## Sydnone anions and abnormal N-heterocyclic carbenes of Oethylsydnones. Characterizations, calculations and catalyses

Sascha Wiechmann,<sup>a</sup> Tyll Freese,<sup>a</sup> Martin H. H. Drafz,<sup>a</sup> Eike G. Hübner,<sup>a</sup> Jan C. Namyslo,<sup>a</sup> Martin Nieger,<sup>b</sup> and Andreas Schmidt<sup>a</sup>\*

<sup>*a*</sup> Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany. E-mail: schmidt@ioc.tu-clausthal.de

<sup>b</sup> University of Helsinki, Laboratory of Inorganic Chemistry, Department of Chemistry, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014 University of Helsinki, Finland.

General considerations. Flash-chromatography was performed with silica gel 60 (0.040-0.063 mm). Nuclear magnetic resonance (NMR) spectra were obtained with a Bruker Avance 400 and Bruker Avance III 600 MHz. <sup>1</sup>H NMR spectra were recorded at 400 MHz or 600 MHz. <sup>13</sup>C NMR spectra were recorded at 100 MHz or 150 MHz, with the solvent peak or tetramethylsilane used as the internal reference. Multiplicities are described by using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet. Signal orientations in DEPT experiments were described as follows: o = no signal; + = up(CH, CH<sub>3</sub>); - = down (CH<sub>2</sub>). The numbering of the compounds is not always in accordance with IUPAC rules to allow comparisons ("spectroscopic numbering"). FT-IR spectra were obtained on a Bruker Vector 22 in the range of 400 to 4000 cm<sup>-1</sup>. The mass spectra were measured with a Varian 320 MS Triple Quad GC/MS/MS with a Varian 450-GC. The electrospray ionisation mass spectra (ESIMS) were measured with an Agilent LCMSD series HP 1100 with APIES at fragmentor voltages as indicated. Samples were sprayed from MeOH at 4000 V capillary voltage. Melting points are uncorrected and were determined in an apparatus according to Dr. Tottoli (Büchi). The HR-MS spectra were measured on a Bruker Daltonik Tesla-Fourier transform - ion cyclotron resonance mass spectrometer with electrospray ionisation. Yields are not optimized. All density-functional theory (DFT)calculations were carried out by using the Jaguar 7.7.107 software (Jaguar, version 7.7, Schrodinger, LLC, New York, NY, 2010) running on Linux 2.6.18-238.el5 SMP (x86 64) on two AMD Phenom II X6 1090T processor workstations (Beowulf-cluster) parallelized with OpenMPI 1.3.4. MM2 optimized structures were used as starting geometries. Complete geometry optimizations were carried out on the implemented LACVP\* (Hay-Wadt effective core potential (ECP) basis on heavy atoms, N31G6\* for all other atoms) basis set and with the B3LYP density functional. All calculated structures were proven to be true minima by the absence of imaginary frequencies or transition states by the occurrence of one negative frequency. Plots were obtained using Maestro 9.1.207, the graphical interface of Jaguar. Inversion barriers have been calculated fully relaxed, fixating one torsion angle around the inverted center, and optimizing all remaining degrees of freedom. Torsion angles were modified in steps of 10°. Thermodynamic corrections were estimated from unscaled frequencies, using standard formulae in the ideal gas harmonic oscillator approximation as implemented in Jaguar, and refer to a standard state of 298.15 K and 1 mol/dm<sup>3</sup> concentration.

Anion of N-phenyl-1,2,3-oxadiazolium-5-olate 5a:



A sample of 11 mg (68 µmol) of N-phenylsydnone 2a<sup>[1]</sup> was dissolved in 0.3 mL of anhydrous CD<sub>3</sub>CN under an inert atmosphere. Then, a freshly prepared solution of 0.2 mL of anhydrous CD<sub>3</sub>CN and 0.03 mL (73 µmol) of a 24% solution of nBuLi in hexanes was added to give 5a in quantitative yields (protocol 1). <sup>1</sup>H NMR (600 MHz, MeCN- $d_3$ ):  $\delta = 7.81-7.79^1$  (m, 2 H, HC-7 + HC-7'), 7.69-7.72 (m, 1 H, *H*C-9), 7.65-7.67<sup>1</sup> (m, 2 H, *H*C-8 + *H*C-8') ppm; <sup>13</sup>C NMR (150 MHz, MeCN- $d_3$ )<sup>2</sup>:  $\delta = 169.9$  (o, C-5), 136.0 (o, C-6), 133.4 (+, HC-9), 131.2 (+), 122.7 (+) ppm.



<sup>&</sup>lt;sup>1</sup> Assignment exchangeable. <sup>2</sup> *C*-4 is not detectable.



#### Anion of N-mesityl-1,2,3-oxadiazolium-5-olate 5b:



A sample of 11 mg (54 µmol) of N-mesitylsydnone  $2\mathbf{b}^{[2]}$  was dissolved in 0.3 mL of anhydrous CD<sub>3</sub>CN under an inert atmosphere. Then, a freshly prepared solution of 0.2 mL of anhydrous CD<sub>3</sub>CN and 0.03 mL (73 µmol) of a 24% solution of nBuLi in cyclohexane was added to give **5b** in quantitative yields (protocol 2). <sup>1</sup>H NMR (600 MHz, MeCN-*d*<sub>3</sub>):  $\delta = 7.12$  (s, 2 H, *H*C-8 + *H*C-8'), 2.36 (s, 3 H, *H*<sub>3</sub>C-10), 2.15 (s, 6 H, *H*<sub>3</sub>C-11 + *H*<sub>3</sub>C-11') ppm; <sup>13</sup>C NMR (150 MHz, MeCN-*d*<sub>3</sub>)<sup>3</sup>:  $\delta = 170.0$  (o, *C*-5), 143.3 (o, *C*-9), 134.9 (o, *C*-7 + *C*-7'), 132.3 (o, *C*-6), 130.4 (+, H*C*-8 + H*C*-8'), 21.2 (+, H*C*-10), 16.8 (+, H*C*-11 + H*C*-11') ppm.

 $<sup>^{3}</sup>$  C-4 is not detectable.



#### Anion of N-(4-fluorophenyl)-1,2,3-oxadiazolium-5-olate 5c:

$$F = \frac{8}{8} = \frac{7}{7} = \frac{3}{7} = \frac{1}{1} =$$

A sample of 11 mg (61 µmol) of N-(4-fluorophenyl)sydnone  $2c^{[1,3]}$  was used following protocol 1 (*c.f.* **5a**). <sup>1</sup>H NMR (600 MHz, MeCN-*d*<sub>3</sub>):  $\delta = 7.84-7.85^4$  (m, 2 H, *H*C-7 + *H*C-7<sup>2</sup>), 7.38-7.40<sup>4</sup> (m, 2 H, *H*C-8 + *H*C-8<sup>2</sup>) ppm; <sup>13</sup>C NMR (150 MHz, MeCN-*d*<sub>3</sub>)<sup>5</sup>:  $\delta = 169.7$  (o, *C*-5), 165.5 (d, *J* = 258.3 Hz, o, *C*-9), 132.3 (o, *C*-6), 125.4 (d, *J* = 9.4 Hz, +, HC-7 + HC-7<sup>2</sup>), 118.0 (+, HC-8 + HC-8<sup>2</sup>) ppm.

<sup>5</sup> C-4 is not detectable.

<sup>&</sup>lt;sup>4</sup> Assignment exchangeable.



Signals of C-8/C8' were overlapped by CN signal.



Anion of N-(4-chlorophenyl)-1,2,3-oxadiazolium-5-olate 5d:



A sample of 11 mg (56 µmol) of N-(4-chlorophenyl)sydnone  $2d^{[1,4]}$  was used following protocol 1 (*c.f.* **5a**). <sup>1</sup>H NMR (600 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 7.78-7.79<sup>6</sup> (m, 2 H, *H*C-8 + *H*C-8'), 7.66-7.67<sup>6</sup> (m, 2 H, *H*C-7 + *H*C-7') ppm; <sup>13</sup>C NMR (150 MHz, MeCN-*d*<sub>3</sub>)<sup>7</sup>:  $\delta$  = 169.9 (o, *C*-5), 138.8 (o, *C*-9), 134.6 (o, *C*-6), 131.3 (+, H*C*-8 + H*C*-8'), 124.3 (+, H*C*-7 + H*C*-7') ppm.



<sup>6</sup> Assignment exchangeable.

<sup>7</sup> C-4 is not detectable.



Anion of N-(4-bromophenyl)-1,2,3-oxadiazolium-5-olate 5e:



A sample of 11 mg (46 µmol) of N-(4-bromophenyl)sydnone  $2e^{[1,5]}$  was used following protocol 1 (*c.f.* **5a**). <sup>1</sup>H NMR (600 MHz, MeCN-*d*<sub>3</sub>):  $\delta = 7.82-7.83^8$  (m, 2 H, *H*C-8 + *H*C-8'), 7.71-7.72<sup>8</sup> (m, 2 H, *H*C-7 + *H*C-7') ppm; <sup>13</sup>C NMR (150 MHz, MeCN-*d*<sub>3</sub>)<sup>9</sup>:  $\delta = 169.6$  (*C*-5, o), 135.1 (o, *C*-6), 134.3 (+), 126.9 (o, *C*-9), 124.4 (+) ppm.

<sup>&</sup>lt;sup>8</sup> Assignment exchangeable.

 $<sup>^{9}</sup>$  C-4 is not detectable.



#### Anion of N-(4-iodophenyl)-1,2,3-oxadiazolium-5-olate 5f:



A sample of 11 mg (38 µmol) of N-(4-iodophenyl)sydnone **2f** was used following protocol 2 (*c.f.* **5b**). <sup>1</sup>H NMR (600 MHz, MeCN-*d*<sub>3</sub>):  $\delta = 8.01-8.03^{10}$  (m, 2 H, *H*C-8 + *H*C-8'), 7.56-7.59^{10} (m, 2 H, *H*C-7 + *H*C-7') ppm; <sup>13</sup>C NMR (150 MHz, MeCN-*d*<sub>3</sub>) <sup>11</sup>:  $\delta = 140.4$  (+), 135.7 (o, *C*-6), 124.3 (+), 99.0 (*C*-9, o) ppm.

<sup>&</sup>lt;sup>10</sup> Assignment exchangeable.

<sup>&</sup>lt;sup>11</sup> C-5 and C-4 were not detectable.



Decomposition observable after approximately 1 h. C-5 is not detectable after 2 k.

#### 5-Ethoxy-N-(4-fluorophenyl)-1,2,3-oxadiazolium tetrafluoroborate 6c.



Under an inert atmosphere a sample of 1.12 g (6.2 mmol) of N-(4-fluorophenyl)sydnone<sup>[6]</sup> in 10 mL of anhydrous dichloromethane was treated dropwise with 9.3 mL (9.3 mmol) of triethyloxonium tetrafluoroborate (1 M in CH<sub>2</sub>Cl<sub>2</sub>) and stirred at rt for 5 days. On addition of diethylether a precipitate formed which was filtered off and dried *in vacuo*. Yield: 1.05 g (57 %) of a colorless solid, mp. 98 °C; <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = 8.00-8.03<sup>12</sup> (m, 2H, *H*C-7/*H*C-7<sup>4</sup>), 7.76 (s, 1H, *H*C-4), 7.59-7.55<sup>12</sup> (m, 2H, *H*C-8/*H*C-8<sup>4</sup>), 4.32 (q, *J*<sub>H,H</sub> = 7.1 Hz, 2H, *H*<sub>2</sub>C-10), 1.31 (t, *J*<sub>H,H</sub> = 7.1 Hz, 3H, *H*<sub>3</sub>C-11) ppm; <sup>13</sup>C NMR (150 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = 168.4 (o, *C*-5), 163.8 (o, d, <sup>1</sup>*J*<sub>C,F</sub> = 248.9 Hz, *C*-9), 131.0 (o, *C*-6), 124.3 (+, d, <sup>3</sup>*J*<sub>C,F</sub> = 9.5 Hz, H*C*-7/*H*C-7<sup>4</sup>), 117.2 (+, d, <sup>2</sup>*J*<sub>C,F</sub> = 23.7 Hz, H*C*-8/*H*C-8<sup>4</sup>), 95.2 (+, H*C*-4), 72.7 (-, H<sub>2</sub>*C*-10), 15.2 (+, H<sub>3</sub>*C*-11) ppm; IR (ATR):  $\bar{\nu}$  = 3141, 3098, 2993, 1719, 1638, 1611, 1596, 1506, 1473, 1446, 1425, 1386, 1348, 1300, 1261, 1243, 1164, 1054, 1030, 1013, 1003, 962, 881, 840, 817, 781, 767, 710, 669, 597, 541, 521, 497 cm<sup>-1</sup>; MS (ESI 30V) *m/z* (%) = 209 (33) [M<sup>+</sup>], 505 (100) [2M<sup>+</sup>+BF<sub>4</sub><sup>-</sup>]. HRMS: Calcd 209.0721. Found 209.0723.



<sup>&</sup>lt;sup>12</sup> Assignment exchangeable.



5-Ethoxy-N-(4-chlorophenyl)-1,2,3-oxadiazolium tetrafluoroborate 6d.



A sample of 2.79 g (14.2 mmol) N-(4-chlorophenyl)sydnone<sup>[6]</sup> dissolved in 20 mL of anhydrous CH<sub>2</sub>Cl<sub>2</sub> was treated dropwise with 17 mL (17.0 mmol) of triethyloxonium tetrafluoroborate (1 M in CH<sub>2</sub>Cl<sub>2</sub>) and then stirred for 96 h at rt. On addition of diethylether a precipitate formed which was filtered off and dried *in vacuo*. Yield: 2.42 g (55 %), mp. 117 °C. <sup>1</sup>H NMR (400 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 8.52 (s, 1H, *H*C-4), 7.94-7.98<sup>13</sup> (m, 2H, *H*C-7/*H*C-7<sup>c</sup>), 7.79-7.83<sup>13</sup> (m, 2H, *H*C-8/*H*C-8<sup>c</sup>), 4.87 (q, *J*<sub>H,H</sub> = 7.1 Hz, 2H, *H*<sub>2</sub>C-10), 1.60 (t, *J*<sub>H,H</sub> = 7.1 Hz, 3H, *H*<sub>3</sub>C-11) ppm. <sup>13</sup>C NMR (100 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 174.4 (o, *C*-5), 141.6 (o, *C*-9), 132.6 (o, *C*-6), 132.1 (+), 125.2 (+), 105.0 (+, HC-4), 77.3 (-, H<sub>2</sub>C-10), 14.5 (+, H<sub>3</sub>C-11) ppm; IR (ATR):  $\bar{\nu}$  = 3148, 3105, 2994, 1639, 1596, 1585, 1485, 1438, 1411, 1394, 1382, 1347, 1306, 1286, 1264, 1219, 1186, 1098, 1060, 1024, 992, 962, 883, 839, 761, 750, 705, 696, 662, 544, 519, 514, 500, 453, 423 cm<sup>-1</sup>; MS (ESI 30 V) *m/z* (%) = 225 (100) [M<sup>+</sup>], 537 (13) [2M<sup>+</sup>+BF<sub>4</sub><sup>-</sup>]. HRMS: Calcd 225.0425. Found 225.0432.

<sup>&</sup>lt;sup>13</sup> Assignment exchangeable.



5-Ethoxy-N-(4-bromophenyl)-1,2,3-oxadiazolium tetrafluoroborate 6e.



