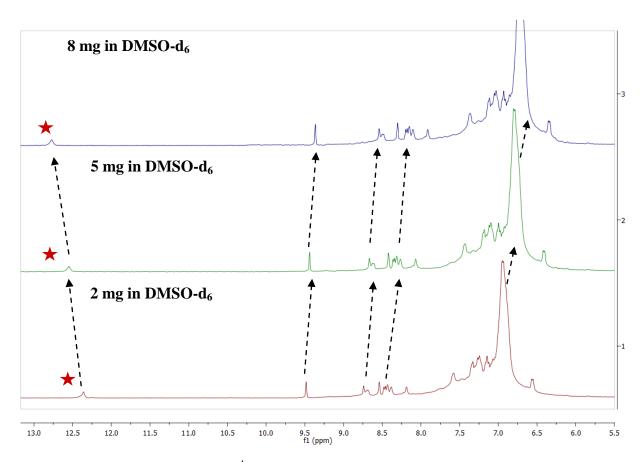
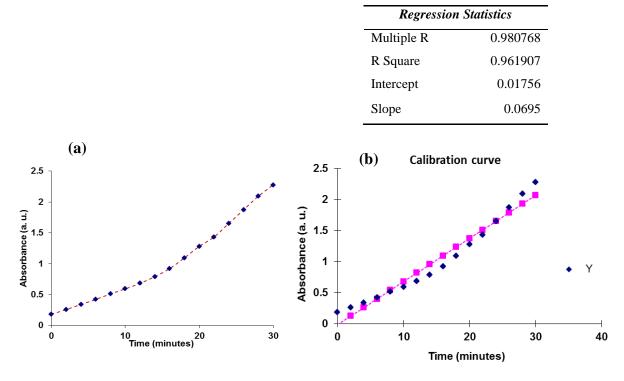
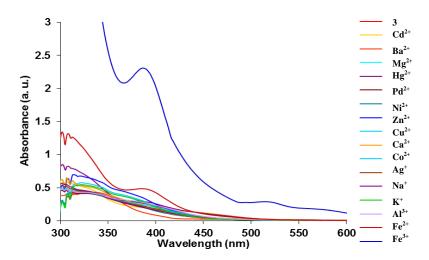



Fig. S4: Exponential fluorescence decays of 3 on addition of water fraction measured at 455 nm. Spectra were acquired in Water/Ethanol mixture (0 to 70% volume fraction of water in Ethanol),  $\lambda_{ex}$ = 377 nm.

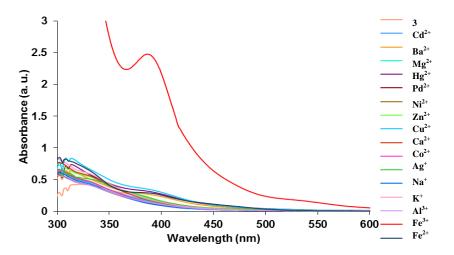
| Water<br>fraction<br>% | Quantum<br>Yield<br>(Φ <sub>f</sub> ) | A <sub>1</sub> /A <sub>2</sub> | τ <sub>1</sub><br>(ns) | τ <sub>2</sub><br>(ns) | τ <sub>avg</sub><br>(Average<br>lifetime, ns) | K <sub>f</sub><br>(10 <sup>9</sup> S <sup>-1</sup> ) | K <sub>nr</sub><br>(10 <sup>9</sup> S <sup>-1</sup> ) |
|------------------------|---------------------------------------|--------------------------------|------------------------|------------------------|-----------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| 0                      | 0.03                                  | 65/35                          | 0.08                   | 1.33                   | 0.2                                           | 0.15                                                 | 4.85                                                  |
| 70                     | 0.16                                  | 10/90                          | 0.57                   | 1.67                   | 1.41                                          | 0.113                                                | 0.59                                                  |

**Table S6:** Fluorescence lifetime of derivative **3** in absence and presence of water (70%) in EtOH at 455 nm. **A**<sub>1</sub>, **A**<sub>2</sub>: fractional amount of molecules in each environment.  $\tau_1$ ,  $\tau_2$  and  $\tau_{avg}$ : bi-exponential and average life time of aggregates in 70 vol% of water in EtOH; **K**<sub>f</sub>: radiative rate constant (K<sub>f</sub> =  $\Phi_f/\tau_{avg}$ ); **K**<sub>nr</sub>: non-radiative rate constant (K<sub>nr</sub> = (1-  $\Phi_f)/\tau_{avg}$ );  $\lambda_{ex}$ = 377 nm.

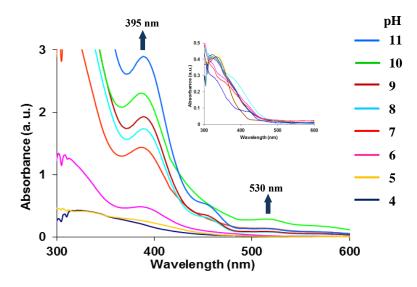





Fig. S6: Concentration dependent <sup>1</sup>H NMR spectra of compound 3 in 500µl DMSO-d<sub>6</sub>.

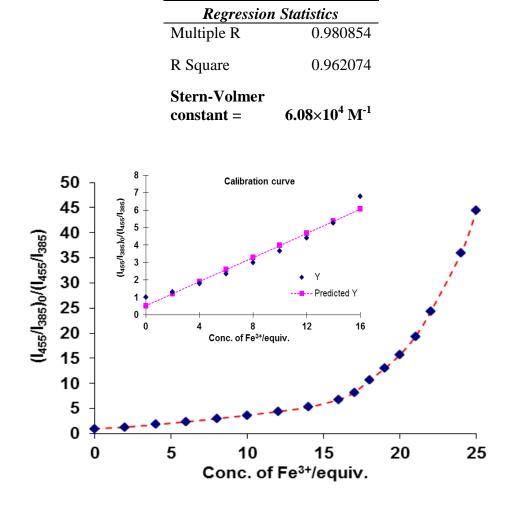



**Fig. S7:** Graphical representation of the rate of formation of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles of derivative **3**. (a) Time (min.) vs. absorbance plot at 395 nm (b) regression plot of a.

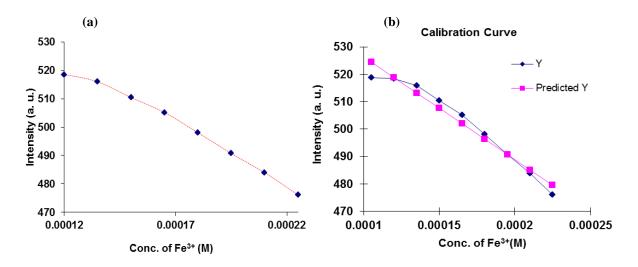
The first order rate constant for the formation of iron oxide nanoparticles was calculated from the changes of intensity of absorbance of aggregates of derivative **3** in the presence of  $Fe^{3+}$  ions at different time interval.


From the time vs. absorbance plot at fixed wavelength 395 nm by using first order rate equation we get the rate constant =  $k = slope \times 2.303 = 0.0695 \times 2.303 = 2.66 \times 10^{-3} \text{ Sec}^{-1}$ .




**Fig. S8A:** UV-vis spectra of derivative **3** (5  $\mu$ M) upon additions of 50  $\mu$ M of various metal ions as their chloride salt in in H<sub>2</sub>O/EtOH (7:3, v/v) mixture.




**Fig. S8B:** UV-vis spectra of derivative **3** (5  $\mu$ M) upon additions of 50  $\mu$ M of various metal ions as their perchlorate salt in in H<sub>2</sub>O/EtOH (7:3, v/v) mixture.



**Fig. S9:** UV-vis spectra of compound **3** (5  $\mu$ M) showing the variation after 5 minutes of addition of Fe<sup>3+</sup> ions (0-25 equiv.) in H<sub>2</sub>O/EtOH (7:3, v/v) mixture at different pH solutions; Inset showing there is no variation in the absorbance of compound **3** (5  $\mu$ M) with the variation of different pH solutions in H<sub>2</sub>O/EtOH (7:3, v/v) mixture.



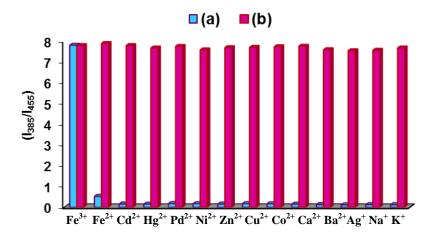
**Fig. S10:** Plot of fluorescence quenching efficiency of the ratiometric probe **3** (5  $\mu$ M) as a function of the Fe<sup>3+</sup> ions concentration. (I<sub>455</sub>/I<sub>385</sub>)<sub>0</sub> and (I<sub>455</sub>/ I<sub>385</sub>) were the ratio of the fluorescence intensity of the ratiometric probe in the absence and presence of different concentrations of Fe<sup>3+</sup> ions, respectively; Inset showing the regression curve.



**Fig. S11:** (a) Showing the fluorescence intensity of compound **3** and (b) Calibrated curve showing the fluorescence intensity of compound **3** at 380 nm as a function of Fe<sup>3+</sup> ions concentration (equiv.) in H<sub>2</sub>O/EtOH (7:3, v/v) buffered with HEPES, pH =7.05,  $\lambda_{ex}$ = 320 nm.

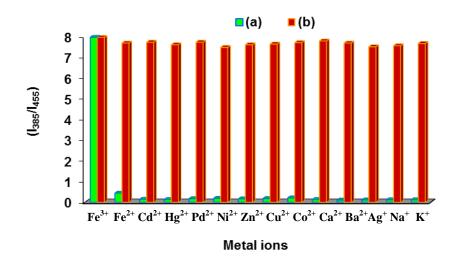
Multiple R = 0.98135, R<sup>2</sup> = 0.96305, Standard deviation = 0.008, Observation = 10, Intercept = 563.80, Slope = 374700

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor **3** without  $Fe^{3+}$  was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

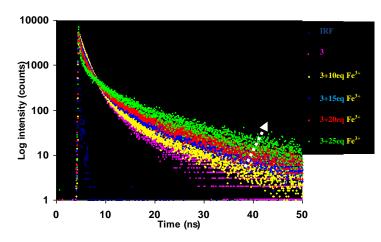

 $DL = 3 \times SD/S$ 

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

#### From the graph we get slope


S = **374700**, and SD value is 0.008

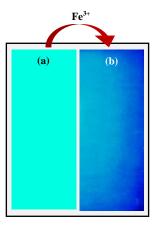
Thus using the formula we get the Detection Limit (DL) =  $3 \times 0.008/374700 = 64 \times 10^{-9}$  M



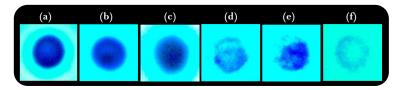

#### Metal ions

Fig. S12A: Fluorescence response of **3** (5.0  $\mu$ M) to various metal ions of chloride salts (25 equiv) in H<sub>2</sub>O/EtOH (7:3, v/v) mixture buffered with HEPES; pH = 7.05;  $\lambda_{ex} = 320$  nm. Bars represent the emission intensity ratio (I<sub>385</sub>/I<sub>455</sub>) (I<sub>455</sub> = initial fluorescence intensity at 455 nm; I<sub>385</sub> = final fluorescence intensity at 385 nm after the addition of metal ions). (a) Blue bars represent selectivity (I<sub>385</sub>/I<sub>455</sub>) of **3** upon addition of different anions. (b) Pink bars represent competitive selectivity of receptor **3** toward Fe<sup>3+</sup> ions (25 equiv.) in the presence of other metal ions (100 equiv.).