A sample of 0.19 g (0.76 mmol) N-(4-bromophenyl)Sydnone<sup>[6]</sup> in 10 mL of anhydrous CH<sub>2</sub>Cl<sub>2</sub> was treated dropwise with 1.2 mL (1.20 mmol) of triethyloxonium tetrafluoroborate (1 M in CH<sub>2</sub>Cl<sub>2</sub>) and then stirred at rt for 72 h. On addition of diethylether a precipitate formed which was filtered off and dried *in vacuo*. Yield: 0.167 g (58 %), mp: 102 °C. <sup>1</sup>H NMR (400 MHz, MeCN- $d_3$ :  $\delta$  = 8.54 (s, 1H, *H*C-4), 7.95-7.99<sup>14</sup> (m, 2H, *H*C-8/*H*C-8°), 7.86-7.90<sup>14</sup> (m, 2H, *H*C-7/*H*C-7°), 4.87 (q,  $J_{H,H}$  = 7.1 Hz,

2H,  $H_2$ C-10), 1.60 (t,  $J_{H,H}$ = 7.1 Hz, 3H,  $H_3$ C-11) ppm; <sup>13</sup>C NMR (100 MHz, MeCN- $d_3$ ):  $\delta$  = 174.4 (o, C-5), 135.1 (+), 133.1 (o, C-6), 130.0 (o, C-9), 125.2 (+), 104.9 (+, HC-4), 77.3 (-, H<sub>2</sub>C-10), 14.5 (+, H<sub>3</sub>C-11) ppm; IR (ATR):  $\bar{\nu}$  = 3146, 3103, 2994, 1638, 1592, 1580, 1484, 1449, 1435, 1395, 1380, 1345, 1305, 1284, 1262, 1187, 1124, 1099, 1057, 1025, 991, 961, 882, 834, 760, 736, 701, 687, 661, 623, 538, 520, 509, 442, 417, 407 cm<sup>-1</sup>; MS (ESI 30 V) *m/z* (%) = 271.0 (100) [M<sup>+</sup>], 627.0 (10) [2M<sup>+</sup>+BF<sub>4</sub><sup>-</sup>]. HRMS: calcd. 268.9920. Found 268.9962.



5-Ethoxy-N-(4-iodophenyl)-1,2,3-oxadiazolium tetrafluoroborate 6f.

<sup>&</sup>lt;sup>14</sup> Assignment exchangeable.

#### a) N-Nitroso-N-(4-iodophenyl)-glycine



A sample of 2.19 g (7.89 mmol) of N-(4-iodophenyl)glycine<sup>[1]</sup> in 15 mL of hydrochloric acid (12.5 %) was cooled to 0°C. Then a solution of 0.82 g (11.8 mmol) of NaNO<sub>2</sub> in 10 mL of water was added dropwise. After 30 min 15 mL of Et<sub>2</sub>O were added and stirring at that temperature was continued for 1.5 h. After warming to rt, additional 20 mL of Et<sub>2</sub>O were added and the two phases were separated. The aqueous layer was extracted three times with CHCl<sub>3</sub>. The combined organic phases were dried over MgSO<sub>4</sub> and then the solvent mixture was distilled off. The resulting solid was dried *in vacuo* and purified by column chromatography (1. petroleum ether / ethyl acetate = 10 / 1; 2. EtOAc; 3. MeOH). Yield: 1.33 g (55 %), mp 133 °C. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = 7.78-7.82<sup>15</sup> (m, 2H, *H*C-6/*H*C-6') 7.37-7.41<sup>15</sup> (m, 2H, *H*C-5/*H*C-5'), 4.42 (s, 2H, *H*<sub>2</sub>C-2) ppm<sup>16</sup>; <sup>13</sup>C NMR (100 MHz, DMSO-*d*<sub>6</sub>):  $\delta$  = 168.4 (o, *C*-1), 142.1 (o, *C*-4), 137.8 (+), 121.4 (+), 91.8 (o, *C*-7), 48.3 (-, H<sub>2</sub>*C*-2) ppm; IR (ATR):  $\bar{\nu}$  = 3405, 3086, 3011, 2967, 1611, 1576, 1487, 1431, 1401, 1381, 1354, 1308, 1277, 1242, 1187, 1134, 1117, 1064, 1039, 1013, 1002, 957, 931, 919, 861, 815, 720, 699, 589, 557, 519, 466, 414, 405 cm<sup>-1</sup>; MS (ESI 50 V) *m/z* (%) = 305 (100) [M-H]<sup>-</sup> (anion detection mode). HRMS: Calcd. 304.9429. Found 304.9267.



<sup>&</sup>lt;sup>15</sup> Assignment exchangeable.

<sup>&</sup>lt;sup>16</sup> OH is not observable.



#### b) N-(4-Iodophenyl)sydnone 2f:



A sample of 1.33 g (4.35 mmol) of N-nitroso-N-(4-iodophenyl)glycine in 25 mL of Ac<sub>2</sub>O was heated at reflux temperature for 2.5 h. After cooling to rt the reaction mixture was poured on 200 mL of ice. The aqueous layer was extracted three times with CHCl<sub>3</sub>, then the combined organic phases were dried over MgSO<sub>4</sub> and finally the solvent was distilled off *in vacuo*. The resulting solid was dried *in vacuo* and then recrystallized from EtOH and dried. Yield: 0.90 g (72 %), mp. 198 °C. <sup>1</sup>H NMR (400 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 6.99 (s, 1H, *H*C-4), 7.54-7.57<sup>17</sup> (m, 2H, *H*C-8/HC-8'), 8.00-8.04<sup>17</sup> (m, 2H, *H*C-7/*H*C-7') ppm; <sup>13</sup>C NMR (100 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 169.7 (o, *C*-5), 140.3 (+), 135.7 (o, *C*-6), 124.3 (+), 98.9 (o, *C*-9), 95.5 (+, *C*-4) ppm; IR (ATR):  $\bar{\nu}$  = 3130, 3088, 3064, 1892, 1743, 1580, 1492, 1440, 1411, 1355, 1299, 1275, 1230, 1187, 1174, 1116, 1087, 1059, 1017, 1002, 944, 853, 828, 819, 725, 692, 644, 621, 552, 496, 465, 425 cm<sup>-1</sup>; MS (ESI 30 V) *m/z* (%) = 311 (43) [M+Na] +, 599 (100) [2M+Na]<sup>+</sup>. HRMS: Calcd 288.9468. Found 288.9540.

<sup>&</sup>lt;sup>17</sup> Assignment exchangeable.



#### c) Ethylation of N-(4-iodophenyl)sydnone to give 6f:



A sample of 0.80 g (2.77 mmol) of N-(4-iodophenyl)sydnone in 10 mL of anhydrous CH<sub>2</sub>Cl<sub>2</sub> was treated dropwise with 4.2 mL (4.20 mmol) of triethyloxonium tetrafluoroborate (1 M in CH<sub>2</sub>Cl<sub>2</sub>) and stirred for 72 h at rt. On addition of diethylether a colorless precipitate formed which was filtered off and dried. Yield: 0.753 g (67 %), mp: 111 °C. <sup>1</sup>H NMR (400 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 8.54 (s, 1H, *H*C-4), 8.15-8.18<sup>18</sup> (m, 2H, *H*C-8/*H*C-8<sup>°</sup>), 7.70-7.73<sup>18</sup> (m, 2H, *H*C-7/*H*C-7), 4.86 (q, *J*<sub>H,H</sub> = 7.1 Hz, 2H, *H*<sub>2</sub>C-

<sup>&</sup>lt;sup>18</sup> Assignment exchangeable.

10), 1.59 (t,  $J_{\rm H,H}$  = 7.1 Hz, 3H,  $H_3$ C-11) ppm; <sup>13</sup>C NMR (100 MHz, MeCN- $d_3$ ):  $\delta$  = 174.0 (o, *C*-5), 141.1 (+), 133.7 (o, *C*-6), 124.8 (+), 104.7 (+, H*C*-4), 102.5 (o, *C*-9), 77.3 (-, H<sub>2</sub>*C*-10), 13.1 (+, H<sub>3</sub>*C*-11) ppm; IR (ATR):  $\bar{\nu}$  = 3145, 3104, 2984, 2938, 1627, 1587, 1489, 1469, 1435, 1420, 1402, 1375, 1361, 1310, 1290, 1279, 1261, 1191, 1101, 1033, 1001, 958, 884, 833, 817, 771, 748, 698, 664, 622, 577, 534, 519, 490, 440, 427 cm<sup>-1</sup>; MS (ESI 30 V) m/z (%) = 317.0 (100) [M<sup>+</sup>]. HRMS: Calcd 316.9781. Found: 316.9781.



(*cis-/trans-*)-Bromo-(5-oxy-N-phenyl-1,2,3-oxadiazolium-4-yl)-bis-(triphenylphosphine)-palladium(II) 16:



Under an inert atmosphere at rt a solution of 4-bromo-N-phenylsydnone<sup>[7]</sup> (0.1 g, 0.4 mmol) in approximately 7 mL of anhydrous THF was treated with 0.479 g of tetrakis-(triphenylphosphine)-palladium(0) (0.4 mmol). The mixture was stirred at rt for 35 min and then the resulting solid was filtered off, washed with THF and dried. Yield: 0.24 g (67 %). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 7.14 – 7.18 (m, 1 H), 7.24 – 7.53 (m, 31 H), 7.69 – 7.72 (m, 1 H), 7.82 – 7.83 (m, 2 H) ppm; <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  = 113.4 (t, *J* = 9.2 Hz, o, *C*-4), 122.6 (+, H*C*-7 + H*C*-7<sup>c</sup>), 128.3 (t, *J* = 5.2 Hz, +, H*C*-12 + H*C*-12<sup>c</sup>), 128.8 (+, H*C*-13), 130.26 (t, *J* = 24.6 Hz, o, *C*-10), 130.31 (+, H*C*-9), 130.6 (+, H*C*-8 + H*C*-8<sup>c</sup>), 134.5 (t, *J* = 6.4 Hz, +, H*C*-11 + H*C*-11<sup>c</sup>), 137.5 (o, *C*-6), 171.9 (o, *C*-5) ppm; signals are overlapped by signals of the cis isomer. <sup>31</sup>P NMR (243 MHz, CDCl<sub>3</sub>):  $\delta$  = 21.3 (s, *trans*), 21.9 (d, *J* = 36.8 Hz, *cis*) ppm; IR (ATR):  $\tilde{\nu}$  = 1698, 1097, 933, 695 cm<sup>-1</sup>.<sup>19</sup>



The *trans*-product is overlapped by the *cis*-product in <sup>1</sup>H-nmr.

<sup>&</sup>lt;sup>19</sup> The *cis/trans*-ratio was determined by an <sup>31</sup>P-NMR experiment.



Only the *trans*-product is marked in <sup>13</sup>C-nmr, the *cis*-product is visible.



#### 4-Bromo-5-ethoxy-N-phenylsydnone 17:



A sample of 1.48 g (6.14 mmol) of 4-bromo-N-(phenyl)sydnone<sup>[8]</sup> in 10 mL of anhydrous CH<sub>2</sub>Cl<sub>2</sub> was treated dropwise with 9.2 mL (9.20 mmol) of triethyloxonium tetrafluoroborate (1 M in CH<sub>2</sub>Cl<sub>2</sub>) and stirred at rt for 72 h. On addition of Et<sub>2</sub>O a precipitate formed which was filtered off and dried. Yield: 1.637 g (75 %), mp 156 °C. <sup>1</sup>H NMR (600 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 7.91-7.95 (m, 1H, *H*C-9), 7.78-7.85 (m, 4H, *H*C-7'/*H*C-7'/*H*C-8'/*H*C-8'), 5.07 (q, *J*<sub>H,H</sub> = 7.1 Hz, 2H, *H*<sub>2</sub>-C10), 1.64 (t, *J*<sub>H,H</sub> = 7.1 Hz, 3H, *H*<sub>3</sub>-

C11) ppm; <sup>13</sup>C NMR (150 MHz, MeCN-*d*<sub>3</sub>):  $\delta$  = 171.3 (o, *C*-5), 135.7 (+, H*C*-9), 132.4 (o, H*C*-6), 131.9 (+), 126.2 (+), 96.2 (o, *C*4), 77.4 (-, H<sub>2</sub>*C*-10), 14.8 (+, H<sub>3</sub>*C*-11) ppm; IR (ATR):  $\bar{\nu}$  = 2995, 1641, 1596, 1491, 1467, 1441, 1419, 1389, 1355, 1301, 1291, 1249, 1166, 1119, 1060, 1042, 1019, 987, 939, 924, 859, 811, 759, 742, 703, 686, 660, 609, 594, 522, 509, 489, 452, 405 cm<sup>-1</sup>; MS (ESI 30 V) *m/z* (%) = 269.0 (100) [M<sup>+</sup>]. HRMS: Calcd 268.9920. Found: 268.9925.



(*cis-/trans-*)-Bromo-(N-(phenyl)-5-ethoxysydnone-4-yl)-bis-(triphenylphosphine)-palladium(II) 18:



A solution of 0.06 g (0.17 mmol) of 4-bromo-5-ethoxy-N-phenylsydnone in 5 mL of anhydrous THF was treated with 0.20 g (0.17 mmol) of tetrakis(triphenylphosphine)palladium(0) and stirred under an inert atmosphere for 4 h at rt. The resulting yellow solid was filtered off, washed with THF and dried *in vacuo*. Yield: 0.150 g (88 %), mp. 205 °C (dec.). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  = 8.02-8.04 (m, 2H), 7.76-7.80 (m, 1H), 7.26-7.61 (m, 31H), 7.14-7.18 (m, 1H), 4.19 (q, *J*<sub>H,H</sub> = 7.1 Hz, 2H, C10-*H*<sub>2</sub>), 1.43 (t, *J*<sub>H,H</sub> = 7.1 Hz, 3H, C11-*H*<sub>3</sub>) ppm; <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  = 172.4 (o, C5), 133.9 (+, t, *J* = 6.2 Hz, C13/C13'), 131.8 (+, C8/C8'), 131.3 (+, C9), 130.2 (+, C15), 129.7 (o, t, *J* = 25.8 Hz, C12), 129.1 (o, C6), 128.9 (+, t, *J* = 5.2 Hz, C14/C14'), 125.9 (o, t, *J* = 10.2 Hz, C4), 122.4 (+, C7/C7'), 72.4 (-, C10), 14.4 (+, C11) ppm; signals are overlapped by signals of the cis isomer. <sup>31</sup>P NMR (243 MHz, CDCl<sub>3</sub>):  $\delta$  = 25.4 (d, *J* = 1667.9 Hz, *cis*), 20.8 (s, *trans*) ppm; IR (ATR):  $\bar{\nu}$  = 3057, 1602, 1579, 1482, 1466, 1434, 1381, 1351, 1310, 1282, 1199, 1162, 1094, 1052, 990, 869, 824, 763, 744, 692, 617, 578, 533, 522, 510, 497, 460, 445, 431, 421 cm<sup>-1</sup>; MS (ESI 30 V) *m/z* (%) = 903.0 (100) [M<sup>+</sup>]. HRMS: Calcd 899.0778. Found: 899.0779.<sup>20</sup>

<sup>&</sup>lt;sup>20</sup> The *cis/trans*-ratio was determined by an <sup>31</sup>P-NMR experiment.



Traces of THF are visible and the *trans*-product is overlapped by the *cis*-product in <sup>1</sup>H-NMR.





2,3,4,5-Tetra(naphthalen-1-yl)thiophene 20b:



A sample of 75 mg (188 µmol) of tetrabromothiophene was dissolved in 8 mL of anhydrous toluene under an inert atmosphere. Then a portion of 10 mol-% of the catalyst (**15**/**17**) was added, the mixture was degassed by ultrasound, and then stirred for 30 minutes at rt. After that time 161 mg (0.94 mmol) of 1-naphthylboronic acid, 319 mg (1.50 mmol) of potassium phosphate and 2 mL of water were added. The mixture was heated to 100 °C for 22 h. The crude product was extracted with ethyl acetate and purified by column chromatography using petroleum ether.<sup>21</sup> Yield: 59 mg (53 %), mp. 230 °C (dec.). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)<sup>22</sup>:  $\delta$  = 8.39-8.37 (m, 2 H, *H*C-7 + *H*C-37), 8.06-8.05 (m, 1 H, *H*C-27), 7.95-7.93 (m, 1 H, *H*C-17), 7.73-7.70 (m, 2 H, *H*C-12 + *H*C-44), 7.64-7.61 (m, 2 H, *H*C-10 + *H*C-40), 7.48-7.44 (m, 4 *H*, *H*C-8 + *H*C-14 + *H*C-20 + *H*C-38), 7.41-7.37 (m, 4 *H*, *H*C-9 + *H*C-30 + *H*C-34), 7.21-7.18 (m, 3 *H*, *H*C-43 + *H*C-29 + *H*C-13), 7.10-7.09 (m, 1 *H*, *H*C-24), 7.04-7.01 (m, 1 *H*, *H*C-19), 7.00-6.98 (m, 1 *H*, *H*C-33), 6.89-6.86 (m, 1 *H*, *H*C-28), 6.84-6.81 (m, 1*H*, *H*C-23) ppm; <sup>13</sup>C NMR

<sup>&</sup>lt;sup>21</sup> This is our typical procedure for Suzuki-Miyaura-reactions with tetrabromothiophene.

<sup>&</sup>lt;sup>22</sup> Due to the symmetry the peak assignments of C1/C-4 and C-2/C-3 are exchangeable, respectively.

(150 MHz, CDCl<sub>3</sub>)<sup>22</sup>:  $\delta$  = 140.6 (o, *C*-2), 140.3 (o, *C*-3), 138.7 (o, *C*-1), 138.5 (o, *C*-4), 134.2 (o, *C*-25), 134.1 (o, *C*-15), 133.5 (o, *C*-5 / *C*-35), 133.4 (o, *C*-35 / *C*-5), 132.9 (o, *C*-21), 132.9 (o, *C*-31), 132.8 (o, *C*-36), 132.5 (o, *C*-6), 132.4 (o, *C*-16), 131.9 (o, *C*-26), 131.8 (o, *C*-41), 131.6 (o, *C*-11), 129.3 (+, H*C*-38), 129.3 (+, H*C*-8), 129.0 (+, H*C*-34), 128.6 (+, H*C*-24), 128.4 (+, H*C*-10 / H*C*-40), 128.3 (+, H*C*-40 / H*C*-10), 128.0 (+, H*C*-12 + H*C*-44), 127.7 (+, H*C*-20), 127.5 (+, H*C*-30), 127.1 (+, H*C*-22), 127.1 (+, H*C*-32), 126.5 (+, H*C*-27), 126.3 (+, H*C*-17), 126.2 (+, H*C*-7 / H*C*-37), 126.2 (+, H*C*-37 / H*C*-7), 126.0 (+, H*C*-14), 125.9 (+, H*C*-42), 125.7 (+, H*C*-9 / H*C*-39), 125.6 (+, H*C*-39 / H*C*-9), 125.1 (+, H*C*-18), 125.0 (+, H*C*-29), 128.9 (+, H*C*-19 + H*C*-43), 124.9 (+, H*C*-13), 124.8 (+, H*C*-28), 124.5 (+, H*C*-23), 124.4 (+, H*C*-33) ppm; IR (ATR):  $\bar{\nu}$  = 3043, 2962, 1591, 1505, 1258, 1086, 1012, 790, 769 cm<sup>-1</sup>; MS (EI, DEP, 70 eV) *m/z* (%) = 588.4 (100) [M<sup>+</sup>]. HRMS: Calcd 588.1912. Found 588.1909.







2,5-Di(naphthalen-1-yl)-3,4-dinitrothiophene 20d:



A sample of 75 mg (226 µmol) of 2,5-dibromo-3,4-dinitrothiophene was dissolved in 8 mL of anhydrous toluene under an inert atmosphere. Then 10 mol-% of the catalyst (**15**/**17**) were added, the mixture was degassed by ultrasound and then stirred for 30 minutes at rt. After that time a portion of 178 mg (1.03 mmol) of 1-naphthalylboronic acid, 384 mg (1.81 mmol) of potassium phosphate and 2 mL of water were added. The mixture was heated to 100 °C for 72 h. The crude product was extracted with ethyl acetate and purified by column chromatography using a solvent mixture of petroleum ether and dichloromethane.<sup>23</sup> Yield: 77 mg (80%; with catalyst **15**), 76 mg (80%; with catalyst **17**), mp. 261 °C. <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )<sup>24</sup>:  $\delta$  = 8.18-8.19 (m, 2H, *H*C-8/*H*C-8'), 8.08-8.11 (m, 2H, *H*C-

<sup>&</sup>lt;sup>23</sup> This is our typical procedure for Suzuki-Miyaura-reactions with 2,5-dibromo-3,4-dinitrothiophene.

<sup>&</sup>lt;sup>24</sup> Due to the symmetry the peak assignments of C1/C-4 and C-2/C-3 are exchangeable, respectively.

10/*H*C-10°), 8.00-8.02 (m, 2H, *H*C-13/*H*C-13'), 7.85 (dd,  $J_{H,H} = 7.2$ , 1.2 Hz, 2H, *H*C-6/*H*C-6°), 7.68-7.70 (m, 2H, *H*C-7/ *H*C-7'), 7.64-7.68 (m, 4H, *H*C-11/*H*C-11'/*H*C-12/*H*C-12') ppm; <sup>13</sup>C NMR (150 MHz, DMSO- $d_6$ )<sup>24</sup>:  $\delta = 141.1$  (o, *C*-1/*C*-4), 137.8 (o, *C*-3/*C*-2), 133.0 (o, *C*-9/*C*-9'), 131.3 (+, *H*C-8'), 131.2 (o, *C*-14/*C*-14'), 129.4 (+, *H*C-6/*H*C-6'), 128.7 (+, *H*C-10/*H*C-10'), 127.9 (+, *H*C-11/*H*C-11'/*H*C-12/*H*C-12'), 125.4 (+, *H*C-7/*H*C-7'), 125.0 (o, *C*-5/*C*-5'), 124.8 (+, *H*C-13/*H*C-13') ppm; IR (ATR):  $\bar{\nu} = 3049$ , 1552, 1538, 1514, 1503, 1384, 1341, 1324, 1272, 545 cm<sup>-1</sup>; MS (EI, DEP, 70 eV) m/z (%) = 426.3 (100) [M<sup>+</sup>]. HRMS: Calcd 426.0674. Found 426.0674.



#### Results of the single crystal X-ray analysis of sydnone 2b

Crystallographic data (excluding structure factors) for the structures reported in this work have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 987516 (**2b**). Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code+(1223)336-033; e-mail: <u>deposit@ccdc.cam.ac.uk</u>).



Fig. S1. Molecular structure of **2b** (displacement parameters are drawn at 50 % probability level).



Fig. S2. Crystal packing of 2b.

## 3-Mesityl-1,2,3-oxadiazol-3-ium-5-olate – 2b

Crystal data for 2b

| $C_{11}H_{12}N_2O_2$            | Z = 2                                                 |
|---------------------------------|-------------------------------------------------------|
| $M_r = 204.23$                  | F(000) = 216                                          |
| Triclinic, P <sup>-1</sup>      | $D_{\rm x} = 1.322 \text{ Mg m}^{-3}$                 |
| a = 7.423 (1)  Å                | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 8.934 (2)  Å                | Cell parameters from 536 reflections                  |
| c = 9.001 (2)  Å                | $\theta = 2-25^{\circ}$                               |
| $\alpha = 118.77 \ (1)^{\circ}$ | $\mu = 0.09 \text{ mm}^{-1}$                          |
| $\beta = 97.71 \ (1)^{\circ}$   | T = 123  K                                            |
| $\gamma = 93.62 (1)^{\circ}$    | Blocks, colourless                                    |
| $V = 512.87 (18) \text{ Å}^3$   | $0.24 \times 0.18 \times 0.06 \text{ mm}$             |

### Data collection for 2b

| Bruker-Nonius KappaCCD<br>diffractometer                      | 2343 independent reflections                           |
|---------------------------------------------------------------|--------------------------------------------------------|
| Radiation source: fine-focus sealed tube                      | 1983 reflections with $I > 2\sigma(I)$                 |
| Graphite monochromator                                        | $R_{\rm int} = 0.057$                                  |
| rotation in phi and $\omega$ , 2 deg. scans                   | $\theta_{max} = 27.5^\circ,  \theta_{min} = 3.6^\circ$ |
| Absorption correction: multi-scan<br>SADABS (Sheldrick, 2008) | $h = -9 \rightarrow 9$                                 |
| $T_{\min} = 0.686, \ T_{\max} = 0.997$                        | $k = -11 \rightarrow 11$                               |
| 11031 measured reflections                                    | <i>l</i> = -11→11                                      |

### Refinement for 2b

| Refinement on F <sup>2</sup>    | Primary atom site location: structure-invariant direct methods                     |
|---------------------------------|------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                               |
| $R[F^2 > 2\sigma(F^2)] = 0.049$ | Hydrogen site location: inferred from neighbouring sites                           |
| $wR(F^2) = 0.138$               | H-atom parameters constrained                                                      |
| <i>S</i> = 1.08                 | $w = 1/[\sigma^2(F_o^2) + (0.0732P)^2 + 0.182P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 2343 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                |
| 139 parameters                  | $\Delta \lambda_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$                       |
| 0 restraints                    | $\Delta$ <sub>min</sub> = -0.23 e Å <sup>-3</sup>                                  |

#### **Computing details**

Data collection: Collect (Nonius, 1998); cell refinement: *EVALCCD* (Duisenberg *et al.*, 2003); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

#### Special details

Experimental. dx = 35 mm, 50 sec./deg., 2 deg., 10 sets, 410 frames

*Geometry*. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

*Refinement*. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)

for 2b

|      | x            | У             | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|--------------|---------------|--------------|-------------------------------|
| 01   | 0.09931 (13) | -0.02430 (12) | 0.14908 (13) | 0.0249 (3)                    |
| N2   | 0.07280 (16) | 0.14583 (15)  | 0.23446 (16) | 0.0244 (3)                    |
| N3   | 0.21619 (15) | 0.22844 (15)  | 0.21963 (14) | 0.0205 (3)                    |
| C4   | 0.33387 (18) | 0.12822 (17)  | 0.13106 (17) | 0.0223 (3)                    |
| H4   | 0.4436       | 0.1651        | 0.1068       | 0.027*                        |
| C5   | 0.26288 (18) | -0.04205 (18) | 0.08123 (17) | 0.0219 (3)                    |
| O5   | 0.30877 (14) | -0.18438 (13) | 0.00302 (13) | 0.0273 (3)                    |
| C6   | 0.23405 (18) | 0.41559 (17)  | 0.30634 (17) | 0.0211 (3)                    |
| C7   | 0.23630 (19) | 0.49744 (18)  | 0.20754 (18) | 0.0236 (3)                    |
| C8   | 0.25044 (19) | 0.67699 (18)  | 0.29566 (19) | 0.0252 (3)                    |
| H8   | 0.2531       | 0.7367        | 0.2324       | 0.030*                        |
| С9   | 0.26071 (19) | 0.77127 (18)  | 0.47327 (19) | 0.0248 (3)                    |
| C10  | 0.26085 (18) | 0.68288 (18)  | 0.56561 (18) | 0.0231 (3)                    |
| H10  | 0.2692       | 0.7469        | 0.6871       | 0.028*                        |
| C11  | 0.24920 (17) | 0.50461 (18)  | 0.48598 (17) | 0.0214 (3)                    |
| C12  | 0.2561 (2)   | 0.41605 (19)  | 0.59279 (18) | 0.0258 (3)                    |
| H12A | 0.2986       | 0.5020        | 0.7148       | 0.039*                        |
| H12B | 0.3411       | 0.3310        | 0.5557       | 0.039*                        |

| H12C | 0.1331     | 0.3577       | 0.5772       | 0.039*     |
|------|------------|--------------|--------------|------------|
| C13  | 0.2706 (2) | 0.96498 (19) | 0.5657 (2)   | 0.0333 (4) |
| H13A | 0.1592     | 0.9967       | 0.6139       | 0.050*     |
| H13B | 0.2805     | 1.0068       | 0.4840       | 0.050*     |
| H13C | 0.3785     | 1.0173       | 0.6591       | 0.050*     |
| C14  | 0.2255 (2) | 0.4013 (2)   | 0.01465 (19) | 0.0310 (4) |
| H14A | 0.1966     | 0.4779       | -0.0319      | 0.047*     |
| H14B | 0.1291     | 0.3008       | -0.0382      | 0.047*     |
| H14C | 0.3439     | 0.3627       | -0.0111      | 0.047*     |

# Atomic displacement parameters $(\text{\AA}^2)$ for 2b

|     | $U^{11}$   | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$    | $U^{13}$   | $U^{23}$   |
|-----|------------|-----------------|-----------------|-------------|------------|------------|
| 01  | 0.0235 (5) | 0.0206 (5)      | 0.0284 (5)      | -0.0007 (4) | 0.0077 (4) | 0.0103 (4) |
| N2  | 0.0212 (6) | 0.0204 (6)      | 0.0282 (6)      | -0.0014 (4) | 0.0065 (5) | 0.0095 (5) |
| N3  | 0.0177 (5) | 0.0218 (6)      | 0.0210 (6)      | -0.0009 (4) | 0.0028 (4) | 0.0104 (5) |
| C4  | 0.0203 (6) | 0.0222 (7)      | 0.0232 (7)      | 0.0011 (5)  | 0.0053 (5) | 0.0104 (6) |
| C5  | 0.0208 (6) | 0.0247 (7)      | 0.0200 (6)      | 0.0009 (5)  | 0.0035 (5) | 0.0114 (6) |
| 05  | 0.0313 (6) | 0.0214 (5)      | 0.0285 (5)      | 0.0038 (4)  | 0.0095 (4) | 0.0109 (4) |
| C6  | 0.0179 (6) | 0.0191 (7)      | 0.0234 (7)      | 0.0001 (5)  | 0.0032 (5) | 0.0087 (5) |
| C7  | 0.0213 (6) | 0.0244 (7)      | 0.0237 (7)      | -0.0006 (5) | 0.0029 (5) | 0.0115 (6) |
| C8  | 0.0238 (7) | 0.0249 (7)      | 0.0288 (7)      | -0.0005 (5) | 0.0025 (5) | 0.0159 (6) |
| С9  | 0.0182 (6) | 0.0226 (7)      | 0.0295 (7)      | 0.0000 (5)  | 0.0026 (5) | 0.0105 (6) |
| C10 | 0.0184 (6) | 0.0236 (7)      | 0.0223 (7)      | 0.0009 (5)  | 0.0034 (5) | 0.0077 (6) |
| C11 | 0.0149 (6) | 0.0256 (7)      | 0.0232 (7)      | 0.0014 (5)  | 0.0031 (5) | 0.0120 (6) |
| C12 | 0.0261 (7) | 0.0271 (7)      | 0.0240 (7)      | 0.0007 (6)  | 0.0030 (6) | 0.0132 (6) |
| C13 | 0.0357 (8) | 0.0233 (8)      | 0.0371 (9)      | 0.0022 (6)  | 0.0068 (7) | 0.0123 (7) |
| C14 | 0.0409 (9) | 0.0272 (8)      | 0.0237 (7)      | -0.0029 (6) | 0.0033 (6) | 0.0133 (6) |