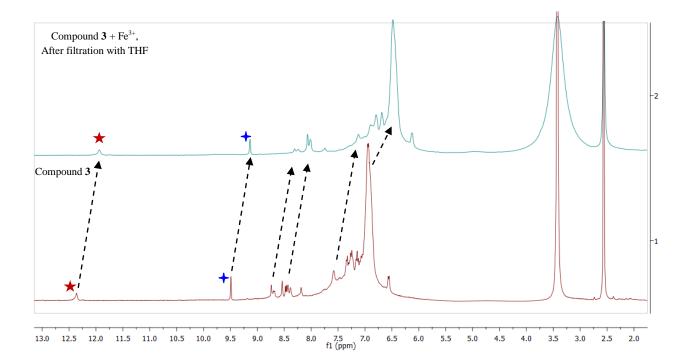



**Fig. S12B:** Fluorescence response of **3** (5.0  $\mu$ M) to various metal ions of **perchlorate** salts (25 equiv) in H<sub>2</sub>O/EtOH (7:3, v/v) mixture buffered with HEPES; pH = 7.05;  $\lambda_{ex}$  = 320 nm. Bars represent the emission intensity ratio (I<sub>385</sub>/I<sub>455</sub>) (I<sub>455</sub> = initial fluorescence intensity at 455 nm; I<sub>385</sub> = final fluorescence intensity at 385 nm after the addition of metal ions). (a) Green bars represent selectivity (I<sub>385</sub>/I<sub>455</sub>) of **3** upon addition of different anions. (b) Red bars represent competitive selectivity of receptor **3** toward Fe<sup>3+</sup> ions (25 equiv.) in the presence of other metal ions (100 equiv.).




**Fig. S13:** Exponential fluorescence decays of **3** on addition of different amount of Fe<sup>3+</sup> ions within 30 minutes measured at 385 nm. Spectra were acquired in H<sub>2</sub>O/EtOH (7:3, v/v) mixture,  $\lambda_{ex}$ = 377 nm.

| Fe <sup>3+</sup> | Quantum | $A_1/A_2$ | $	au_1$ | $	au_2$ | $	au_{\mathrm{avg}}$ | K <sub>f</sub>            | K <sub>nr</sub>           |
|------------------|---------|-----------|---------|---------|----------------------|---------------------------|---------------------------|
| (equiv.)         | Yield   |           | (ns)    | (ns)    | (Average             | $(10^9  \mathrm{S}^{-1})$ | $(10^9  \mathrm{S}^{-1})$ |
|                  |         |           |         |         | lifetime, ns)        |                           |                           |
| 0                | 0.16    | 95/5      | 0.27    | 1.55    | 0.55                 | 0.29                      | 1.52                      |
| 25               | 0.14    | 45/55     | 0.57    | 1.78    | 1.35                 | 0.104                     | 0.63                      |


**Table S7:** Fluorescence lifetime of derivative **3** in absence and presence of Fe<sup>3+</sup> ions (25 equiv.; 30 minutes) in H<sub>2</sub>O/EtOH (7:3, v/v) mixture buffered with HEPES; pH = 7.05; at 385 nm. A<sub>1</sub>, A<sub>2</sub>: fractional amount of molecules in each environment.  $\tau_1$  and  $\tau_2$ : biexponential life time of aggregates in 70 vol% of water in EtOH; K<sub>f</sub>: radiative rate constant (K<sub>f</sub> =  $\Phi_f/\tau_{avg}$ ); K<sub>nr</sub>: non-radiative rate constant (K<sub>nr</sub> = (1- $\Phi_f$ )/ $\tau_{avg}$ );  $\lambda_{ex}$ = 377 nm.



**Fig. S14A:** Photographs (under 365 nm UV light with naked eye) of compound **3** on test strips (a) before and (b) after dipping into aqueous solution of  $\text{Fe}^{3+}$  ions (10<sup>-3</sup> M).



**Fig. S14B:** Paper strips of **3** showing the change in the fluorescence on addition of  $\text{Fe}^{3+}$  ions in aqueous medium at different concentrations of  $\text{Fe}^{3+}$  ions (a)  $10^{-1}$ M, (b)  $10^{-2}$ M, (c)  $10^{-3}$  M, (d)  $10^{-4}$  M, (e)  $10^{-5}$ M, (f)  $10^{-6}$ M (under 365 nm UV light).



**Fig. S15:** Overlay <sup>1</sup>H NMR spectra of derivative **3** in DMSO-d<sub>6</sub> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles of derivative **3** after filtration with THF.

| Compound 3              | Compound $3 + Fe^{3+}$ ,    | $\Delta \delta_1 = \delta_3 - \delta_F$ |
|-------------------------|-----------------------------|-----------------------------------------|
| (δ <sub>3</sub> , ppm)  | After filtration by THF     |                                         |
|                         | $(\delta_{\rm F}, \rm ppm)$ |                                         |
| ★ 12.36 (-NH)           | 11.92                       | 0.44                                    |
| +9.46 (-N=CH)           | 9.15                        | 0.31                                    |
| 8.69 (d, aromatic)      | 8.28                        | 0.41                                    |
| 8.48-8.38 (m, aromatic) | 8.10-8.06                   | 0.38                                    |
| 8.19 (s, aromatic)      | 7.72                        | 0.47                                    |
| 7.34 (d, aromatic)      | 7.15                        | 0.19                                    |
| 7.26 (d, aromatic)      | 6.82                        | 0.44                                    |
| 7.15 (t, aromatic)      | 6.78                        | 0.37                                    |
| 7.06 (d, aromatic)      | 6.65                        | 0.41                                    |
| 6.95-6.91 (m, aromatic) | 6.52-6.48                   | 0.43                                    |
| 6.56 (d, aromatic)      | 6.18                        | 0.38                                    |

**Table S8:** Change in chemical shift ( $\delta$ ) value of <sup>1</sup>H NMR spectra of derivative **3** in DMSO-d<sub>6</sub> and  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles of derivative **3** after filtration with THF.

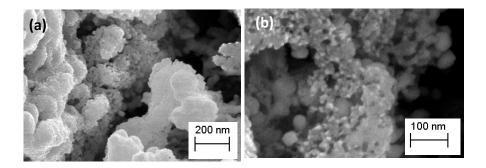



Fig. S16A: Photographs of SEM images (a-b) showing aggregates of 3 in  $H_2O/EtOH$  (7:3, v/v) after treatment of FeCl<sub>3</sub> with compound 3.

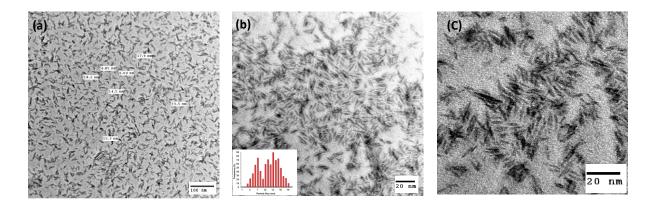



Fig. S16B: (a-c) The TEM images of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> Nanorods and inset of b showing size distribution of these nanoparticles.

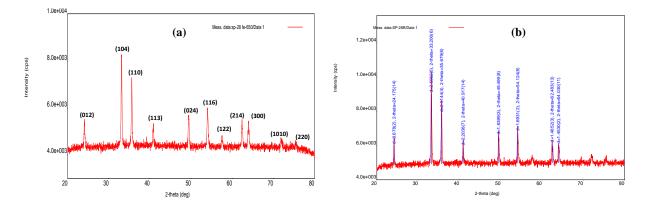
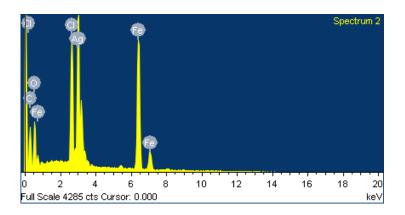
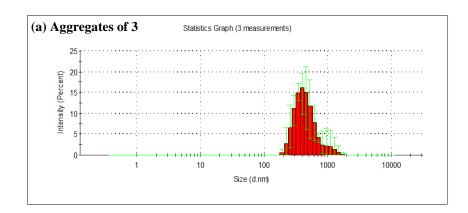
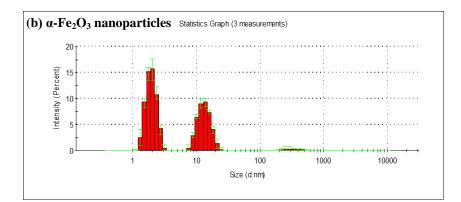
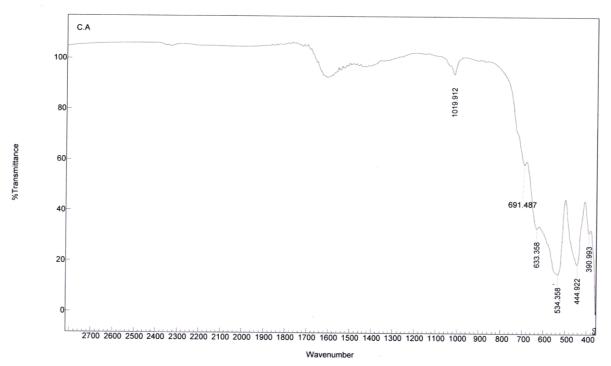
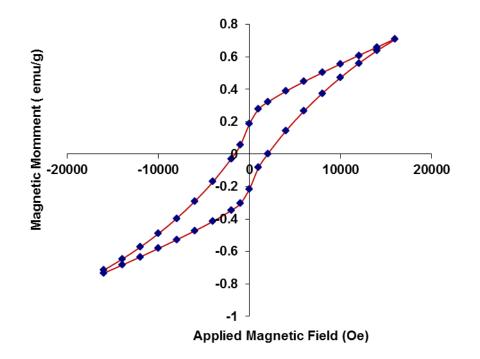



Fig. S17A: (a-b) Representative XRD diffraction patterns of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles prepared by derivative 3.