# Geometric parameters (Å, °) for 2b

| O1—N2  | 1.3761 (15) | C9—C10   | 1.395 (2)   |
|--------|-------------|----------|-------------|
| O1—C5  | 1.4151 (17) | С9—С13   | 1.508 (2)   |
| N2—N3  | 1.3150 (16) | C10—C11  | 1.3874 (19) |
| N3—C4  | 1.3412 (17) | С10—Н10  | 0.9500      |
| N3—C6  | 1.4527 (17) | C11—C12  | 1.5090 (19) |
| C4—C5  | 1.4041 (19) | С12—Н12А | 0.9800      |
| С4—Н4  | 0.9500      | С12—Н12В | 0.9800      |
| C5—O5  | 1.2190 (17) | С12—Н12С | 0.9800      |
| C6—C7  | 1.3980 (19) | С13—Н13А | 0.9800      |
| C6-C11 | 1.4006 (19) | С13—Н13В | 0.9800      |

| С7—С8       | 1.395 (2)    | С13—Н13С       | 0.9800       |
|-------------|--------------|----------------|--------------|
| C7—C14      | 1.509 (2)    | C14—H14A       | 0.9800       |
| С8—С9       | 1.391 (2)    | C14—H14B       | 0.9800       |
| С8—Н8       | 0.9500       | C14—H14C       | 0.9800       |
|             |              |                |              |
| N2—O1—C5    | 111.18 (10)  | С11—С10—Н10    | 118.9        |
| N3—N2—O1    | 103.69 (10)  | С9—С10—Н10     | 118.9        |
| N2—N3—C4    | 115.17 (12)  | C10—C11—C6     | 116.80 (12)  |
| N2—N3—C6    | 117.21 (11)  | C10—C11—C12    | 120.02 (12)  |
| C4—N3—C6    | 127.55 (11)  | C6—C11—C12     | 123.17 (12)  |
| N3—C4—C5    | 106.43 (12)  | C11—C12—H12A   | 109.5        |
| N3—C4—H4    | 126.8        | C11—C12—H12B   | 109.5        |
| С5—С4—Н4    | 126.8        | H12A—C12—H12B  | 109.5        |
| O5—C5—C4    | 136.51 (13)  | C11—C12—H12C   | 109.5        |
| O5—C5—O1    | 119.95 (12)  | H12A—C12—H12C  | 109.5        |
| C4—C5—O1    | 103.53 (11)  | H12B—C12—H12C  | 109.5        |
| C7—C6—C11   | 123.45 (13)  | С9—С13—Н13А    | 109.5        |
| C7—C6—N3    | 118.79 (12)  | С9—С13—Н13В    | 109.5        |
| C11—C6—N3   | 117.76 (12)  | H13A—C13—H13B  | 109.5        |
| C8—C7—C6    | 116.87 (13)  | С9—С13—Н13С    | 109.5        |
| C8—C7—C14   | 119.88 (13)  | H13A—C13—H13C  | 109.5        |
| C6—C7—C14   | 123.25 (13)  | H13B—C13—H13C  | 109.5        |
| C9—C8—C7    | 121.99 (13)  | С7—С14—Н14А    | 109.5        |
| С9—С8—Н8    | 119.0        | C7—C14—H14B    | 109.5        |
| С7—С8—Н8    | 119.0        | H14A—C14—H14B  | 109.5        |
| C8—C9—C10   | 118.62 (13)  | С7—С14—Н14С    | 109.5        |
| C8—C9—C13   | 121.24 (13)  | H14A—C14—H14C  | 109.5        |
| С10—С9—С13  | 120.14 (13)  | H14B—C14—H14C  | 109.5        |
| C11—C10—C9  | 122.22 (13)  |                |              |
|             |              |                |              |
| C5—O1—N2—N3 | -0.34 (14)   | C11—C6—C7—C14  | 178.15 (13)  |
| O1—N2—N3—C4 | 0.55 (15)    | N3—C6—C7—C14   | -1.5 (2)     |
| O1—N2—N3—C6 | -176.65 (10) | C6—C7—C8—C9    | -0.4 (2)     |
| N2—N3—C4—C5 | -0.54 (16)   | C14—C7—C8—C9   | 179.98 (13)  |
| C6—N3—C4—C5 | 176.32 (12)  | C7—C8—C9—C10   | 1.4 (2)      |
| N3—C4—C5—O5 | -178.66 (16) | C7—C8—C9—C13   | -178.26 (13) |
| N3—C4—C5—O1 | 0.28 (14)    | C8—C9—C10—C11  | -0.7 (2)     |
| N2-01-C5-05 | 179.20 (12)  | C13—C9—C10—C11 | 179.01 (13)  |
| N2—O1—C5—C4 | 0.04 (14)    | C9—C10—C11—C6  | -1.0 (2)     |
| N2—N3—C6—C7 | -119.78 (14) | C9—C10—C11—C12 | 178.01 (12)  |
| C4—N3—C6—C7 | 63.41 (18)   | C7—C6—C11—C10  | 2.1 (2)      |

| N2—N3—C6—C11 | 60.57 (16)   | N3—C6—C11—C10 | -178.22 (11) |
|--------------|--------------|---------------|--------------|
| C4—N3—C6—C11 | -116.24 (15) | C7—C6—C11—C12 | -176.87 (13) |
| C11—C6—C7—C8 | -1.5 (2)     | N3—C6—C11—C12 | 2.77 (19)    |
| N3—C6—C7—C8  | 178.91 (11)  |               |              |

# Hydrogen-bond geometry (Å, °) for $\mathbf{2b}$

| D—H···A                            | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|------------------------------------|-------------|--------------|--------------|---------|
| C4— $H4$ ···O5 <sup>i</sup>        | 0.95        | 2.24         | 3.1652 (17)  | 166     |
| C8—H8⋯O5 <sup>ii</sup>             | 0.95        | 2.55         | 3.4696 (19)  | 162     |
| C10—H10…O5 <sup>iii</sup>          | 0.95        | 2.57         | 3.480 (2)    | 160     |
| C14—H14 <i>B</i> ⋯O1 <sup>iv</sup> | 0.98        | 2.57         | 3.546 (2)    | 172     |

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*+1, *z*+1; (iv) -*x*, -*y*, -*z*.



Fig. S3. Molecular structure of trans-16 (displacement parameters are drawn at 50 % probability level).



Fig. S4. Crystal packing of trans-16.

## trans\_16

Crystal data for trans-16

| $C_{44}H_{35}BrN_2O_2P_2Pd$      | F(000) = 1760                                         |
|----------------------------------|-------------------------------------------------------|
| $M_r = 871.99$                   | $D_{\rm x} = 1.614 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, $P2_1/c$             | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 11.8099 (9)  Å               | Cell parameters from 320 reflections                  |
| b = 17.9947 (14)  Å              | $\theta = 1-25^{\circ}$                               |
| c = 17.1796 (7) Å                | $\mu = 1.76 \text{ mm}^{-1}$                          |
| $\alpha = 100.544 \ (7)^{\circ}$ | T = 123  K                                            |
| $V = 3589.3 (4) Å^3$             | Blocks, yellow                                        |
| Z = 4                            | $0.35 \times 0.30 \times 0.20 \text{ mm}$             |

Data collection for trans-16

| Bruker-Nonius KappaCCD<br>diffractometer                      | 8212 independent reflections                                          |
|---------------------------------------------------------------|-----------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                      | 7323 reflections with $I > 2\sigma(I)$                                |
| Graphite monochromator                                        | $R_{\rm int} = 0.024$                                                 |
| rotation in phi and $\omega$ , 2 deg. scans                   | $\theta_{\text{max}} = 27.5^\circ, \ \theta_{\text{min}} = 2.9^\circ$ |
| Absorption correction: multi-scan<br>SADABS (Sheldrick, 2008) | $h = -15 \rightarrow 15$                                              |
| $T_{\min} = 0.634, T_{\max} = 0.694$                          | $k = -23 \rightarrow 23$                                              |
| 69335 measured reflections                                    | <i>l</i> = -22→22                                                     |

### Refinement for trans-16

| Refinement on F <sup>2</sup>    | Primary atom site location: heavy-atom method                                       |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference<br>Fourier map                             |
| $R[F^2 > 2\sigma(F^2)] = 0.023$ | Hydrogen site location: inferred from<br>neighbouring sites                         |
| $wR(F^2) = 0.051$               | H-atom parameters constrained                                                       |
| <i>S</i> = 1.15                 | $w = 1/[\sigma^2(F_o^2) + (0.0112P)^2 + 4.4724P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| 8212 reflections                | $(\Delta/\sigma)_{\rm max} = 0.003$                                                 |
| 469 parameters                  | $\Delta \rangle_{\text{max}} = 0.43 \text{ e } \text{\AA}^{-3}$                     |
| 0 restraints                    | $\Delta \rangle_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$                       |

### **Computing details**

Data collection: Collect (Nonius, 1998); cell refinement: *EVALCCD* (Duisenberg *et al.*, 2003); data reduction: *EVALCCD* (Duisenberg *et al.*, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 1997).

Special details for trans-16

*Experimental.* dx = 40 mm, 60 sec./deg., 2 deg., 10 sets, 430 frames

*Geometry*. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

*Refinement*. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2) for trans-16

|     | x             | У             | Z             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|---------------|---------------|---------------|-------------------------------|
| Br1 | 0.305494 (17) | 0.411083 (10) | 0.619966 (12) | 0.02015 (5)                   |
| Pd1 | 0.280505 (11) | 0.274341 (7)  | 0.615665 (8)  | 0.01042 (4)                   |
| 01  | 0.25105 (13)  | 0.04379 (8)   | 0.57343 (9)   | 0.0256 (3)                    |
| N2  | 0.25328 (16)  | 0.04409 (10)  | 0.65431 (11)  | 0.0257 (4)                    |
| N3  | 0.26133 (14)  | 0.11584 (9)   | 0.67157 (10)  | 0.0169 (3)                    |
| C4  | 0.26475 (15)  | 0.16373 (10)  | 0.61159 (11)  | 0.0132 (3)                    |
| C5  | 0.25776 (16)  | 0.11646 (11)  | 0.54461 (12)  | 0.0182 (4)                    |
| 05  | 0.25875 (13)  | 0.12639 (9)   | 0.47434 (8)   | 0.0246 (3)                    |
| C6  | 0.27297 (17)  | 0.13438 (11)  | 0.75440 (12)  | 0.0199 (4)                    |
| C7  | 0.19858 (18)  | 0.18508 (12)  | 0.77792 (12)  | 0.0234 (4)                    |
| H7  | 0.1364        | 0.2047        | 0.7406        | 0.028*                        |
| C8  | 0.2152 (2)    | 0.20728 (15)  | 0.85676 (13)  | 0.0325 (5)                    |
| H8  | 0.1653        | 0.2430        | 0.8733        | 0.039*                        |
| С9  | 0.3040 (2)    | 0.17741 (17)  | 0.91078 (13)  | 0.0386 (6)                    |
| Н9  | 0.3163        | 0.1933        | 0.9644        | 0.046*                        |
| C10 | 0.3751 (2)    | 0.12461 (16)  | 0.88739 (14)  | 0.0380 (6)                    |
| H10 | 0.4347        | 0.1032        | 0.9254        | 0.046*                        |
| C11 | 0.36079 (19)  | 0.10216 (13)  | 0.80836 (14)  | 0.0294 (5)                    |
| H11 | 0.4099        | 0.0658        | 0.7921        | 0.035*                        |
| P1  | 0.48194 (4)   | 0.26612 (3)   | 0.65362 (3)   | 0.01131 (9)                   |
| C12 | 0.56527 (16)  | 0.31294 (10)  | 0.58782 (10)  | 0.0143 (4)                    |
| C13 | 0.61229 (17)  | 0.27337 (11)  | 0.53177 (11)  | 0.0183 (4)                    |
| H13 | 0.6046        | 0.2208        | 0.5292        | 0.022*                        |
| C14 | 0.67033 (18)  | 0.30974 (12)  | 0.47961 (12)  | 0.0220 (4)                    |
| H14 | 0.7006        | 0.2821        | 0.4410        | 0.026*                        |

| C15 | 0.68422 (17)  | 0.38620 (12) | 0.48369 (12) | 0.0213 (4)  |
|-----|---------------|--------------|--------------|-------------|
| H15 | 0.7247        | 0.4110       | 0.4484       | 0.026*      |
| C16 | 0.63874 (17)  | 0.42621 (11) | 0.53959 (12) | 0.0208 (4)  |
| H16 | 0.6482        | 0.4786       | 0.5425       | 0.025*      |
| C17 | 0.57952 (16)  | 0.39035 (11) | 0.59143 (11) | 0.0174 (4)  |
| H17 | 0.5485        | 0.4183       | 0.6295       | 0.021*      |
| C18 | 0.52967 (16)  | 0.30977 (10) | 0.74931 (10) | 0.0134 (3)  |
| C19 | 0.45310 (17)  | 0.31583 (10) | 0.80168 (11) | 0.0162 (4)  |
| H19 | 0.3764        | 0.2981       | 0.7867       | 0.019*      |
| C20 | 0.48839 (18)  | 0.34772 (11) | 0.87596 (11) | 0.0199 (4)  |
| H20 | 0.4359        | 0.3518       | 0.9116       | 0.024*      |
| C21 | 0.60005 (19)  | 0.37343 (11) | 0.89774 (11) | 0.0208 (4)  |
| H21 | 0.6237        | 0.3963       | 0.9479       | 0.025*      |
| C22 | 0.67767 (18)  | 0.36605 (11) | 0.84662 (12) | 0.0208 (4)  |
| H22 | 0.7547        | 0.3830       | 0.8622       | 0.025*      |
| C23 | 0.64293 (17)  | 0.33387 (11) | 0.77257 (11) | 0.0184 (4)  |
| H23 | 0.6964        | 0.3283       | 0.7378       | 0.022*      |
| C24 | 0.54093 (15)  | 0.17225 (10) | 0.66792 (11) | 0.0136 (3)  |
| C25 | 0.52021 (16)  | 0.12050 (10) | 0.60590 (11) | 0.0155 (4)  |
| H25 | 0.4793        | 0.1354       | 0.5555       | 0.019*      |
| C26 | 0.55849 (17)  | 0.04806 (11) | 0.61719 (12) | 0.0192 (4)  |
| H26 | 0.5449        | 0.0138       | 0.5744       | 0.023*      |
| C27 | 0.61695 (17)  | 0.02502 (11) | 0.69108 (12) | 0.0205 (4)  |
| H27 | 0.6427        | -0.0249      | 0.6990       | 0.025*      |
| C28 | 0.63714 (17)  | 0.07525 (11) | 0.75277 (12) | 0.0192 (4)  |
| H28 | 0.6769        | 0.0597       | 0.8033       | 0.023*      |
| C29 | 0.59984 (16)  | 0.14856 (11) | 0.74175 (11) | 0.0160 (4)  |
| H29 | 0.6145        | 0.1826       | 0.7847       | 0.019*      |
| P2  | 0.07863 (4)   | 0.28859 (3)  | 0.58723 (3)  | 0.01219 (9) |
| C30 | 0.03123 (16)  | 0.34658 (10) | 0.66239 (11) | 0.0150 (4)  |
| C31 | -0.08020 (17) | 0.37588 (11) | 0.65036 (12) | 0.0187 (4)  |
| H31 | -0.1322       | 0.3660       | 0.6024       | 0.022*      |
| C32 | -0.11498 (18) | 0.41955 (11) | 0.70852 (13) | 0.0227 (4)  |