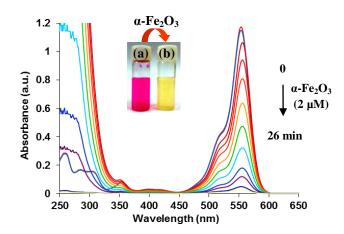


Fig. S17B: EDX spectra of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>-nanoparticles of derivative 3



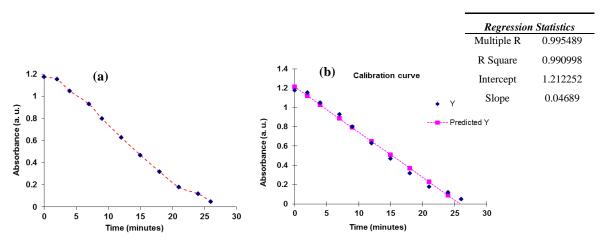



**Fig. S18:** Dynamic light scattering (DLS) results showing the particle size diameter (a) aggregates of **3** in H<sub>2</sub>O/EtOH (7:3, v/v) mixture and (b)  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles prepared by aggregates of **3**.

### Fig. S19: FT-IR Spectrum of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles:



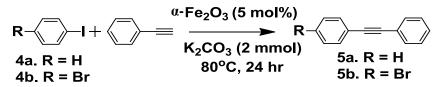

#### Agilent Resolutions Pro




|                 | Upward Part | Downward part | Average   | Parameter 'definition'                           |
|-----------------|-------------|---------------|-----------|--------------------------------------------------|
| Hysteresis Loop |             |               |           | Hysteresis Parameters                            |
| Hc Oe           | 1996.067    | -1661,297     | 1828 682  | Coercive Field: Field at which M//H changes sign |
| Mr emu          | -25.694E-3  | 22.339E-3     | 24.016E-3 | Remanent Magnetization: M at H=0                 |
| S               | 0.302       | 0.254         | 0.278     | Squareness: Mr/Ms                                |
| S*              | 0.172       | 0.568         | 0.370     | 1-(Mr/Hc)(1/slope at Hc)                         |
| Ms emu          | 84.990E-3   | -88.035E-3    | 86.513E-3 | Saturation Magnetization: maximum M measured     |
| M at H max emu  | 84.990E-3   | -85.789E-3    | 85.390E-3 | M at the maximum field                           |

**Fig. S20:** Hysteresis loops of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles at room temperature, 25°C.




**Fig. S21A** Changes of time-dependent UV-Vis absorbance spectra of RhB solutions (0.1 mM) in the presence of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticle (2  $\mu$ M) with 2 mM H<sub>2</sub>O<sub>2</sub> under visible-light irradiation for different time interval and (inset) photographs of the corresponding color change of RhB solutions from red to colourless (a) before and (b) after 26 minutes of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> addition.



**Fig. S21B.** The rate of photo catalytic degradation of the aqueous solution RhB dye by  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles in presence of 2 mM H<sub>2</sub>O<sub>2</sub> (a) Time (min.) vs. absorbance plot at 555 nm (b) Calibration curve regression plot of A.

The first order rate constant of photo catalytic degradation of the aqueous solution RhB dye by iron oxide nanoparticles was calculated from the changes of intensity of absorbance of RhB dye by  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles at different time interval.

From the time vs. absorbance plot at fixed wavelength 555 nm by using first order rate equation we get the rate constant =  $k = slope \times 2.303 = 0.04689 \times 2.303 = 1.79 \times 10^{-3}$ Sec<sup>1</sup> **Catalytic applications: Sonogashira Cross Coupling reactions** 



Scheme 2. Synthesis of hexaphenylbenzene based derivative 3.

| Entry | Solvent | Isolated yield [%] |
|-------|---------|--------------------|
| 5a    | EG      | 84                 |
|       | DMF     | 63                 |
| 5b    | EG      | 78                 |
|       | DMF     | 56                 |

Table S9: The isolated yield of product formation in various solvent

#### Synthesis of Compound 5a:

The reaction of iodobenzene (204 mg, 1 mmol) with phenylacetylene (100 mg, 1 mmol) as a model reaction in the presence of K<sub>2</sub>CO<sub>3</sub> (276 mg, 2 mmol) and 5 mol% of the Nano catalyst ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>) at 80°C was studied to furnished white crystalline **5a** in 84% (150 mg) yield (Scheme 2). The structure of compound **5a** was confirmed from its spectroscopic and analytical data (Fig. S22-S23, ESI<sup>†</sup>). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.60-7.58 (m, 4H, ArH), 7.41-7.36 (m, 6H, ArH). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 131.64, 128.38, 128.28, 123.31, 89.41. ESI-MS mass spectrum of compound **5a** showed a parent ion peak, m/z = 179.0805 [M+H]<sup>+</sup>.

#### Synthesis of Compound 5b:

The reaction of 1-bromo-4-iodobenzene (282 mg, 1 mmol) with phenylacetylene (100 mg, 1 mmol) as a model reaction in the presence of K<sub>2</sub>CO<sub>3</sub> (276 mg, 2 mmol) and 5 mol% of the Nano catalyst ( $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>) at 80°C was studied to furnished white crystalline **5b** in 78% (200 mg) yield (Scheme 2). The structure of compound **5b** was confirmed from its spectroscopic and analytical data (Fig. S24-S25, ESI†). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.57-7.55 (m, 2H, ArH), 7.51 (d, *J* = 10 Hz, 2H, ArH), 7.42 (d, *J* = 10 Hz, 2H, ArH), 7.39-7.38 (m, 3H, ArH). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 133.04, 132.52, 131.63, 129.22, 128.42, 122.93, 122.27, 90.53, 88.32. ESI-MS mass spectrum of compound **5b** showed a parent ion peak, m/z = 257.0334 [M+H]<sup>+</sup>.