| H32 | -0.1904       | 0.4401       | 0.6997       | 0.027*     |
|-----|---------------|--------------|--------------|------------|
| C33 | -0.04037 (19) | 0.43331 (12) | 0.77926 (13) | 0.0250 (4) |
| H33 | -0.0647       | 0.4631       | 0.8188       | 0.030*     |
| C34 | 0.06928 (19)  | 0.40364 (12) | 0.79221 (12) | 0.0250 (4) |
| H34 | 0.1200        | 0.4123       | 0.8410       | 0.030*     |
| C35 | 0.10537 (17)  | 0.36105 (11) | 0.73370 (11) | 0.0189 (4) |
| H35 | 0.1814        | 0.3416       | 0.7425       | 0.023*     |
| C36 | -0.00819 (15) | 0.20449 (10) | 0.58453 (11) | 0.0135 (3) |
| C37 | 0.00010 (16)  | 0.15028 (11) | 0.52732 (11) | 0.0174 (4) |
| H37 | 0.0537        | 0.1565       | 0.4928       | 0.021*     |
| C38 | -0.06925 (17) | 0.08758 (11) | 0.52071 (12) | 0.0200 (4) |
| H38 | -0.0642       | 0.0518       | 0.4809       | 0.024*     |
| C39 | -0.14581 (18) | 0.07689 (11) | 0.57189 (12) | 0.0217 (4) |
| H39 | -0.1927       | 0.0337       | 0.5675       | 0.026*     |
| C40 | -0.15366 (18) | 0.12964 (11) | 0.62954 (12) | 0.0217 (4) |
| H40 | -0.2058       | 0.1223       | 0.6649       | 0.026*     |
| C41 | -0.08551 (17) | 0.19324 (11) | 0.63580 (11) | 0.0180 (4) |
| H41 | -0.0917       | 0.2292       | 0.6753       | 0.022*     |
| C42 | 0.01985 (17)  | 0.33321 (11) | 0.49255 (11) | 0.0170 (4) |
| C43 | -0.05423 (18) | 0.29798 (12) | 0.43166 (12) | 0.0222 (4) |
| H43 | -0.0787       | 0.2486       | 0.4389       | 0.027*     |
| C44 | -0.09312 (19) | 0.33402 (13) | 0.36014 (12) | 0.0271 (5) |
| H44 | -0.1434       | 0.3090       | 0.3190       | 0.032*     |
| C45 | -0.0594 (2)   | 0.40528 (14) | 0.34870 (14) | 0.0329 (5) |
| H45 | -0.0853       | 0.4298       | 0.2997       | 0.039*     |
| C46 | 0.0123 (3)    | 0.44092 (16) | 0.40899 (17) | 0.0544 (9) |
| H46 | 0.0353        | 0.4906       | 0.4017       | 0.065*     |
| C47 | 0.0517 (3)    | 0.40546 (14) | 0.48041 (16) | 0.0438 (7) |
| H47 | 0.1013        | 0.4312       | 0.5215       | 0.053*     |

# Atomic displacement parameters $(Å^2)$ for trans-16

|     | $U^{11}$ | $U^{22}$    | $U^{33}$ | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|----------|-------------|----------|--------------|-------------|--------------|
| Br1 | 0.02062  | 0.01120 (9) | 0.02902  | -0.00117 (7) | 0.00553 (8) | -0.00181 (7) |

|     | (10)        |             | (11)        |                  |                 |                  |
|-----|-------------|-------------|-------------|------------------|-----------------|------------------|
| Pd1 | 0.01155 (6) | 0.00990 (6) | 0.00973 (6) | -0.00078 (5)     | 0.00173 (5)     | -0.00024 (5)     |
| 01  | 0.0244 (8)  | 0.0142 (7)  | 0.0385 (9)  | -0.0042 (6)      | 0.0069 (7)      | -0.0073 (6)      |
| N2  | 0.0273 (10) | 0.0146 (8)  | 0.0360 (10) | -0.0017 (7)      | 0.0075 (8)      | 0.0025 (7)       |
| N3  | 0.0143 (8)  | 0.0136 (8)  | 0.0229 (8)  | -0.0028 (6)      | 0.0036 (6)      | 0.0027 (6)       |
| C4  | 0.0101 (8)  | 0.0135 (8)  | 0.0158 (9)  | -0.0011 (7)      | 0.0016 (7)      | 0.0014 (7)       |
| C5  | 0.0123 (9)  | 0.0161 (9)  | 0.0253 (10) | -0.0006 (7)      | 0.0011 (7)      | -0.0052 (8)      |
| 05  | 0.0225 (8)  | 0.0316 (8)  | 0.0196 (7)  | -0.0017 (6)      | 0.0037 (6)      | -0.0099 (6)      |
| C6  | 0.0184 (10) | 0.0229 (10) | 0.0179 (9)  | -0.0075 (8)      | 0.0021 (8)      | 0.0083 (8)       |
| С7  | 0.0209 (10) | 0.0325 (11) | 0.0170 (10) | -0.0030 (9)      | 0.0034 (8)      | 0.0055 (8)       |
| C8  | 0.0320 (12) | 0.0489 (15) | 0.0185 (10) | -0.0084 (11)     | 0.0096 (9)      | 0.0009 (10)      |
| С9  | 0.0330 (13) | 0.0667 (18) | 0.0157 (10) | -0.0174 (13)     | 0.0036 (9)      | 0.0073 (11)      |
| C10 | 0.0270 (12) | 0.0565 (16) | 0.0258 (12) | -0.0116 (11)     | -0.0074 (10)    | 0.0244 (11)      |
| C11 | 0.0186 (10) | 0.0340 (12) | 0.0344 (12) | -0.0039 (9)      | 0.0020 (9)      | 0.0177 (10)      |
| P1  | 0.0115 (2)  | 0.0122 (2)  | 0.0103 (2)  | -0.00163<br>(17) | 0.00211<br>(16) | -0.00038<br>(16) |
| C12 | 0.0128 (8)  | 0.0178 (9)  | 0.0119 (8)  | -0.0023 (7)      | 0.0014 (7)      | 0.0025 (7)       |
| C13 | 0.0210 (10) | 0.0175 (9)  | 0.0167 (9)  | -0.0035 (8)      | 0.0042 (7)      | -0.0009 (7)      |
| C14 | 0.0230 (10) | 0.0277 (11) | 0.0173 (9)  | -0.0025 (8)      | 0.0086 (8)      | -0.0017 (8)      |
| C15 | 0.0185 (10) | 0.0287 (11) | 0.0169 (9)  | -0.0052 (8)      | 0.0035 (8)      | 0.0065 (8)       |
| C16 | 0.0200 (10) | 0.0180 (9)  | 0.0233 (10) | -0.0024 (8)      | 0.0012 (8)      | 0.0051 (8)       |
| C17 | 0.0176 (9)  | 0.0173 (9)  | 0.0174 (9)  | -0.0003 (7)      | 0.0037 (7)      | 0.0004 (7)       |
| C18 | 0.0171 (9)  | 0.0112 (8)  | 0.0111 (8)  | -0.0012 (7)      | 0.0004 (7)      | -0.0003 (6)      |
| C19 | 0.0173 (9)  | 0.0162 (9)  | 0.0145 (9)  | 0.0007 (7)       | 0.0019 (7)      | 0.0011 (7)       |
| C20 | 0.0277 (11) | 0.0202 (10) | 0.0122 (9)  | 0.0046 (8)       | 0.0047 (8)      | 0.0004 (7)       |
| C21 | 0.0326 (11) | 0.0151 (9)  | 0.0129 (9)  | -0.0014 (8)      | -0.0006 (8)     | -0.0014 (7)      |
| C22 | 0.0233 (10) | 0.0179 (9)  | 0.0190 (10) | -0.0078 (8)      | -0.0025 (8)     | 0.0000 (8)       |
| C23 | 0.0191 (10) | 0.0202 (9)  | 0.0163 (9)  | -0.0048 (8)      | 0.0041 (7)      | 0.0002 (7)       |
| C24 | 0.0121 (8)  | 0.0142 (8)  | 0.0152 (9)  | -0.0013 (7)      | 0.0038 (7)      | 0.0014 (7)       |
| C25 | 0.0140 (9)  | 0.0173 (9)  | 0.0148 (9)  | -0.0029 (7)      | 0.0015 (7)      | 0.0009 (7)       |
| C26 | 0.0208 (10) | 0.0154 (9)  | 0.0212 (10) | -0.0052 (8)      | 0.0030 (8)      | -0.0036 (7)      |
| C27 | 0.0201 (10) | 0.0136 (9)  | 0.0272 (10) | -0.0002 (7)      | 0.0032 (8)      | 0.0036 (8)       |
| C28 | 0.0197 (10) | 0.0191 (9)  | 0.0179 (9)  | -0.0012 (8)      | 0.0009 (7)      | 0.0048 (7)       |

| C29 | 0.0154 (9)  | 0.0178 (9)  | 0.0149 (9)  | -0.0029 (7)     | 0.0025 (7)      | -0.0003 (7)      |
|-----|-------------|-------------|-------------|-----------------|-----------------|------------------|
| P2  | 0.0124 (2)  | 0.0130 (2)  | 0.0110 (2)  | 0.00016<br>(17) | 0.00164<br>(17) | -0.00011<br>(16) |
| C30 | 0.0165 (9)  | 0.0137 (8)  | 0.0154 (9)  | -0.0008 (7)     | 0.0048 (7)      | -0.0009 (7)      |
| C31 | 0.0161 (9)  | 0.0173 (9)  | 0.0224 (10) | -0.0016 (7)     | 0.0031 (8)      | -0.0020 (8)      |
| C32 | 0.0186 (10) | 0.0178 (9)  | 0.0338 (12) | 0.0005 (8)      | 0.0103 (9)      | -0.0017 (8)      |
| C33 | 0.0290 (11) | 0.0227 (10) | 0.0267 (11) | -0.0016 (9)     | 0.0142 (9)      | -0.0071 (8)      |
| C34 | 0.0253 (11) | 0.0314 (12) | 0.0185 (10) | -0.0024 (9)     | 0.0048 (8)      | -0.0071 (8)      |
| C35 | 0.0167 (9)  | 0.0231 (10) | 0.0169 (9)  | 0.0009 (8)      | 0.0031 (7)      | -0.0020 (8)      |
| C36 | 0.0107 (8)  | 0.0145 (8)  | 0.0139 (8)  | 0.0001 (7)      | -0.0015 (7)     | 0.0010 (7)       |
| C37 | 0.0148 (9)  | 0.0193 (9)  | 0.0175 (9)  | 0.0030 (7)      | 0.0012 (7)      | -0.0010 (7)      |
| C38 | 0.0195 (10) | 0.0163 (9)  | 0.0217 (10) | 0.0023 (8)      | -0.0031 (8)     | -0.0044 (8)      |
| C39 | 0.0202 (10) | 0.0154 (9)  | 0.0274 (11) | -0.0029 (8)     | -0.0012 (8)     | 0.0028 (8)       |
| C40 | 0.0213 (10) | 0.0224 (10) | 0.0222 (10) | -0.0044 (8)     | 0.0057 (8)      | 0.0039 (8)       |
| C41 | 0.0201 (10) | 0.0184 (9)  | 0.0158 (9)  | -0.0007 (8)     | 0.0042 (8)      | 0.0000 (7)       |
| C42 | 0.0176 (9)  | 0.0179 (9)  | 0.0153 (9)  | 0.0028 (7)      | 0.0026 (7)      | 0.0035 (7)       |
| C43 | 0.0229 (10) | 0.0253 (10) | 0.0177 (10) | 0.0009 (8)      | 0.0014 (8)      | 0.0023 (8)       |
| C44 | 0.0255 (11) | 0.0382 (13) | 0.0158 (10) | 0.0049 (9)      | -0.0006 (8)     | 0.0017 (9)       |
| C45 | 0.0335 (13) | 0.0401 (13) | 0.0229 (11) | 0.0033 (11)     | -0.0008 (9)     | 0.0155 (10)      |
| C46 | 0.070 (2)   | 0.0350 (15) | 0.0465 (16) | -0.0179 (14)    | -0.0198 (15)    | 0.0258 (13)      |
| C47 | 0.0559 (17) | 0.0286 (13) | 0.0365 (14) | -0.0169 (12)    | -0.0191 (12)    | 0.0123 (11)      |

# Geometric parameters (Å, °) for trans-16

| Br1—Pd1 | 2.4778 (3)  | C24—C29 | 1.397 (3) |
|---------|-------------|---------|-----------|
| Pd1—C4  | 1.9991 (18) | C24—C25 | 1.402 (3) |
| Pd1—P1  | 2.3534 (5)  | C25—C26 | 1.382 (3) |
| Pd1—P2  | 2.3584 (5)  | С25—Н25 | 0.9500    |
| 01—N2   | 1.385 (2)   | C26—C27 | 1.393 (3) |
| O1—C5   | 1.406 (2)   | С26—Н26 | 0.9500    |
| N2—N3   | 1.324 (2)   | C27—C28 | 1.380 (3) |
| N3—C4   | 1.350 (2)   | С27—Н27 | 0.9500    |
| N3—C6   | 1.443 (3)   | C28—C29 | 1.393 (3) |
| C4—C5   | 1.421 (3)   | С28—Н28 | 0.9500    |

| C5—O5   | 1.222 (2)   | С29—Н29 | 0.9500      |
|---------|-------------|---------|-------------|
| С6—С7   | 1.377 (3)   | P2—C36  | 1.8238 (19) |
| C6—C11  | 1.385 (3)   | P2—C30  | 1.8259 (19) |
| С7—С8   | 1.391 (3)   | P2—C42  | 1.8329 (19) |
| С7—Н7   | 0.9500      | C30—C35 | 1.394 (3)   |
| С8—С9   | 1.377 (3)   | C30—C31 | 1.398 (3)   |
| С8—Н8   | 0.9500      | C31—C32 | 1.391 (3)   |
| C9—C10  | 1.376 (4)   | С31—Н31 | 0.9500      |
| С9—Н9   | 0.9500      | C32—C33 | 1.387 (3)   |
| C10—C11 | 1.397 (4)   | С32—Н32 | 0.9500      |
| С10—Н10 | 0.9500      | C33—C34 | 1.381 (3)   |
| С11—Н11 | 0.9500      | С33—Н33 | 0.9500      |
| P1—C18  | 1.8161 (18) | C34—C35 | 1.391 (3)   |
| P1—C24  | 1.8266 (19) | С34—Н34 | 0.9500      |
| P1—C12  | 1.8339 (19) | С35—Н35 | 0.9500      |
| C12—C13 | 1.392 (3)   | C36—C41 | 1.395 (3)   |
| C12—C17 | 1.403 (3)   | C36—C37 | 1.401 (3)   |
| C13—C14 | 1.388 (3)   | C37—C38 | 1.387 (3)   |
| С13—Н13 | 0.9500      | С37—Н37 | 0.9500      |
| C14—C15 | 1.386 (3)   | C38—C39 | 1.385 (3)   |
| С14—Н14 | 0.9500      | С38—Н38 | 0.9500      |
| C15—C16 | 1.385 (3)   | C39—C40 | 1.387 (3)   |
| С15—Н15 | 0.9500      | С39—Н39 | 0.9500      |
| C16—C17 | 1.388 (3)   | C40—C41 | 1.392 (3)   |
| С16—Н16 | 0.9500      | С40—Н40 | 0.9500      |
| С17—Н17 | 0.9500      | С41—Н41 | 0.9500      |
| C18—C19 | 1.392 (3)   | C42—C47 | 1.380 (3)   |
| C18—C23 | 1.393 (3)   | C42—C43 | 1.388 (3)   |
| C19—C20 | 1.392 (3)   | C43—C44 | 1.391 (3)   |
| С19—Н19 | 0.9500      | С43—Н43 | 0.9500      |
| C20—C21 | 1.383 (3)   | C44—C45 | 1.368 (3)   |
| С20—Н20 | 0.9500      | С44—Н44 | 0.9500      |
| C21—C22 | 1.387 (3)   | C45—C46 | 1.371 (4)   |