## **Table S10a:** Comparison of catalytic activity $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles for the mentioned Sonogashira coupling (**5a**) over other reported procedure in literature.

| Compou<br>nd | Seri<br>al<br>No. | Publication                                         | Catalyst<br>used                                                                                                     | Use of<br>Noble<br>metal  | Use of<br>CuI | Use of<br>Amine | Solvent                                       | Nano<br>catalysis | Recy<br>cling | Reaction<br>time<br>required | Temp.<br>required<br>(in °C) | Isolated<br>Yield<br>(Product<br>, %) |
|--------------|-------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------|---------------|-----------------|-----------------------------------------------|-------------------|---------------|------------------------------|------------------------------|---------------------------------------|
| 5a           | 1                 | Present<br>manuscript                               | α-Fe <sub>2</sub> O <sub>3</sub> ,<br>K <sub>2</sub> CO <sub>3</sub>                                                 | No                        | No            | No              | Ethylene<br>glycol<br>(Green<br>Solvent)      | Yes               | Yes           | 24 h                         | 80                           | 84                                    |
|              | 2                 | Angew. Chem.<br>Int. Ed. 2013,<br><b>52</b> , 11554 | Pd(0)<br>nanoparticl<br>e, KOAc                                                                                      | Yes<br>(Pd)               | No            | Yes             | NMP<br>(Toxic)                                | Yes               | No            | 24 h                         | 160                          | 83                                    |
|              | 3                 | <i>Green Chem.,</i><br>2013, <b>15</b> , 2349       | Pd catalyst,<br>K <sub>2</sub> CO <sub>3</sub>                                                                       | Yes<br>(Pd)               | No            | No              | EtOH/Ch<br>lorobenze<br>ne<br>(flammab<br>le) | No                | Yes           | 18 h                         | 60                           | 88                                    |
|              | 4                 | Green Chem.,<br>2013, <b>15</b> , 2132              | Fe <sub>3</sub> O <sub>4</sub> @-<br>SiO <sub>2</sub> @PPh <sub>2</sub><br>@Pd(0),Na<br>OH (Very<br>complicate<br>d) | Yes<br>(Pd)               | No            | No              | Water                                         | No                | Yes           | 15 min-4 h                   | 80                           | 91                                    |
|              | 5                 | J. Mater. Chem.<br>A, 2014, <b>2</b> , 484          | Pd-PPh <sub>2</sub> -<br>MCM-<br>41@SiO <sub>2</sub> @<br>Fe <sub>3</sub> O <sub>4</sub> (Very<br>complicate<br>d)   | Yes<br>(Pd)               | No            | No              | Water                                         | No                | Yes           | 4 h                          | 70                           | 95                                    |
|              | 6                 | <i>Chem. Eur. J.</i><br>2013, <b>19</b> , 14024     | 5% Pd-<br>Au/C,<br>K <sub>3</sub> PO <sub>4</sub>                                                                    | Yes<br>(Pd,<br>Au)        | No            | No              | <i>i</i> PrOH/<br>H <sub>2</sub> O            | No                | No            | 20 h                         | 80                           | 73                                    |
|              | 7                 | Tetrahedron<br>Lett., 2014, <b>55</b> ,<br>2256     | PVC-Pd(0),<br>NMP                                                                                                    | Yes<br>(Pd)               | No            | Yes             | NMP                                           | No                | Yes           | 3-4 h                        | r. t.                        | 93                                    |
|              | 8                 | Chem.<br>Commun., 2010,<br><b>46</b> , 6524         | Pd@meso-<br>SiO <sub>2</sub> (Very<br>complicate<br>d)                                                               | Yes<br>(Pd)               | No            | No              | EtOH                                          | No                | Yes           | 30 h                         | 80                           | 55                                    |
|              | 9                 | <i>Langmuir</i> , 2010, <b>14</b> , 12225           | Au-Ag-Pd<br>trimetallic<br>nanoparticl<br>es                                                                         | Yes<br>(Pd,<br>Au,<br>Ag) | No            | No              | DMF-<br>H <sub>2</sub> O                      | No                | No            | 2 h                          | 120                          | 94                                    |

### **Table S10b:** Comparison of catalytic activity $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles for the mentioned Sonogashira coupling (**5b**) over other reported procedure in literature.