| C21—H21    | 0.9500       | С45—Н45     | 0.9500      |
|------------|--------------|-------------|-------------|
| C22—C23    | 1.390 (3)    | C46—C47     | 1.386 (3)   |
| С22—Н22    | 0.9500       | С46—Н46     | 0.9500      |
| С23—Н23    | 0.9500       | С47—Н47     | 0.9500      |
|            |              |             |             |
| C4—Pd1—P1  | 91.72 (5)    | C29—C24—P1  | 121.24 (14) |
| C4—Pd1—P2  | 90.97 (5)    | C25—C24—P1  | 120.17 (14) |
| P1—Pd1—P2  | 175.208 (17) | C26—C25—C24 | 120.84 (17) |
| C4—Pd1—Br1 | 178.42 (5)   | С26—С25—Н25 | 119.6       |
| P1—Pd1—Br1 | 86.865 (13)  | С24—С25—Н25 | 119.6       |
| P2—Pd1—Br1 | 90.494 (13)  | C25—C26—C27 | 120.25 (18) |
| N2—O1—C5   | 110.97 (14)  | С25—С26—Н26 | 119.9       |
| N3—N2—O1   | 102.46 (15)  | С27—С26—Н26 | 119.9       |
| N2—N3—C4   | 117.55 (17)  | C28—C27—C26 | 119.48 (18) |
| N2—N3—C6   | 115.85 (16)  | С28—С27—Н27 | 120.3       |
| C4—N3—C6   | 126.47 (16)  | С26—С27—Н27 | 120.3       |
| N3—C4—C5   | 103.33 (16)  | C27—C28—C29 | 120.68 (18) |
| N3—C4—Pd1  | 128.65 (14)  | С27—С28—Н28 | 119.7       |
| C5—C4—Pd1  | 127.99 (14)  | С29—С28—Н28 | 119.7       |
| O5—C5—O1   | 119.68 (17)  | C28—C29—C24 | 120.33 (18) |
| O5—C5—C4   | 134.62 (19)  | С28—С29—Н29 | 119.8       |
| O1—C5—C4   | 105.68 (16)  | С24—С29—Н29 | 119.8       |
| C7—C6—C11  | 121.4 (2)    | C36—P2—C30  | 104.39 (9)  |
| C7—C6—N3   | 119.44 (18)  | C36—P2—C42  | 102.77 (9)  |
| C11—C6—N3  | 119.2 (2)    | C30—P2—C42  | 105.18 (9)  |
| С6—С7—С8   | 119.5 (2)    | C36—P2—Pd1  | 117.22 (6)  |
| С6—С7—Н7   | 120.3        | C30—P2—Pd1  | 110.17 (6)  |
| С8—С7—Н7   | 120.3        | C42—P2—Pd1  | 115.84 (6)  |
| С9—С8—С7   | 119.9 (2)    | C35—C30—C31 | 118.85 (17) |
| С9—С8—Н8   | 120.1        | C35—C30—P2  | 120.25 (14) |
| С7—С8—Н8   | 120.1        | C31—C30—P2  | 120.89 (15) |
| С10—С9—С8  | 120.2 (2)    | C32—C31—C30 | 120.06 (19) |
| С10—С9—Н9  | 119.9        | С32—С31—Н31 | 120.0       |

| С8—С9—Н9    | 119.9       | С30—С31—Н31 | 120.0       |
|-------------|-------------|-------------|-------------|
| C9—C10—C11  | 120.8 (2)   | C33—C32—C31 | 120.44 (19) |
| С9—С10—Н10  | 119.6       | С33—С32—Н32 | 119.8       |
| С11—С10—Н10 | 119.6       | С31—С32—Н32 | 119.8       |
| C6-C11-C10  | 118.2 (2)   | C34—C33—C32 | 119.94 (19) |
| С6—С11—Н11  | 120.9       | С34—С33—Н33 | 120.0       |
| С10—С11—Н11 | 120.9       | С32—С33—Н33 | 120.0       |
| C18—P1—C24  | 103.33 (8)  | C33—C34—C35 | 119.92 (19) |
| C18—P1—C12  | 104.28 (8)  | С33—С34—Н34 | 120.0       |
| C24—P1—C12  | 105.86 (8)  | С35—С34—Н34 | 120.0       |
| C18—P1—Pd1  | 110.74 (6)  | C34—C35—C30 | 120.78 (19) |
| C24—P1—Pd1  | 115.89 (6)  | С34—С35—Н35 | 119.6       |
| C12—P1—Pd1  | 115.44 (6)  | С30—С35—Н35 | 119.6       |
| C13—C12—C17 | 118.59 (17) | C41—C36—C37 | 118.68 (17) |
| C13—C12—P1  | 121.22 (14) | C41—C36—P2  | 122.30 (14) |
| C17—C12—P1  | 120.16 (15) | C37—C36—P2  | 118.98 (14) |
| C14—C13—C12 | 120.80 (18) | С38—С37—С36 | 120.54 (18) |
| С14—С13—Н13 | 119.6       | С38—С37—Н37 | 119.7       |
| С12—С13—Н13 | 119.6       | С36—С37—Н37 | 119.7       |
| C15—C14—C13 | 120.22 (19) | C39—C38—C37 | 120.35 (18) |
| С15—С14—Н14 | 119.9       | С39—С38—Н38 | 119.8       |
| С13—С14—Н14 | 119.9       | С37—С38—Н38 | 119.8       |
| C16—C15—C14 | 119.60 (19) | C38—C39—C40 | 119.67 (19) |
| С16—С15—Н15 | 120.2       | С38—С39—Н39 | 120.2       |
| С14—С15—Н15 | 120.2       | С40—С39—Н39 | 120.2       |
| C15—C16—C17 | 120.54 (19) | C39—C40—C41 | 120.30 (19) |
| С15—С16—Н16 | 119.7       | С39—С40—Н40 | 119.9       |
| С17—С16—Н16 | 119.7       | С41—С40—Н40 | 119.9       |
| C16—C17—C12 | 120.24 (18) | C40—C41—C36 | 120.44 (18) |
| С16—С17—Н17 | 119.9       | C40—C41—H41 | 119.8       |
| С12—С17—Н17 | 119.9       | C36—C41—H41 | 119.8       |
| C19—C18—C23 | 119.57 (17) | C47—C42—C43 | 117.92 (19) |
| C19—C18—P1  | 119.23 (14) | C47—C42—P2  | 118.51 (16) |

| C23—C18—P1    | 121.12 (14)  | C43—C42—P2          | 123.57 (15)  |
|---------------|--------------|---------------------|--------------|
| C20-C19-C18   | 120.27 (18)  | C42—C43—C44         | 120.9 (2)    |
| С20—С19—Н19   | 119.9        | С42—С43—Н43         | 119.6        |
| С18—С19—Н19   | 119.9        | С44—С43—Н43         | 119.6        |
| C21—C20—C19   | 119.79 (19)  | C45—C44—C43         | 120.4 (2)    |
| С21—С20—Н20   | 120.1        | C45—C44—H44         | 119.8        |
| С19—С20—Н20   | 120.1        | С43—С44—Н44         | 119.8        |
| C20—C21—C22   | 120.31 (18)  | C44—C45—C46         | 119.1 (2)    |
| С20—С21—Н21   | 119.8        | С44—С45—Н45         | 120.5        |
| С22—С21—Н21   | 119.8        | С46—С45—Н45         | 120.5        |
| C21—C22—C23   | 120.06 (19)  | C45—C46—C47         | 121.0 (2)    |
| С21—С22—Н22   | 120.0        | С45—С46—Н46         | 119.5        |
| С23—С22—Н22   | 120.0        | С47—С46—Н46         | 119.5        |
| C22—C23—C18   | 119.96 (18)  | C42—C47—C46         | 120.7 (2)    |
| С22—С23—Н23   | 120.0        | С42—С47—Н47         | 119.6        |
| С18—С23—Н23   | 120.0        | С46—С47—Н47         | 119.6        |
| C29—C24—C25   | 118.42 (17)  |                     |              |
|               |              |                     |              |
| C5—O1—N2—N3   | -0.1 (2)     | P1-C18-C23-C22      | -179.00 (15) |
| O1—N2—N3—C4   | 0.0 (2)      | C18—P1—C24—C29      | 3.87 (17)    |
| O1—N2—N3—C6   | -176.18 (15) | C12—P1—C24—C29      | 113.18 (16)  |
| N2—N3—C4—C5   | 0.1 (2)      | Pd1—P1—C24—C29      | -117.44 (14) |
| C6—N3—C4—C5   | 175.82 (17)  | C18—P1—C24—C25      | 179.04 (15)  |
| N2—N3—C4—Pd1  | -178.31 (14) | C12—P1—C24—C25      | -71.64 (16)  |
| C6—N3—C4—Pd1  | -2.6 (3)     | Pd1—P1—C24—C25      | 57.73 (16)   |
| P1—Pd1—C4—N3  | 82.61 (16)   | C29—C24—C25—<br>C26 | -0.9 (3)     |
| P2—Pd1—C4—N3  | -93.42 (16)  | P1-C24-C25-C26      | -176.18 (15) |
| Br1—Pd1—C4—N3 | 109.1 (19)   | C24—C25—C26—<br>C27 | 1.0 (3)      |
| P1—Pd1—C4—C5  | -95.41 (16)  | C25—C26—C27—<br>C28 | -0.5 (3)     |
| P2—Pd1—C4—C5  | 88.56 (16)   | C26—C27—C28—<br>C29 | -0.1 (3)     |

| Br1—Pd1—C4—C5  | -69 (2)      | C27—C28—C29—<br>C24 | 0.2 (3)      |
|----------------|--------------|---------------------|--------------|
| N2—01—C5—05    | 178.83 (17)  | C25—C24—C29—<br>C28 | 0.3 (3)      |
| N2-01-C5-C4    | 0.1 (2)      | P1-C24-C29-C28      | 175.52 (15)  |
| N3—C4—C5—O5    | -178.5 (2)   | C4—Pd1—P2—C36       | 6.71 (9)     |
| Pd1-C4-C5-O5   | -0.1 (3)     | P1—Pd1—P2—C36       | -117.4 (2)   |
| N3-C4-C5-01    | -0.13 (19)   | Br1—Pd1—P2—C36      | -173.90 (7)  |
| Pd1-C4-C5-01   | 178.28 (13)  | C4—Pd1—P2—C30       | 125.83 (8)   |
| N2—N3—C6—C7    | -127.2 (2)   | P1—Pd1—P2—C30       | 1.7 (2)      |
| C4—N3—C6—C7    | 57.0 (3)     | Br1—Pd1—P2—C30      | -54.78 (6)   |
| N2—N3—C6—C11   | 54.5 (2)     | C4—Pd1—P2—C42       | -114.98 (9)  |
| C4—N3—C6—C11   | -121.3 (2)   | P1—Pd1—P2—C42       | 120.9 (2)    |
| С11—С6—С7—С8   | 3.2 (3)      | Br1—Pd1—P2—C42      | 64.42 (7)    |
| N3—C6—C7—C8    | -175.09 (19) | C36—P2—C30—C35      | 111.89 (16)  |
| C6—C7—C8—C9    | -1.3 (3)     | C42—P2—C30—C35      | -140.29 (16) |
| C7—C8—C9—C10   | -1.3 (4)     | Pd1—P2—C30—C35      | -14.79 (17)  |
| C8-C9-C10-C11  | 2.0 (4)      | C36—P2—C30—C31      | -66.75 (17)  |
| C7—C6—C11—C10  | -2.5 (3)     | C42—P2—C30—C31      | 41.07 (18)   |
| N3-C6-C11-C10  | 175.84 (19)  | Pd1—P2—C30—C31      | 166.57 (14)  |
| C9—C10—C11—C6  | -0.2 (3)     | C35—C30—C31—<br>C32 | 0.9 (3)      |
| C4—Pd1—P1—C18  | -119.70 (8)  | P2-C30-C31-C32      | 179.58 (15)  |
| P2—Pd1—P1—C18  | 4.4 (2)      | C30—C31—C32—<br>C33 | -1.1 (3)     |
| Br1—Pd1—P1—C18 | 61.00 (6)    | C31—C32—C33—<br>C34 | 0.1 (3)      |
| C4—Pd1—P1—C24  | -2.45 (8)    | C32—C33—C34—<br>C35 | 1.1 (3)      |
| P2—Pd1—P1—C24  | 121.6 (2)    | C33—C34—C35—<br>C30 | -1.3 (3)     |
| Br1—Pd1—P1—C24 | 178.26 (7)   | C31—C30—C35—<br>C34 | 0.3 (3)      |
| C4—Pd1—P1—C12  | 122.12 (9)   | P2-C30-C35-C34      | -178.41 (16) |
| P2—Pd1—P1—C12  | -113.8 (2)   | C30—P2—C36—C41      | -3.29 (18)   |

| Br1—Pd1—P1—C12      | -57.17 (7)   | C42—P2—C36—C41      | -112.88 (16) |
|---------------------|--------------|---------------------|--------------|
| C18—P1—C12—C13      | 138.68 (16)  | Pd1—P2—C36—C41      | 118.87 (15)  |
| C24—P1—C12—C13      | 30.04 (18)   | C30—P2—C36—C37      | 174.56 (14)  |
| Pd1—P1—C12—C13      | -99.60 (15)  | C42—P2—C36—C37      | 64.97 (16)   |
| C18—P1—C12—C17      | -43.47 (17)  | Pd1—P2—C36—C37      | -63.28 (16)  |
| C24—P1—C12—C17      | -152.11 (15) | C41—C36—C37—<br>C38 | 1.5 (3)      |
| Pd1—P1—C12—C17      | 78.25 (16)   | P2-C36-C37-C38      | -176.42 (14) |
| C17—C12—C13—<br>C14 | -1.1 (3)     | C36—C37—C38—<br>C39 | -1.5 (3)     |
| P1-C12-C13-C14      | 176.78 (15)  | C37—C38—C39—<br>C40 | 0.6 (3)      |
| C12—C13—C14—<br>C15 | 1.3 (3)      | C38—C39—C40—<br>C41 | 0.4 (3)      |
| C13—C14—C15—<br>C16 | -0.7 (3)     | C39—C40—C41—<br>C36 | -0.3 (3)     |
| C14—C15—C16—<br>C17 | 0.0 (3)      | C37—C36—C41—<br>C40 | -0.6 (3)     |
| C15—C16—C17—<br>C12 | 0.1 (3)      | P2—C36—C41—C40      | 177.28 (15)  |
| C13—C12—C17—<br>C16 | 0.4 (3)      | C36—P2—C42—C47      | 168.6 (2)    |
| P1-C12-C17-C16      | -177.49 (15) | C30—P2—C42—C47      | 59.6 (2)     |
| C24—P1—C18—C19      | -100.17 (16) | Pd1—P2—C42—C47      | -62.3 (2)    |
| C12—P1—C18—C19      | 149.34 (15)  | C36—P2—C42—C43      | -12.21 (19)  |
| Pd1—P1—C18—C19      | 24.56 (16)   | C30—P2—C42—C43      | -121.21 (18) |
| C24—P1—C18—C23      | 76.65 (17)   | Pd1—P2—C42—C43      | 116.91 (16)  |
| C12—P1—C18—C23      | -33.85 (17)  | C47—C42—C43—<br>C44 | 1.3 (3)      |
| Pd1—P1—C18—C23      | -158.63 (14) | P2-C42-C43-C44      | -177.94 (16) |
| C23—C18—C19—<br>C20 | 1.9 (3)      | C42—C43—C44—<br>C45 | -0.4 (3)     |
| P1-C18-C19-C20      | 178.72 (14)  | C43—C44—C45—<br>C46 | -0.7 (4)     |
| C18—C19—C20—<br>C21 | 0.0 (3)      | C44—C45—C46—<br>C47 | 0.8 (5)      |
| C19—C20—C21—        | -1.5 (3)     | C43—C42—C47—        | -1.1 (4)     |

| C22                 |          | C46                 |           |
|---------------------|----------|---------------------|-----------|
| C20—C21—C22—<br>C23 | 1.1 (3)  | P2—C42—C47—C46      | 178.1 (3) |
| C21—C22—C23—<br>C18 | 0.7 (3)  | C45—C46—C47—<br>C42 | 0.1 (5)   |
| C19—C18—C23—<br>C22 | -2.2 (3) |                     |           |

# Hydrogen-bond geometry (Å, °) for trans-16

| D—H···A                   | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|---------------------------|-------------|-------|--------------|---------|
| C20—H20···O5 <sup>i</sup> | 0.95        | 2.55  | 3.479 (3)    | 165     |

Symmetry code: (i) x, -y+1/2, z+1/2.

2aA



Negative frequencies: 0 Energy: -568.315217 Hartree NICS(1): -6.8

| N1  | 0.4214755013  | -0.5855401487 | 0.1268292873  |
|-----|---------------|---------------|---------------|
| N2  | 0.3873061738  | -1.8007596944 | -0.3714790982 |
| 03  | 1.6380976178  | -2.2882386429 | -0.1781827692 |
| C4  | 2.4988386644  | -1.3146655464 | 0.4647038584  |
| C5  | 1.6167065024  | -0.2129600991 | 0.6303769475  |
| C6  | -0.7807769266 | 0.1958388870  | 0.0833535782  |
| C7  | -0.6939081615 | 1.5714274152  | -0.1302672957 |
| C8  | -1.8677713739 | 2.3226055176  | -0.1626156954 |
| C9  | -3.1060777267 | 1.7004347536  | 0.0067130724  |
| C10 | -3.1738734997 | 0.3204445785  | 0.2108683813  |
| C11 | -2.0093556333 | -0.4430531602 | 0.2552087502  |
| 012 | 3.6506692219  | -1.5647249199 | 0.7216439171  |
| H13 | 1.7817836237  | 0.7307863873  | 1.1183878543  |
| H14 | 0.2708934448  | 2.0414369892  | -0.2912446161 |
| H15 | -1.8120898424 | 3.3938088624  | -0.3313967628 |
| H16 | -4.0176145833 | 2.2904331596  | -0.0214603706 |
| H17 | -4.1357459922 | -0.1652560873 | 0.3452467275  |
| H18 | -2.0393132557 | -1.5135932904 | 0.4230551891  |

Negative frequencies: 0 Energy: -568.242452 Hartree

| N1  | 0.7215295482  | 1.8268410441  | -0.0706199129 |
|-----|---------------|---------------|---------------|
| N2  | 0.5506036874  | 0.5201236584  | 0.1387457250  |
| C3  | 1.6488403467  | -0.2602552534 | 0.4281646837  |
| C4  | 2.5924525740  | 0.7521394291  | 0.3788553369  |
| 05  | 2.0616916883  | 1.9733672356  | 0.0900119052  |
| 06  | 3.9119580468  | 0.7092344853  | 0.5691544966  |
| C7  | -0.7946811163 | 0.0186580833  | 0.0421666087  |
| C8  | -1.8613925579 | 0.8867430653  | -0.2055208877 |
| С9  | -3.1491631346 | 0.3620575299  | -0.2935444158 |
| C10 | -3.3685480248 | -1.0082235225 | -0.1360100513 |
| C11 | -2.2907862749 | -1.8603769576 | 0.1121003544  |
| C12 | -0.9965719522 | -1.3526570661 | 0.2026729988  |
| H13 | 4.2867475837  | 1.5998971571  | 0.4608411158  |
| H14 | -1.6848040903 | 1.9490891993  | -0.3248639186 |
| H15 | -3.9840852033 | 1.0301822904  | -0.4846410195 |
| H16 | -4.3760733019 | -1.4091187615 | -0.2054055706 |
| H17 | -2.4551001130 | -2.9270169775 | 0.2360250840  |
| H18 | -0.1356950740 | -1.9822195964 | 0.3963308239  |

# 5a with Li



Negative frequencies: 0 Energy: -575.265401 Hartree

| C1   | -1.0123748970 | 1.1734220833  | 0.7920574467  |
|------|---------------|---------------|---------------|
| C2   | -0.8337261328 | 0.0476690218  | -0.0113666566 |
| C3   | -2.2669727598 | 1.7773553594  | 0.8466846685  |
| C4   | -1.8883951518 | -0.4806739184 | -0.7595220939 |
| C5   | -3.3322187196 | 1.2597249272  | 0.1077022071  |
| C6   | -3.1383266014 | 0.1317716018  | -0.6918383455 |
| N7   | 0.4638991907  | -0.5673291730 | -0.0647060909 |
| C8   | 1.6335965860  | 0.0052359315  | 0.2966273529  |
| N9   | 0.5021713351  | -1.8249541507 | -0.5170454633 |
| C10  | 2.5355574649  | -1.0526972284 | 0.0134912315  |
| 011  | 1.8372096864  | -2.1341533427 | -0.4764130862 |
| 012  | 3.7929801001  | -1.0468424675 | 0.1511938687  |
| Li13 | 3.4914758478  | 0.7224627460  | 0.6967836528  |
| H14  | -0.1713208302 | 1.5563197499  | 1.3582083272  |
| H15  | -2.4114933947 | 2.6536473608  | 1.4724481755  |
| H16  | -1.7238737537 | -1.3518222232 | -1.3823055308 |
| H17  | -4.3087837234 | 1.7339795034  | 0.1532109080  |
| H18  | -3.9620015406 | -0.2731929280 | -1.2730371561 |

## 5a without Li



Negative frequencies: 0 Energy: -567.708371 Hartree NICS(1): -7.9 Energy HOMO: -0.005809 Hartree Energy HOMO-1: -0.033816 Hartree

| C1  | -0.7426828930 | 1.4216885359  | 0.3939375405  |
|-----|---------------|---------------|---------------|
| C2  | -0.6812561805 | 0.0808723014  | 0.0013263997  |
| C3  | -1.9702083253 | 2.0799824536  | 0.4159152733  |
| C4  | -1.8480769618 | -0.5979923290 | -0.3683782917 |
| C5  | -3.1424707074 | 1.4118715192  | 0.0487061762  |
| C6  | -3.0716784879 | 0.0732043639  | -0.3419988598 |
| N7  | 0.5834256803  | -0.5752842976 | -0.0150312488 |
| C8  | 1.7473631104  | 0.0274470884  | 0.3189831385  |
| N9  | 0.5605007931  | -1.8823049265 | -0.3968997056 |
| C10 | 2.6682844190  | -1.0769754634 | 0.1244907367  |
| 011 | 1.8909743129  | -2.2130384070 | -0.3109730077 |
| 012 | 3.8811970619  | -1.2178327037 | 0.2490047277  |
| H13 | 0.1966441821  | 1.8916008417  | 0.6678084552  |
| H14 | -2.0119478537 | 3.1235227101  | 0.7225710648  |
| H15 | -1.7768365670 | -1.6360327879 | -0.6694429687 |
| H16 | -4.0998199102 | 1.9292631428  | 0.0667696219  |
| H17 | -3.9770149097 | -0.4577872975 | -0.6303605885 |

## 6a without BF<sub>4</sub>-

y × K

Negative frequencies: 0 Energy: -647.303538 Hartree NICS(1): -8.9

| C1  | 0.1040315120  | 0.2432231369  | 1.1177239598  |
|-----|---------------|---------------|---------------|
| N2  | 0.5059205304  | -0.6460847563 | -0.8885119804 |
| N3  | -0.6489504509 | -0.0364531809 | -0.8912930665 |
| C4  | -0.9741530292 | 0.5309436914  | 0.3053390975  |
| 05  | 0.9916239722  | -0.4591136588 | 0.3769802411  |
| 06  | 0.3362831700  | 0.5455595546  | 2.3486273669  |
| C7  | -1.4226800315 | -0.0107171486 | -2.1044480897 |
| C8  | -0.7496850392 | 0.0413231104  | -3.3281411213 |
| С9  | -1.5092448149 | 0.0620724262  | -4.4944950969 |
| C10 | -2.9052011386 | 0.0344861801  | -4.4279214571 |
| C11 | -3.5555124824 | -0.0190830065 | -3.1918958624 |
| C12 | -2.8164911502 | -0.0447292831 | -2.0122974017 |
| C13 | 1.6142307398  | 0.1231679865  | 2.9892270399  |
| C14 | 1.5738365392  | 0.6237007608  | 4.4132241607  |
| H15 | 0.3335768392  | 0.0800601795  | -3.3624819490 |
| H16 | -1.0084816208 | 0.1098530405  | -5.4560337142 |
| H17 | -3.4890606873 | 0.0547106777  | -5.3429984947 |
| H18 | -4.6390625736 | -0.0527335375 | -3.1444121366 |
| H19 | -3.3157789693 | -0.1230206719 | -1.0515597400 |
| H20 | 1.6605441398  | -0.9667913588 | 2.9201607019  |
| H21 | 2.4252810886  | 0.5641351419  | 2.4037685737  |
| H22 | 2.5027718297  | 0.3287635384  | 4.9124090839  |

| H23 | 1.4969305894  | 1.7139799838 | 4.4468399688 |
|-----|---------------|--------------|--------------|
| H24 | 0.7351743586  | 0.1864519229 | 4.9620574763 |
| H25 | -1.8671724451 | 1.1062258852 | 0.4792122314 |

LY & 7

Negative frequencies: 0 Energy: -646.868716 Hartree NICS(1): -10.3 Energy HOMO: -0.212233 Hartree

| N1  | 0.7048227712  | 0.0000000000  | -0.9748337212 |
|-----|---------------|---------------|---------------|
| N2  | -0.6268477636 | -0.0007236799 | -0.8593104234 |
| C3  | -1.1873581506 | -0.0020937335 | 0.3954582196  |
| C4  | 0.0000000000  | 0.0000000000  | 1.1172758614  |
| 05  | 1.1093831429  | 0.0028174134  | 0.3214100635  |
| 06  | 0.1783114499  | 0.0011389241  | 2.4301709108  |
| C7  | -1.3845803637 | -0.0023043637 | -2.0824049639 |
| C8  | -0.7400415319 | 0.0675559372  | -3.3201273940 |
| С9  | -1.5099923592 | 0.0622205581  | -4.4818265633 |
| C10 | -2.9026512896 | -0.0108582322 | -4.4092811748 |
| C11 | -3.5300567100 | -0.0788157438 | -3.1638065976 |
| C12 | -2.7754034015 | -0.0751608725 | -1.9928480446 |
| C13 | 1.5278602779  | -0.0019365074 | 2.9456386150  |
| C14 | 1.4268643471  | -0.0061608571 | 4.4587640577  |
| H15 | 0.3407531003  | 0.1262653700  | -3.3696868570 |
| H16 | -1.0160436285 | 0.1174862177  | -5.4478008699 |
| H17 | -3.4956712274 | -0.0136716690 | -5.3198272681 |
| H18 | -4.6131331170 | -0.1353895419 | -3.1000584945 |
| H19 | -3.2267279473 | -0.1237523581 | -1.0084799779 |
| H20 | 2.0515163475  | -0.8889252250 | 2.5699374458  |
| H21 | 2.0534674454  | 0.8860719415  | 2.5750586331  |

| H22 | 2.4307981596 | -0.0082602865 | 4.8965897878 |
|-----|--------------|---------------|--------------|
| H23 | 0.8938650251 | 0.8812621358  | 4.8136931222 |
| H24 | 0.8923698937 | -0.8947285317 | 4.8086025445 |



Negative frequencies: 0 Energy: -599.608566 Hartree

| C1  | -0.0778459591 | 1.6214146951  | -0.5205293335 |
|-----|---------------|---------------|---------------|
| N2  | 0.0731859411  | 0.2246227967  | 0.0881674631  |
| C3  | 1.2738705800  | -0.2121577798 | 0.4070677685  |
| C4  | 2.2331149793  | 0.9328357548  | 0.0895556551  |
| C5  | 1.4107008491  | 2.0030275158  | -0.6968416988 |
| C6  | -0.8303151521 | 1.5370784546  | -1.8552856161 |
| C7  | -0.8185317083 | 2.5637094908  | 0.4416458351  |
| C8  | -1.0778210161 | -0.6312763191 | 0.2470891813  |
| C9  | 3.4130032098  | 0.3910221538  | -0.7371196959 |
| C10 | 2.7582925723  | 1.4743855368  | 1.4375654614  |
| C11 | -1.9961315395 | -0.4247887266 | 1.2800204752  |
| C12 | -3.0984781114 | -1.2717926228 | 1.4106796170  |
| C13 | -3.2865529363 | -2.3262437208 | 0.5168625101  |
| C14 | -2.3601041752 | -2.5391316632 | -0.5059860665 |
| C15 | -1.2588742213 | -1.6952507212 | -0.6408442942 |
| H16 | 1.6037652474  | 3.0218719803  | -0.3438997131 |
| H17 | 1.6764082041  | 1.9776234285  | -1.7599485578 |
| H18 | -0.8654399960 | 2.5269801902  | -2.3252216484 |
| H19 | -0.3284072211 | 0.8512887855  | -2.5465813071 |
| H20 | -1.8612088934 | 1.1933490552  | -1.7185123629 |
| H21 | -1.8555776748 | 2.2490721410  | 0.5963606016  |
| H22 | -0.3202169195 | 2.6106743375  | 1.4158390630  |
| H23 | -0.8393584061 | 3.5766450063  | 0.0229341781  |

| H24 | 4.1240297672  | 1.1931879415  | -0.9745631206 |
|-----|---------------|---------------|---------------|
| H25 | 3.9422665278  | -0.3917099097 | -0.1841482685 |
| H26 | 3.0673823333  | -0.0445699939 | -1.6825680394 |
| H27 | 3.2311498715  | 0.6730964653  | 2.0146473891  |
| H28 | 3.4986728215  | 2.2668839064  | 1.2701390182  |
| H29 | 1.9494254409  | 1.8916422505  | 2.0492132730  |
| H30 | -1.8339590908 | 0.3754338402  | 1.9945174812  |
| H31 | -3.8048332592 | -1.1113538450 | 2.2209179967  |
| H32 | -4.1448848196 | -2.9845056886 | 0.6218979854  |
| H33 | -2.4919351389 | -3.3663161881 | -1.1984824774 |
| H34 | -0.5210814371 | -1.8603915199 | -1.4198713009 |



Negative frequencies: 0 Energy: -688.227083 Hartree

| C1  | -1.1956520588 | 1.7433949650  | -0.5263813033 |
|-----|---------------|---------------|---------------|
| N2  | -1.3139339172 | 0.4586058548  | 0.0416120267  |
| C3  | -0.1522121819 | 0.1894045901  | 0.6553120137  |
| N4  | 0.6524820762  | 1.2557756683  | 0.4698589639  |
| C5  | 0.0438206159  | 2.2979338148  | -0.2877736417 |
| C6  | -2.4459702289 | -0.4033643425 | 0.0039803902  |
| C7  | 1.9770388260  | 1.3525547133  | 0.9939574533  |
| C8  | 2.5315907582  | 2.6258678422  | 1.1508696186  |
| С9  | 3.8159568281  | 2.7565445206  | 1.6717312660  |
| C10 | 4.5522602767  | 1.6270521222  | 2.0376673076  |
| C11 | 3.9967580398  | 0.3586572473  | 1.8667527360  |
| C12 | 2.7132876440  | 0.2153142625  | 1.3388854370  |
| C13 | -3.7241093958 | 0.1416465016  | 0.1632099290  |
| C14 | -4.8389815128 | -0.6930789913 | 0.1120066250  |
| C15 | -4.6847609998 | -2.0667323778 | -0.0840417558 |
| C16 | -3.4060053574 | -2.6044596330 | -0.2401628208 |
| C17 | -2.2849616723 | -1.7764150798 | -0.2079099948 |
| H18 | -2.0236433948 | 2.1228592264  | -1.1079986388 |
| H19 | 0.0330037139  | -0.6847252844 | 1.2584094618  |
| H20 | 1.9356658333  | 3.4769085975  | 0.8403587111  |
| H21 | 4.2430771818  | 3.7484907655  | 1.7935070576  |
| H22 | 5.5539683739  | 1.7341115542  | 2.4448285570  |
| H23 | 4.5668583857  | -0.5278391222 | 2.1312600789  |

| H24 | 2.3060854469  | -0.7782887344 | 1.1751802812  |
|-----|---------------|---------------|---------------|
| H25 | -3.8340348692 | 1.2065025118  | 0.3420924924  |
| H26 | -5.8307603577 | -0.2675469897 | 0.2370485322  |
| H27 | -5.5563530933 | -2.7141855355 | -0.1185200117 |
| H28 | -3.2783039395 | -3.6708495908 | -0.4039708996 |
| H29 | -1.2914988963 | -2.1844259362 | -0.3690556345 |



Negative frequencies: 0 Energy: -876.285216 Hartree

| C1  | -1.1868766480 | 2.0455804531  | -0.4635871644 |
|-----|---------------|---------------|---------------|
| N2  | -1.1586444992 | 0.6749651493  | 0.0788558903  |
| C3  | -0.0941812344 | 0.0676061138  | 0.6667955302  |
| N4  | 1.0217190796  | 0.8339083531  | 0.7925809255  |
| C5  | 1.1555004798  | 2.2463509048  | 0.3914240236  |
| C6  | 0.0073478634  | 2.7542820526  | -0.2422219228 |
| 07  | 2.2102935821  | 2.8505313584  | 0.6322048772  |
| 08  | -2.2038662020 | 2.4485951976  | -1.0455726340 |
| С9  | 2.1327569436  | 0.1878264145  | 1.4332075476  |
| C10 | -2.3256259128 | -0.1496356356 | -0.0656217531 |
| C11 | -3.6180159520 | 0.3618198773  | 0.1170422058  |
| C12 | -4.7241367990 | -0.4822015564 | 0.0095790502  |
| C13 | -4.5671615230 | -1.8383397677 | -0.2805115488 |
| C14 | -3.2795670720 | -2.3470332836 | -0.4622306182 |
| C15 | -2.1698345935 | -1.5108846209 | -0.3596435320 |
| C16 | 1.8898681312  | -0.7097261039 | 2.4817058131  |
| C17 | 2.9416628081  | -1.3872591435 | 3.0945684780  |
| C18 | 4.2572683779  | -1.1757251468 | 2.6773763085  |
| C19 | 4.5009865127  | -0.2799063377 | 1.6353100358  |
| C20 | 3.4532683569  | 0.4002702658  | 1.0132614683  |
| H21 | 0.0464032302  | 3.7794377062  | -0.5909651773 |
| H22 | -3.7469900018 | 1.4146145562  | 0.3258206479  |
| H23 | -5.7204218142 | -0.0700966972 | 0.1584152883  |

| H24 | -5.4351576558 | -2.4895918187 | -0.3632953758 |
|-----|---------------|---------------|---------------|
| H25 | -3.1348498081 | -3.4016477978 | -0.6895634095 |
| H26 | -1.1621054491 | -1.8942964968 | -0.4720631589 |
| H27 | 0.8605392903  | -0.8815146354 | 2.7751281405  |
| H28 | 2.7294126773  | -2.0814438466 | 3.9056610852  |
| H29 | 5.0803929427  | -1.7013080472 | 3.1575428141  |
| H30 | 5.5200872464  | -0.1063902024 | 1.2949793232  |
| H31 | 3.6496579112  | 1.1053955545  | 0.2178591155  |



Negative frequencies: 0 Energy: -974.089388 Hartree

| C1  | -1.0210396530 | 0.5457064260  | 0.1612751421  |
|-----|---------------|---------------|---------------|
| N2  | -0.5521187020 | -0.7502269876 | 0.6238204069  |
| C3  | 0.8136814595  | -0.8904922842 | 0.5764733934  |
| N4  | 1.2211424372  | 0.3172319746  | 0.0836383186  |
| C5  | 0.1491870004  | 1.1899969684  | -0.2016212585 |
| N6  | -2.3210321126 | 0.8545823198  | 0.2160406094  |
| C7  | -1.3550611816 | -1.8417404096 | 1.0581988632  |
| C8  | 2.5761213200  | 0.6028185697  | -0.1637476522 |
| С9  | -2.8572880336 | 1.9289538147  | -0.4346843724 |
| C10 | -4.2015401180 | 2.2774803136  | -0.1073732462 |
| C11 | -4.8667050723 | 3.3284516529  | -0.7200391574 |
| C12 | -4.2414587402 | 4.1010717370  | -1.7106773431 |
| C13 | -2.9316201285 | 3.7704801500  | -2.0663002850 |
| C14 | -2.2464641005 | 2.7252860854  | -1.4489908820 |
| C15 | -2.6402095185 | -1.6627317340 | 1.5920056310  |
| C16 | -3.3732364884 | -2.7696350523 | 2.0235562995  |
| C17 | -2.8495118112 | -4.0597976482 | 1.9426554315  |
| C18 | -1.5675240898 | -4.2348186114 | 1.4149973997  |
| C19 | -0.8280084182 | -3.1420561187 | 0.9720862799  |
| C20 | 3.5789578256  | -0.2254074596 | 0.3721911954  |
| C21 | 4.9192301306  | 0.0564627679  | 0.1384897058  |
| C22 | 5.2988449881  | 1.1678321307  | -0.6252570701 |
| C23 | 4.3046802112  | 1.9864597539  | -1.1592098644 |

| C24 | 2.9538075251  | 1.7118074752  | -0.9375005744 |
|-----|---------------|---------------|---------------|
| H25 | 0.2982557657  | 2.2318523014  | -0.4208526596 |
| H26 | -4.6972104771 | 1.6766364999  | 0.6521512569  |
| H27 | -5.8918704751 | 3.5529162751  | -0.4242614663 |
| H28 | -4.7616673954 | 4.9283875583  | -2.1885677900 |
| H29 | -2.4250785819 | 4.3402463937  | -2.8463813503 |
| H30 | -1.2460324558 | 2.4788405013  | -1.7857015700 |
| H31 | -3.0463005388 | -0.6606809088 | 1.6258469088  |
| H32 | -4.3701718127 | -2.6128489648 | 2.4316085430  |
| H33 | -3.4298805285 | -4.9159401816 | 2.2812313610  |
| H34 | -1.1393355106 | -5.2328731736 | 1.3390376400  |
| H35 | 0.1716569826  | -3.2594407453 | 0.5706437851  |
| H36 | 3.2615169711  | -1.0813197018 | 0.9570904187  |
| H37 | 5.6799156311  | -0.5960838950 | 0.5630349759  |
| H38 | 6.3495980531  | 1.3874259856  | -0.7990676841 |
| H39 | 4.5757349979  | 2.8497871247  | -1.7637307773 |
| H40 | 2.1934299417  | 2.3421386709  | -1.3844890228 |



Negative frequencies: 0 Energy: -762.923220 Hartree

| C1  | -1.3631967888 | 2.0014583667  | -0.2189316178 |
|-----|---------------|---------------|---------------|
| N2  | -1.3220709353 | 0.5460592981  | 0.1216480571  |
| C3  | -0.0675426753 | 0.0913873721  | 0.4447916138  |
| N4  | 0.7019283766  | 1.2167897207  | 0.3164771169  |
| C5  | -0.0282212149 | 2.3570925834  | -0.0941002688 |
| C6  | 2.0859685138  | 1.1830651802  | 0.5332254165  |
| C7  | -2.4321410940 | -0.3285248835 | 0.1227449839  |
| C8  | -3.7342506100 | 0.1315018370  | -0.1459160838 |
| C9  | -4.8045484270 | -0.7639814259 | -0.1335734809 |
| C10 | -4.6154269551 | -2.1187051058 | 0.1420148513  |
| C11 | -3.3204244882 | -2.5737570841 | 0.4087353899  |
| C12 | -2.2411859050 | -1.6965049231 | 0.3995720359  |
| C13 | 2.6891252316  | 0.0464860645  | 1.1066282646  |
| C14 | 4.0588340534  | 0.0147535613  | 1.3315064152  |
| C15 | 4.8710338943  | 1.1083522980  | 0.9997189343  |
| C16 | 4.2772775677  | 2.2326242464  | 0.4290730799  |
| C17 | 2.9018757853  | 2.2773610057  | 0.1936831337  |
| O18 | -2.4031898163 | 2.6278055024  | -0.5231485689 |
| H19 | 0.3923534330  | 3.3461282007  | -0.1461797741 |
| H20 | -3.8643640050 | 1.1848506239  | -0.3608215031 |
| H21 | -5.8050363805 | -0.3883282620 | -0.3439163582 |
| H22 | -5.4577724012 | -2.8080920292 | 0.1489888215  |
| H23 | -3.1466024760 | -3.6269712380 | 0.6257546722  |

| H24 | -1.2303332437 | -2.0298472336 | 0.6046274660  |
|-----|---------------|---------------|---------------|
| H25 | 2.0410964211  | -0.7872826581 | 1.3520909378  |
| H26 | 4.5023139142  | -0.8738713453 | 1.7778370076  |
| H27 | 5.9427992126  | 1.0800059493  | 1.1839164572  |
| H28 | 4.8878402146  | 3.0917733641  | 0.1558008144  |
| H29 | 2.4641668224  | 3.1523399102  | -0.2723278386 |



Negative frequencies: 0 Energy: -688.257491 Hartree

| C1  | -1.2605812944 | 1.7240739058  | 0.6556699144  |
|-----|---------------|---------------|---------------|
| N2  | -1.2820488223 | 0.4295040875  | 0.1247980877  |
| C3  | -0.1012384164 | 0.0871308280  | -0.4877997279 |
| N4  | 0.6506205149  | 1.2238595921  | -0.3158526991 |
| C5  | -0.0367955262 | 2.2273696115  | 0.3762152045  |
| C6  | 1.9901988785  | 1.3308066382  | -0.7940601488 |
| C7  | -2.3868809253 | -0.4688890039 | 0.2050368672  |
| C8  | -3.6918023684 | 0.0095576372  | 0.3571415653  |
| С9  | -4.7545430131 | -0.8915516263 | 0.4470665556  |
| C10 | -4.5257285522 | -2.2654372115 | 0.3733053684  |
| C11 | -3.2201011310 | -2.7359101778 | 0.2075918238  |
| C12 | -2.1513920395 | -1.8470537487 | 0.1279816035  |
| C13 | 2.7365610288  | 0.1634908568  | -0.9975680346 |
| C14 | 4.0468864771  | 0.2531321922  | -1.4596009992 |
| C15 | 4.6280433574  | 1.4985978820  | -1.7137422958 |
| C16 | 3.8788210322  | 2.6576195201  | -1.5126077926 |
| C17 | 2.5602478193  | 2.5794264097  | -1.0600268954 |
| H18 | -2.0799233933 | 2.1517968371  | 1.2106674598  |
| H19 | 0.4053077514  | 3.1732581725  | 0.6446350367  |
| H20 | -3.8865491607 | 1.0770751522  | 0.3792258660  |
| H21 | -5.7657973417 | -0.5119862524 | 0.5625983445  |
| H22 | -5.3553735864 | -2.9632188778 | 0.4407194412  |
| H23 | -3.0295328088 | -3.8038660874 | 0.1468102006  |

| H24 | -1.1325981588 | -2.1910380769 | -0.0047550099 |
|-----|---------------|---------------|---------------|
| H25 | 2.2664674139  | -0.7921090478 | -0.7984305961 |
| H26 | 4.6196819951  | -0.6570216075 | -1.6147317943 |
| H27 | 5.6525404892  | 1.5633197800  | -2.0686422629 |
| H28 | 4.3135772259  | 3.6314626210  | -1.7191601022 |
| H29 | 1.9761710128  | 3.4865531530  | -0.9421952652 |

- 1 Y. Fang, C. Wu, R. C. Larock, F. Shi, J. Org. Chem. 2011, 76, 8840.
- S. J. Hodson, K. Turnbull, J. Heterocycl. Chem. 1985, 22, 1223; K. Turnbull, T. L. Blackburn, J. J. Miller, J. Heterocycl. Chem. 1996, 33, 485; K. L. McChord, S. A. Tullis, K. Turnbull, Synth. Commun. 1989, 19, 2249.
- 3 M. Bellas, H. Suschitzky, J. Chem. Soc. C, 1966, 189.
- J. C. Earl, E. W. Leake, R. J. W. Le Fèvre, *Nature* 1947, 160, 366; W. Baker, W.
  D. Ollis, V. D. Poole, J. A. Barltorp, R. A. W. Hill, L. E. Stitton, *Nature* 1947, 160, 366.
- 5 R. A. Eade, J. C. Earl, J. Chem. Soc., 1948, 2307.
- 6 K. T. Potts, E. Houghton, S. Husain, J. Chem. Soc. D, 1970, 1025.
- V. N. Kalinin, F. M. She, V. N. Khandozhko, P. V. Petrovskii, *Russ. Chem. Bull.*2001, 50, 525; V. Kalinin, S. Fan Min, P. Petrovskii, *J. Organomet. Chem.* 1989, 379, 195.
- 8 F. Dumitrașcu, C. Drâghici, D. Dumitrescu, L. Tarko, D. Râileanu, *Liebigs Ann./Recl.* 1997, **1997**, 2613.