| Compou<br>nd | Seri<br>al<br>No. | Publication                                        | Catalyst<br>used                                                                        | Use of<br>Noble<br>metal | Use of<br>CuI | Use of<br>Amine | Solvent            | Nano<br>catalysis | Recy<br>cling | Reaction<br>time<br>required | Temp.<br>required<br>(in °C) | Isolated<br>Yield<br>(Product,<br>%) |
|--------------|-------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------|---------------|-----------------|--------------------|-------------------|---------------|------------------------------|------------------------------|--------------------------------------|
|              | 1                 | Present<br>manuscript                              | α-Fe <sub>2</sub> O <sub>3</sub> ,<br>K <sub>2</sub> CO <sub>3</sub>                    | No                       | No            | No              | Ethylene<br>glycol | Yes               | Yes           | 24 h                         | 80                           | 78                                   |
| ₿-           | 2                 | J. Organomet.<br>Chem. , 2014,<br><b>749</b> , 405 | PS-triazine-<br>Pd(II), Et <sub>3</sub> N                                               | Yes                      | No            | Yes             | Et <sub>3</sub> N  | No                | No            | 3 h                          | Room<br>temp.                | 50                                   |
|              | 3                 | Adv. Synth.<br>Catal., 2013,<br><b>18</b> , 3648   | Pd<br>nanoparticl<br>e, <i>t</i> -BuOK                                                  | Yes                      | No            | No              | Glycerol           | No                | No            | 2 h                          | 100                          | 91                                   |
|              | 4                 | J. Org. Chem.,<br>2013, <b>78</b> , 12703          | Pd(OAc) <sub>2</sub> ,<br>PPh <sub>3</sub> , CuI,<br>Et <sub>3</sub> N                  | Yes                      | Yes           | Yes             | Et <sub>3</sub> N  | No                | No            | 1 h                          | Room<br>temp.                | 70                                   |
| 5b           | 5                 | Adv. Synth.<br>Catal., 2012, <b>8</b> ,<br>1542    | Pd(PPh) <sub>2</sub> Cl<br><sub>2</sub> , CuI,<br>Et <sub>3</sub> N, THF                | Yes                      | Yes           | Yes             | Et <sub>3</sub> N  | No                | No            | 24 h                         | Room<br>temp.                | 86                                   |
|              | 6                 | Adv. Funct.<br>Mater., 2012,<br><b>10</b> , 2015   | Pd(PPh) <sub>2</sub> Cl<br>2, CuI,<br>Et <sub>3</sub> N                                 | Yes                      | Yes           | Yes             | Et <sub>3</sub> N  | No                | No            | 24 h                         | Room<br>temp.                | 90                                   |
|              | 7                 | J. Am.<br>Chem. Soc.,<br>2011, <b>51</b> 20962     | Pd(PPh <sub>3</sub> ) <sub>2</sub> C<br>l <sub>2</sub> , CuI,<br>Et <sub>3</sub> N, THF | Yes                      | Yes           | Yes             | THF                | No                | No            | 24                           | Room<br>temp.                | 28                                   |
|              | 8                 | Macromolecule<br>s 1998, <b>31</b> ,<br>6014       | Pd(PPh <sub>3</sub> ) <sub>4</sub> ,<br>CuI,<br>Piperidine                              | Yes                      | Yes           | Yes             | Piperidin<br>e     | No                | No            | 24 h                         | Room<br>temp.                | 82                                   |

Fig. S22A: <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 500 MHz, ppm) of compound 5a:

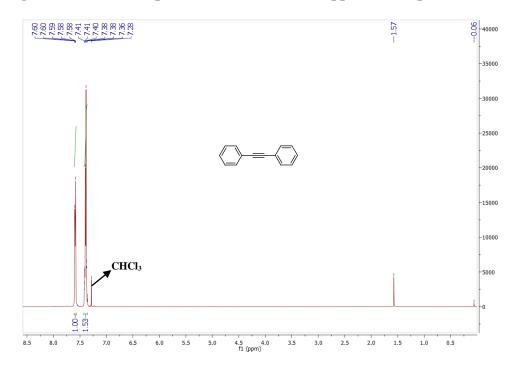
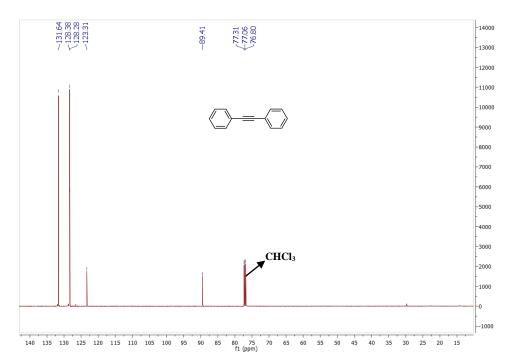




Fig. S22B: <sup>13</sup>C NMR Spectra (CDCl<sub>3</sub>, 500 MHz, ppm) of compound 5a:



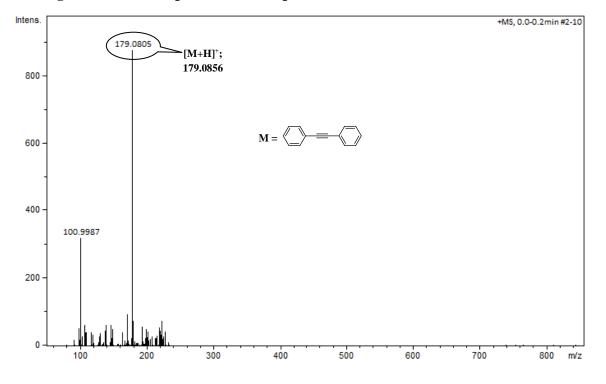



Fig. S23: ESI-MS Spectrum of compound 5a:

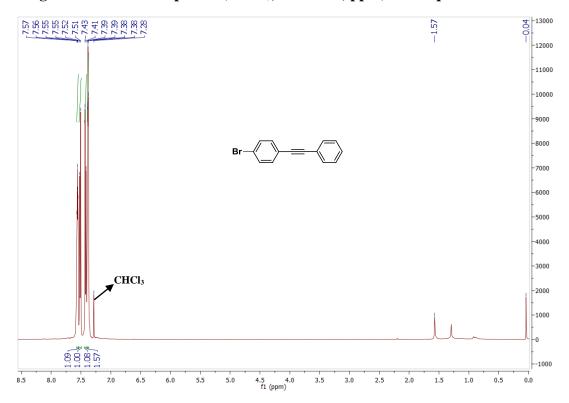
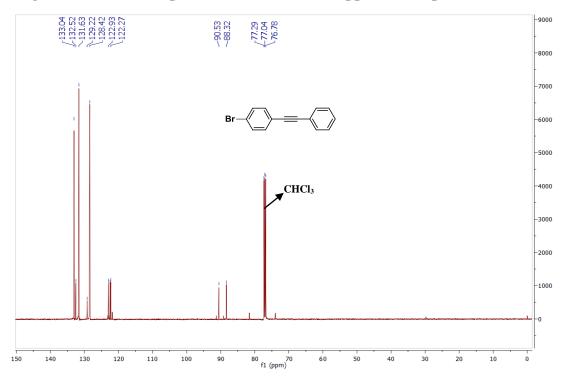




Fig. S24A: <sup>1</sup>H NMR Spectra (CDCl<sub>3</sub>, 500 MHz, ppm) of compound 5b:

Fig. S24B: <sup>13</sup>C NMR Spectra (CDCl<sub>3</sub>, 500 MHz, ppm) of compound 5b:



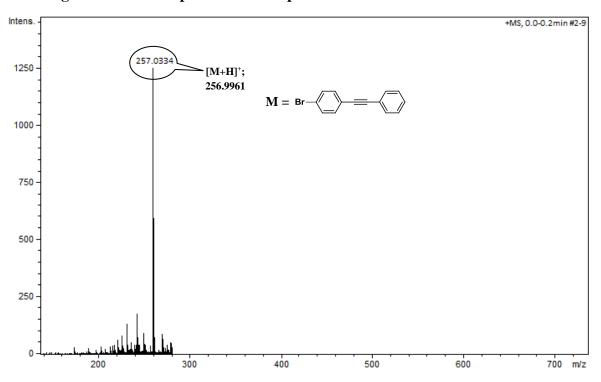



Fig. S25: ESI-MS Spectrum of compound 5b:

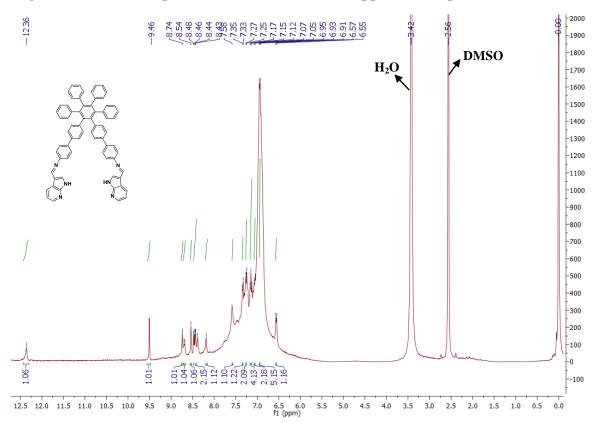
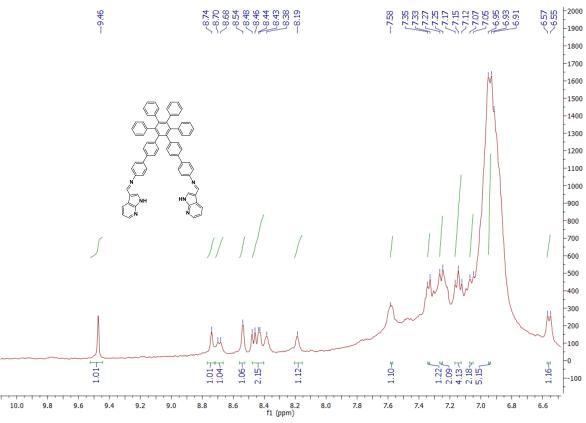




Fig. S26A: <sup>1</sup>H NMR Spectra (DMSO-d<sub>6</sub>, 400 MHz, ppm) of compound 3:

Fig. S26B: Expanded <sup>1</sup>H NMR Spectra (DMSO-d<sub>6</sub>, 400 MHz, ppm) of compound 3:



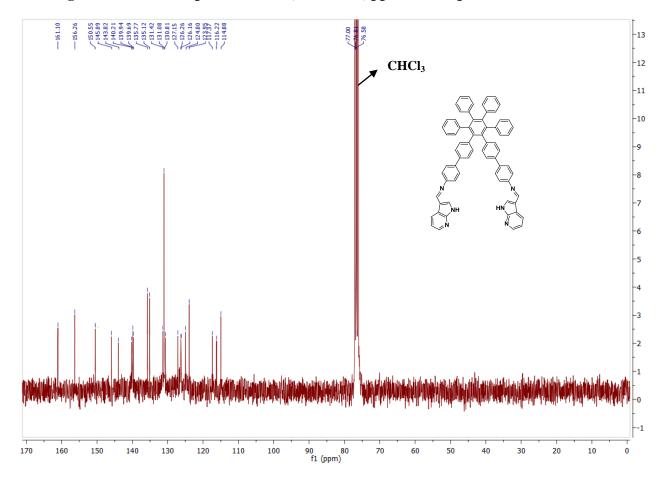
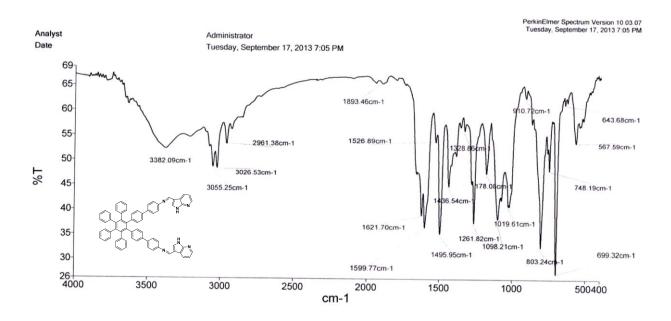




Fig. S27: <sup>13</sup>C NMR Spectra (CDCl<sub>3</sub>, 400 MHz, ppm) of compound 3:



Fig. S28: ESI-MS Spectrum of compound 3:



