Rhodium(III)-Catalyzed C–H Activation/[4+3] Annulation of *N*-Phenoxyacetamides and α , β -Unsaturated Aldehydes: an Efficient Route to 1,2-Oxazepines at Room Temperature

Pingping Duan,^a Xia Lan,^a Ying Chen,^a Shao-Song Qian,^c Jie Jack Li,^d Liang Lu,^b Yanbo Lu,^a Bo Chen,^{*a} Mei Hong^{*a} and Jing Zhao^{*a,b}

Supporting Information

Table of contents

1.	General Informations	S2
2.	Synthesis and Characterization of Starting Materials	S2-S7
3.	Condition Screening	S 8
4.	Experimental Procedure and Characterization of Products	S8-S15
5.	Characterization of Products 4 and 5	S15-S16
6.	X-ray Crystallographic Data	S16-S36
7.	Mechanistic Studies	S37-S43
8.	Synthetic transformation	S43-44
9.	References	S44
10.	¹ H NMR and ¹³ C NMR Spectra of Those Compounds	S45-S86

1. General Information

All reactions were carried out under an atmosphere of nitrogen unless otherwise noted. The dry solvents used were purified by distillation and were transferred under nitrogen.

Commercially available reagents were purchased from Adamas-beta, Sigma-Aldrich, Alfa Aesar, TCI, Accela, J&K and Aladdin and used as received unless otherwise stated. Dichloro(pentamethylcyclopentadienyl)rhodium(III) dimer, 99% purchased from Sino compound Technology Co.,Ltd.

Reactions were monitored with analytical thin-layer chromatography (TLC) on silica. ¹H NMR and ¹³C NMR data were recorded on Bruker nuclear resonance (300MHZ, 400 MHz and 500MHz) spectrometers, respectively. Chemical shifts (δ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: δ_H =7.26 ppm, δ_C =77.16 ppm; DMSO-d₆: δ_H = 2.50 ppm, δ_C = 39.52 ppm; MeOD-d₄: δ_H =3.31 ppm, δ_C =49.00 ppm; Acetone-d₆: δ_H = 2.05ppm, δ_C = 29.84 ppm, 206.26 ppm; CD₂Cl₂: δ_H =5.32 ppm, δ_C =54.0 ppm). HRMS (ESI) analysis were performed by the Analytical Instrumentation Center at Peking University, Shenzhen Graduate School and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units. All melting points were uncorrected.

2. Synthesis and Characterization of Starting Materials

General procedure for preparation of substrates 1a-1n, 1q.

report,¹ Following literature in 50ml flask, a a round-bottom *N*-hydroxyphthalimide (1.0 eq), cooper (I) chloride (1.0 eq), freshly activated 4 Å molecular sieves (250mg/mmol), and phenylboronic acid (2.0 eq) were combined in 1,2-dichloroethane (0.2 M). The pyridine (1.1 eq) was then added to the suspension. The reaction mixture was open to the atmosphere and stirred at room temperature over 24-48h. Upon completion, silica gel was added to the flask and the solvent was removed under vacuum. The desired N-aryloxyphthalimides were obtained by flash column chromatography on silica gel.

Hydrazine monohydrate (3.0 eq) was added to the solution of N-aryloxyphthalimide (1.0 eq) in 10% MeOH in CHCl₃ (0.1 M). The reaction was allowed to stir at room temperature overnight. Upon completion, the reaction mixture was filtered off and washed with CH₂Cl₂. The filtrate was concentrated under reduced

pressure, and purified by flash silica gel column chromatography to give the corresponding N-aryloxyamine.

For the synthesis of 1a-1b, 1d-1n, 1q: In a 20 ml round-bottom flask, *N*-aryloxyamine (1.0 eq) was dissolved in ether (0.2 M). The flask was cooled in an ice bath, to which anhydride (2.0 eq) was slowly added. The ice bath was allowed to warm to room temperature and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated under reduced pressure and purified by flash silica gel column chromatography to give the corresponding *N*-aryloxyacetamide.

For the synthesis of 1c: In a 20 mL round-bottom flask, *N*-aryloxyamine (1.0 eq) was dissolved in CH_2Cl_2 (0.2 M). The flask was cooled in an ice bath, to which CbzCl (1.2 eq) and Et_3N (1.5 eq) was slowly added. The ice bath was allowed to warm to room temperature and the mixture was stirred for 3 h at room temperature. The reaction mixture was concentrated under reduced pressure and purified by flash silica gel column chromatography to give the corresponding *N*-aryloxyacetamide.

General procedure for preparation of substrates 10-1p.

2-Cyclohexen-1-ol or its derivative (1 eq) was added to a solution of 2-hydroxyisoindoline -1,3-dione (1.1 eq) and triphenylphosphine (1.5 eq) in dry THF, then the reaction solution was cooled to 0° C and DEAD (Diethyl azodicarboxylate) (1.5 eq) was added dropwise. The reaction mixture was warmed to room temperature. After stirring overnight, the reaction solution was concentrated and the residue was purified by column chromatography on silica gel to provide the desired products. The last two steps are the same as above described.

Characterization of Substrates 1

N-phenoxyacetamide (1a): 60% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.67 (s, 1H), 7.32 (t, J = 7.9 Hz, 2H), 7.01 (t, J = 7.6 Hz, 3H), 1.92 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 167.22, 159.55, 129.45, 122.25, 112.86, 19.43. IR (cm⁻¹) 3107, 2907, 1645, 1539, 1506, 743, 689. HRMS (ESI) calculated for C₈H₉NO₂Na(+): 174.0633; Found: 174.0527. Melting Point: 154-156 °C.

N-phenoxypropionamide (1b): 55% yield, white solid. ¹H NMR (500 MHz, DMSO) δ 11.62 (s, 1H), 7.31 (t, *J* = 7.7 Hz, 2H), 6.99 (dd, *J* = 15.1, 7.6 Hz, 3H), 2.17 (q, *J* = 7.4 Hz, 2H), 1.07 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (126 MHz, DMSO) δ 171.40, 160.08, 129.88, 122.65, 113.33, 25.85, 9.93. HRMS (ESI) calculated for C₉H₁₂NO₂(+): 166.0869; Found: 166.0863. Melting Point: 139-140 °C.

benzyl phenoxycarbamate (1c): 46% yield, colorless oil. ¹H NMR (400 MHz, DMSO-d₆) δ 11.20 (s, 1H), 7.55 – 7.17 (m, 7H), 7.02 (d, J = 8.4 Hz, 3H), 5.16 (s, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 160.22, 157.16, 136.57, 129.91, 128.90, 128.60, 128.37, 122.77, 113.34, 66.90. HRMS (ESI) calculated for C₁₄H₁₄NO₃(+):244.0793; Found: 244.0793.

N-(*o*-tolyloxy)acetamide (1d): 56% yield, white solid. 1H NMR (400 MHz, DMSO-d₆) δ 11.62 (s, 1H), 7.15 (t, *J* = 7.7 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 1H), 6.92 (t, *J* = 7.3 Hz, 1H), 2.21 (s, 3H), 1.92 (s, 3H); ¹³C NMR (101MHz, DMSO-d₆) δ 167.09, 157.46, 130.69, 126.87, 123.50, 121.99, 111.54, 19.44, 15.48.IR (cm⁻¹):3177, 2984, 2808, 1653, 1506, 1456, 1119, 991, 750. HRMS (ESI) calculated for C₉H₁₁NO₂Na (+): 188.0790; Found: 188.0682. Melting Point: 122-125 °C.

N-(*m*-tolyloxy)acetamide (1e): 50% yield, white solid. ¹H NMR (400 MHz, Acetone-d₆) δ 10.75 (s, 1H), 7.16 (t, *J* = 7.0 Hz, 1H), 6.85 (d, *J* = 14.0 Hz, 3H), 2.29 (s, 3H), 1.97 (s, 3H); ¹³C NMR (101 MHz, Acetone-d₆) δ 167.75, 160.08, 139.21, 129.01, 122.99, 113.51, 109.98, 20.54, 18.75. HRMS (ESI) calculated for C₉H₁₁NO₂Na (+): 188.0790; Found: 188.0682. Melting Point: 119-120 °C.

N-(*p*-tolyloxy)acetamide (1f): 45% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.61 (s, 1H), 7.10 (d, *J* = 8.0 Hz, 2H), 6.90 (d, *J* = 7.9 Hz, 2H), 2.24 (s, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 167.58, 158.00, 131.51, 130.14, 113.28, 20.52, 19.84. HRMS (ESI) calculated for C₉H₁₁NO₂Na(+): 188.0790; Found: 188.0682. Melting Point: 141-143 °C.

N-(3,4-dimethylphenoxy)acetamide (1g): 45% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.57 (s, 1H), 7.04 (d, J = 8.3 Hz, 1H), 6.78 (s, 1H), 6.70 (d, J = 8.1 Hz, 1H), 2.19 (s, 3H), 2.14 (s, 3H), 1.89 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 167.41, 158.08, 137.70, 130.43, 130.15, 114.38, 110.36, 19.99, 19.85, 18.87. HRMS (ESI) calculated forC₁₀H₁₄NO₂(+): 180.1020; Found:180.1019. Melting Point: 140-142 °C.

N-(3-methoxyphenoxy)acetamide (1h): 50% yield, brick-red solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.62 (s, 1H), 7.20 (t, J = 8.1 Hz, 1H), 6.75 – 6.48 (m, 3H), 3.73 (s, 3H), 1.90 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 167.61, 161.30, 160.88, 130.47, 108.23, 105.50, 99.59, 55.68, 19.83. IR (cm⁻¹): 3177, 2957, 1684, 1607, 1489, 1134, 685. HRMS (ESI) calculated for C₉H₁₁NO₃Na(+):204.0739 ; Found: 204.0631. Melting Point: 98-100 °C.

N-(3-fluorophenoxy)acetamide(1i): 35% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.76 (s, 1H), 7.34 (dd, *J* = 15.4, 8.0 Hz, 1H), 6.85 (dd, *J* = 15.3, 9.9 Hz, 3H), 1.92 (s, 3H); ¹³C NMR (101MHz,DMSO-d₆) δ 167.92, 163.27 (J_{1F} = 244.5), 161.52 (J_{3F} = 10.6), 131.28 (J_{3F} = 10.2),109.56, 109.34 (J_{2F} = 21.4), 101.12 (J_{2F} = 26.7), 19.85. HRMS (ESI) calculated for C₈H₈NO₂FNa(+): 192.0539; Found:

N-(3-bromophenoxy)acetamide (1j): 30% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.76 (s, 1H), 7.27 (t, J = 8.2 Hz, 1H), 7.21 (d, J = 5.4 Hz, 2H), 7.03 (d, J = 8.1 Hz, 1H), 1.92 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆): δ 167.91, 160.93, 131.72, 125.63, 122.43, 116.24, 112.84, 19.84. IR (cm⁻¹): 3102, 2911, 1653, 1506, 991, 779. HRMS (ESI) calculated for C₈H₈NO₂NaBr(+): 251.9738; Found: 251.9631. Melting Point: 129-131 °C.

N-(4-bromophenoxy)acetamide (1k): 35% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.74 (s, 1H), 7.47 (d, *J* = 8.7 Hz, 2H), 6.98 (d, *J* = 8.5 Hz, 2H), 1.91 (s, 3H); ¹³CNMR (101 MHz, DMSO-d₆) δ 167.88, 159.37, 132.58, 115.71, 114.05, 19.86. HRMS (ESI) calculated for C₈H₈NO₂NaBr(+): 251.9738; Found: 251.9630. Melting Point: 163-165 °C.

N-(4-chlorophenoxy)acetamide (11):45% yield, white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 11.74 (s, 1H), 7.35 (d, *J* = 8.8 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 1.91 (s, 3H); ¹³C NMR (101MHz, DMSO-d₆) δ 167.88, 158.89, 129.68, 126.34, 115.22, 19.87. IR (cm⁻¹):3109, 2911, 1663, 1506, 989, 824. HRMS (ESI) calculated for C₈H₈NO₂NaCl(+): 208.0244; Found: 208.0137. Melting Point: 151-153 °C.

N-([1,1'-biphenyl]-4-yloxy)acetamide (1m): 37% yield, white solid. ¹H NMR (400 MHz, DMSO) δ 11.76 (s, 1H), 7.60 (d, *J* = 7.5 Hz, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.3 Hz, 1H), 7.08 (d, *J* = 8.6 Hz, 2H), 1.91 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 167.55, 159.76, 140.12, 134.65, 129.36, 128.17, 127.41, 126.80, 113.89,19.92. HRMS (ESI) calculated for C₁₄H₁₃NO₂Na(+): 250.0844; Found: 250.0839. Melting Point: 182-183 °C.

methyl 4-(acetamidooxy)benzoate (1n): 25% yield, white solid. ¹H NMR (400 MHz, DMSO) δ 11.83 (s, 1H), 7.93 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H), 3.81 (s, 3H), 1.93 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 167.93, 166.12, 163.73, 131.66, 124.10, 113.42, 52.41, 19.82. HRMS (ESI) calculated for C₁₀H₁₂NO₄(+): 210.0767; Found: 210.0759. Melting Point: 163-165 °C.

N-(cyclohex-2-en-1-yloxy)acetamide (10): 76% yield, white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 5.98 (d, J=17.8, 1H), 5.80 (s, 1H), 4.31 (d, J=81.4, 1H), 2.18 – 1.96 (m, 3H), 1.84 (m, 4H), 1.79 – 1.48 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.33, 133.57, 125.02, 78.58, 26.89, 25.19, 19.74, 18.63. HRMS (ESI) calculated for C₈H₁₃NO₂Na(+):178.0844; Found: 178.0838. Melting Point: 50-52 °C.

benzyl 5-(acetamidooxy)-5,6-dihydropyridine-1(2H)-carboxylate (1p): 80% yield, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.39 (s, 1H), 7.29 (d, *J* = 28.5 Hz, 5H), 5.97 (d, *J* = 24.0 Hz, 2H), 5.20 (dd, *J* = 40.2, 12.8 Hz, 1H), 5.08 (d, *J* = 12.3 Hz, 1H), 4.53 – 3.94 (m, 3H), 3.74 (d, *J* = 18.9 Hz, 1H), 3.24 (dd, *J* = 96.4, 13.3 Hz, 1H), 2.18 – 1.53 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.12, 156.31, 136.32, 131.01, 128.59, 128.21, 127.86, 123.19, 74.47, 67.60, 44.02, 43.03, 19.74. HRMS (ESI) calculated for C₁₅H₁₈N₂O₄Na(+):313.1165; Found: 313.1158.

N-phenoxybenzamide (1q): 48% yield, white solid. ¹H NMR (500 MHz, DMSO) δ 12.49 (s, 1H), 7.95 – 7.85 (m, 2H), 7.60 (t, *J*=7.0, 1H), 7.53 (t, *J*=7.5, 2H), 7.35 (t, *J*=8.0, 2H), 7.11 (d, *J*=7.2, 2H), 7.04 (t, *J*=7.3, 1H). ¹³C NMR (126 MHz, DMSO) δ 165.53, 160.16, 132.49, 132.07, 129.95, 129.08, 127.77, 122.83, 113.57. HRMS (ESI) calculated for C₁₃H₁₂NO₂(+): 214.0869; Found: 214.0862. Melting Point: 150-152

°C.

3. Condition Screening

Table S1. Optimization of reaction conditions

Entry	[Ag]	Acid	Solvent	Yield[%] ^D
1	Ag_2CO_3	AcOH	CH ₃ CN	71
2	-	AcOH	CH ₃ CN	NR
3	Ag_2CO_3	PivOH	CH ₃ CN	98(93) ^c
4	AgOAc	PivOH	CH ₃ CN	89 ^c
5	AgSbF ₆	PivOH	CH ₃ CN	NR
6	$AgBF_4$	PivOH	CH ₃ CN	NR
7	Ag_2CO_3	PivOH	DCE	95
8	Ag_2CO_3	PivOH	DCM	97
9	Ag_2CO_3	PivOH	THF	96
10	Ag_2CO_3	PivOH	MeOH	87
11	Ag_2CO_3	PivOH	t-AmOH	94
12	Ag_2CO_3	PivOH	Dioxane	96
13ª	Ag_2CO_3	PivOH	CH ₃ CN	NR
14 ^e	-	AcOH	CH ₃ CN	40%
15 ^e	-	PivOH	CH ₃ CN	57%
16 ^e	-	-	CH ₃ CN	33%

^aConditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [Cp*RhCl₂]₂ (3 mol%), [Ag] (20 mol%), solvent (1 mL), rt, under N₂. ^bYield determined by NMR spectroscopy using 1,4-dimethoxybenzene as an internal standard. ^c isolated yield. ^dWithout [Cp*RhCl₂]₂ catalyst. ^eCp*Rh(OAc)₂ was used as the catalyst.

4. Experimental Procedure and Characterization of Products

N-Phenoxyacetamides substrates (1) (0.4 mmol), $[Cp*RhCl_2]_2$ (3 mol%), Ag₂CO₃ (10 mol%) and PivOH (2 equiv) were weighed into a 15ml pressure tube, to which was added unsaturated aldehyde (2 equiv) in CH₃CN (2 mL) in a glove box. The reaction vessel was stirred at room temperature for 18h. Then the reaction mixture was filtered, the solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc=1:1) to give the desired product.

Characterization Data

1-(3-hydroxy-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-yl)ethanone (3aa): 93% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃) \delta 7.15 (dd,** *J* **= 7.1, 5.5 Hz, 2H), 7.07 (dt,** *J* **= 14.0, 4.6 Hz, 2H), 6.01 (t,** *J* **= 7.5 Hz, 1H), 3.90 (m, 1H), 2.94 – 2.85 (m, 2H), 2.36 (dd,** *J* **= 7.8, 4.3 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (101 MHz, CDCl₃**) δ 174.98, 158.21, 131.52, 129.82, 126.92, 124.79, 117.92, 80.11, 30.08, 27.78, 21.77. **IR** (**cm**⁻¹):3334, 2940, 2359, 1653, 1386, 760. **HRMS (ESI)** calculated for C₁₁H₁₃NO₃Na(+): 230.0793; Found: 230.0787. **Melting Point:** 86-88 °C.

1-(3-hydroxy-4,5-dihydrobenzo[*f*][1,2]oxazepin-2(3*H*)-yl)propan-1-one (3ba): 86% yield, white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.11 (m, 2H), 7.10 – 7.03 (m, 2H), 6.00 (t, *J*=7.5, 1H), 3.68 – 3.51 (m, 1H), 3.00 – 2.81 (m, 2H), 2.79 – 2.67 (m, 1H), 2.48 – 2.40 (m, 1H), 2.41 – 2.29 (m, 2H), 1.12 (t, *J*=7.4, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 178.47, 158.29, 131.45, 129.76, 126.84, 124.67, 117.88, 80.39, 29.96, 27.78, 26.97, 7.95. HRMS (ESI) calculated for C₁₂H₁₅NO₃Na(+): 244.0950; Found: 244.0945. Melting Point: 93-95 °C.

Benzyl 3-hydroxy-4,5-dihydrobenzo[*f*][1,2]**oxazepine-2**(*3H*)-**carboxylate**(3**ca**): 40% yield, brick-red solid. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.32 (m, 5H), 7.17 – 7.09 (m, 3H), 7.09 – 7.02 (m, 1H), 5.81 (t, *J* = 7.2 Hz, 1H), 5.22 (q, *J* = 12.4 Hz, 2H), 3.62(m, 1H), 2.92 (dd, *J* = 9.1, 4.0 Hz, 2H), 2.41 – 2.29 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 158.95, 156.28, 135.53, 130.86, 130.24, 128.56, 128.29, 127.83, 126.85, 124.77, 118.86, 82.79, 68.15, 30.97, 27.82. IR (cm⁻¹):3429, 2941, 1701, 1485, 1319, 760. HRMS (ESI) calculated for C₁₇H₁₇NO₄Na(+): 322.1056; Found: 322.1047. Melting Point: 106-108 °C.

Benzyl 3-hydroxy-9-(3-oxopropyl)-4,5-dihydrobenzo[*f*][1,2]oxazepine-2(3*H*)-Carboxylate (3ca'): 46% yield, yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 7.41 – 7.29 (m,5H), 6.96 (s, 3H), 5.80 (dd, *J* = 8.6, 6.4 Hz, 1H), 5.24 (d, *J* = 11.9 Hz, 1H), 5.15 (d, *J* = 11.9 Hz, 1H), 3.69 (m, 1H), 3.28 – 3.13 (m, 1H), 3.00 – 2.75 (m, 3H), 2.63 (m, 2H), 2.41 – 2.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 202.39, 156.81, 156.37, 135.06, 130.65, 130.11, 129.36, 128.68(2C), 128.66, 127.65, 124.39, 83.35, 68.66, 44.34, 30.71, 28.21, 22.44. IR (cm⁻¹):3383, 2359, 1717, 1456, 1308, 754. HRMS (ESI) calculated for C₂₀H₂₁NO₅Na(+):378.1318; Found: 378.1312. Melting Point: 105-108 °C.

1-(3-hydroxy-9-methyl-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**)ethanone** (**3da**): 90% yield, yellow oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.05 – 6.95 (m, 1H), 6.91 (d, *J* = 6.7 Hz, 2H), 6.07 (t, 1H),4.77(m,1H), 2.94 – 2.82 (m, 1H), 2.73 (dd, *J* = 16.6, 5.8 Hz, 1H), 2.39 – 2.30 (m, 4H), 2.24 (dd, *J* = 23.1, 12.6 Hz, 1H), 2.20 (d, *J* = 10.0 Hz, 3H); ¹³**C NMR (126 MHz, CDCl₃)** δ 174.27, 156.56, 129.38, 129.04, 128.97, 126.41, 123.77, 79.98, 30.30, 28.22, 21.89, 16.11. **HRMS (ESI)** calculated for C₁₂H₁₅NO₃Na(+):244.0950;Found: 244.0944.

1-(3-hydroxy-8-methyl-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**ethanone(3ea):** 89% yield, white solid. ¹**H NMR (400 MHz, CDCl₃)** δ 6.99 (d, *J* = 7.6 Hz, 1H), 6.88 – 6.80 (m, 2H), 6.02 (t, *J* = 7.4 Hz, 1H), 4.71 (s, 1H), 2.92 – 2.73 (m, 2H), 2.38 – 2.25 (m, 5H), 2.22 (s, 3H); ¹³**C NMR (101 MHz, CDCl₃)** δ 174.83, 158.07, 136.98, 131.24, 126.60, 125.43, 118.30, 79.90, 30.32, 27.39, 21.78, 20.80. **HRMS (ESI)** calculated for C₁₂H₁₅NO₃Na(+): 244.0950; Found: 244.0943. **Melting Point:** 108-110 °C.

1-(3-hydroxy-7-methyl-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**)ethanone(3fa):** 70% yield, white solid. ¹**H NMR (400 MHz, CDCl₃)** δ 6.99 – 6.87 (m, 3H), 6.01 (t, *J* = 7.3 Hz, 1H), 4.61 (s, 1H), 2.91 – 2.77 (m, 2H), 2.36 – 2.29 (m, 2H), 2.28 (s, 3H), 2.21 (s, 3H); ¹³**C NMR (101 MHz, CDCl₃)** δ 174.83, 156.18, 134.32, 131.99, 129.55, 127.29, 117.72, 79.90, 30.19, 27.67, 21.70, 20.60. IR (cm⁻¹): 3360, 2920, 1663, 1493, 1387, 1198, 822. **HRMS (ESI)** calculated for C₁₂H₁₅NO₃Na(+):244.0950; Found: 244.0945. **Melting Point:** 110-112 °C.

1-(3-hydroxy-7,8-dimethyl-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**)ethanone**(**3ga):** 83% yield, brown solid. ¹**H NMR** (**500 MHz**, **CD**₂**Cl**₂) δ 6.91 (d, *J* = 5.3 Hz, 1H), 6.86 (s, 1H), 5.98 (d, *J* = 6.1 Hz, 1H), 4.23(m,1H), 2.87 – 2.74 (m, 2H), 2.31 – 2.26 (m, 2H), 2.26 – 2.20 (m, 9H); ¹³**C NMR** (**126 MHz**, **CDCl**₃) δ 174.80, 156.21, 135.18, 132.86, 132.35, 126.67, 118.78, 80.12, 30.35, 27.21, 21.66, 19.23, 18.82. **IR** (**cm**⁻¹):3375, 2934, 1674, 1504, 1260, 1028, 800. **HRMS** (**ESI**) calculated for C₁₃H₁₇NO₃Na(+):258.1106; Found: 258.1100. **Melting Point:** 93-97 °C.

1-(3-hydroxy-8-methoxy-4,5-dihydrobenzo[*f*][1,2]oxazepin-2(3*H*)-yl)ethanone(3h a): 40% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.4 Hz, 1H), 6.64 (d, *J* = 2.6 Hz, 1H), 6.60 (d, *J* = 2.1 Hz, 1H), 6.05 – 5.92 (m, 1H), 3.79 (s, 3H), 2.81 (dd, *J* = 8.8, 3.6 Hz, 2H), 2.35 – 2.26 (m, 2H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.85, 158.79, 158.43, 131.87, 121.55, 110.04, 103.93, 80.20, 55.54, 30.35, 27.00, 21.72. IR (cm⁻¹):3235, 2951, 1684, 1506, 1260, 1134, 1034. HRMS (ESI) calculated for C₁₂H₁₅NO₄Na(+):260.0899; Found: 260.0894.

1-(3-hydroxy-6-methoxy-4,5-dihydrobenzo[*f*][1,2]oxazepin-2(3*H*)-yl)ethanone(3h a'): 20% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (t, *J* = 8.2 Hz, 1H), 6.68 (dd, *J* = 11.8, 8.2 Hz, 2H), 5.97 (t, *J* = 7.5 Hz, 1H), 4.10(m,1H), 3.82 (s, 3H), 3.23 – 3.08 (m, 1H), 2.57 – 2.40 (m, 1H), 2.37 – 2.27 (m, 2H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.92, 159.39, 158.60, 126.73, 118.59, 110.59, 106.83, 80.65, 55.81, 29.38, 21.73, 20.93. **IR (cm⁻¹):**2920, 1659, 1466, 1267, 1080, 750. **HRMS** (ESI) calculated for C₁₂H₁₅NO₄Na(+):260.0899; Found: 260.0894. **Melting Point:** 160-162 °C.

1-(8-fluoro-3-hydroxy-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2**(*3H*)-**y**]**)ethanone**(**3ia**): 92% yield, white solid. ¹**H NMR** (**400 MHz, CD**₂**Cl**₂) δ 7.17 (dd, *J* = 14.6, 7.9 Hz, 1H), 6.99 – 6.80 (m, 2H), 5.97 (s, 1H), 4.00 (d, *J* = 4.2 Hz, 1H), 3.11 (dd, *J* = 17.5, 6.3 Hz, 1H), 2.70 – 2.55 (m, 1H), 2.45 – 2.21 (m, 2H), 2.26 – 2.15 (s, 3H). ¹³C NMR (**101 MHz, CD**₂**Cl**₂) δ 174.77, 161.42 (J = 246.2), 159.63(J= 6.1), 127.11(J= 10.4), 118.30(J= 18.9), 113.55, 111.54(J= 23.4), 80.37, 29.32, 21.55, 19.98(J= 5.7). IR (cm⁻¹):3374, 2359, 1684, 1462, 1024. **HRMS (ESI)** calculated for C₁₁H₁₂NO₃FNa(+): 248.0699; Found: 248.0693. **Melting Point:** 116-117 °C.

1-(8-bromo-3-hydroxy-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**ethanone(3ja):** 89% yield, colorless oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.18 (t, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 8.4 Hz, 1H), 5.98 (s, 1H), 2.80 (dd, *J* = 8.8, 3.5 Hz, 2H), 2.39 – 2.25 (m, 2H), 2.26 – 2.14 (s, 3H); ¹³**C NMR (126 MHz, CDCl₃)** δ 174.97, 158.69, 132.67, 128.99, 127.84, 121.05, 119.39, 80.22, 29.93, 27.44, 21.75. **HRMS (ESI)** calculated for C₁₁H₁₂NO₃NaBr(+):307.9899; Found: 307.9894.

1-(7-bromo-3-hydroxy-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**)ethanone(3ka):** 88% yield, yellow solid. ¹**H NMR (400 MHz, CDCl₃)** δ 7.25 (dd, *J* = 9.3, 2.2 Hz, 2H), 6.91 (d, *J* = 8.9 Hz, 1H), 5.98 (t, *J* = 6.6 Hz, 1H), 4.63 (m, 1H), 2.91 – 2.74 (m, 2H), 2.42 – 2.22 (m, 2H), 2.18 (s, 3H); ¹³C NMR (**101 MHz, CDCl₃**) δ 174.92,

157.34, 134.20, 132.16, 129.82, 119.54, 117.43, 79.90, 29.85, 27.59, 21.76. **HRMS** (**ESI**) calculated for C₁₁H₁₂NO₃NaBr(+): 307.9899; Found: 307.9893. **Melting Point:** 105-107 °C.

1-(7-chloro-3-hydroxy-4,5-dihydrobenzo[*f*][1,2]oxazepin-2(3*H*)-yl)ethanone(3la): 90% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, J=2.2, 2H), 6.96 (d, J=8.7, 1H), 5.98 (s, 1H), 4.70 (m, 1H), 2.82 (d, J=7.7, 2H), 2.30 (t, J=6.8, 2H), 2.18 (s, 3H). **13C NMR (101 MHz, CDCl3)** δ 174.87, 156.83, 131.77, 131.23, 129.78, 126.81, 119.16, 79.89, 29.86, 27.64, 21.72.**IR (cm⁻¹):**3435, 2359, 1663, 1481, 1379, 1028, 822. **HRMS (ESI)** calculated for C₁₁H₁₂NO₃NaCl(+):264.0404; Found: 264.0397. **Melting Point:** 113-114 °C.

1-(3-hydroxy-7-phenyl-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**ethanone(3ma**): 66% yield, white solid. ¹**H NMR (400 MHz, CDCl₃)** δ 7.54 (dd, *J*=5.2, 3.4, 2H), 7.44 (dd, *J*=10.3, 4.8, 2H), 7.41 – 7.31 (m, 3H), 7.12 (d, *J*=8.2, 1H), 6.06 (d, *J*=4.2, 1H), 4.38 (d, *J*=4.6, 1H), 3.02 – 2.90 (m, 2H), 2.39 (td, *J*=7.5, 3.0, 2H), 2.27 (s, 3H); ¹³**C NMR (101 MHz, CDCl₃)** δ 175.01, 157.73, 140.15, 138.01, 130.28, 130.12, 128.83, 127.36, 127.00, 125.61, 118.30, 80.13, 30.11, 27.97, 21.81. **IR (cm⁻¹):**2922, 2359, 1337, 1109, 669. **HRMS (ESI)** calculated for C₁₇H₁₇NO₃Na(+):306.1106; Found: 306.1103. **Melting Point:**85-86 °C.

3-(2-acetyl-3-hydroxy-7-phenyl-2,3,4,5-tetrahydrobenzo[*f*][1,2]oxazepin-9-yl)pro panal(3ma'): 33% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.57 – 7.47 (m, 2H), 7.43 (dd, *J*=10.3, 4.8, 2H), 7.35 (dd, *J*=5.7, 1.5, 1H), 7.24 (d, *J*=1.9, 1H), 7.20 (s, 1H), 6.07 (s, 1H), 4.00 (d, *J*=2.9, 1H), 3.42 – 3.25 (m, 1H), 3.11 –

2.74 (m, 5H), 2.50 – 2.37 (m, 1H), 2.34 – 2.18 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 201.32, 173.71, 155.76, 140.06, 137.31, 132.13, 132.05, 129.78, 128.76, 127.30, 126.90, 126.50, 80.43, 44.37, 30.54, 28.50, 22.72, 21.88. HRMS (ESI) calculated for C₂₀H₂₁NO₄Na(+):362.1369; Found: 362.1366. Melting Point: 88-89 °C.

Methyl2-acetyl-3-hydroxy-2,3,4,5-tetrahydrobenzo[*f*][1,2]oxazepine-7-carboxylat e(3na): 70% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ = 7.81 (dd, *J*=4.3, 2.4, 2H), 7.04 (d, *J*=8.9, 1H), 6.01 (s, 1H), 4.71 (m, 1H), 3.86 (s, 3H), 2.87 (t, *J*=5.0, 2H), 2.51 – 2.31 (m, 1H), 2.31 – 2.20 (m, 1H), 2.16 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.79, 166.27, 161.62, 133.38, 129.83, 128.75, 126.54, 117.78, 79.85, 52.19, 29.98, 27.82, 21.73. **IR** (cm⁻¹):3374, 2357, 1715, 1285, 1115, 1032. **HRMS** (ESI) calculated for C₁₃H₁₅NO₅Na(+): 288.0848; Found: 288.0840. **Melting Point:** 140-142°C.

1-(3-hydroxy-4,5,7,8,9,9a-hexahydrobenzo[*f*][**1,2**]**oxazepin-2**(*3H*)-**y**]**ethanone(3o a):** 81% yield, yellow solid. ¹**H NMR (400 MHz, CDCl₃)** δ 5.75 (dd, *J* = 9.5, 5.8 Hz, 1H), 5.53 (s, 1H), 4.24 – 4.14 (m, 1H), 4.03 (s, 1H), 2.27 (dd, *J* = 14.1, 7.9 Hz, 1H), 2.18 (s, 3H), 2.13 – 1.88 (m, 5H), 1.85 – 1.73 (m, 2H), 1.64 (m, 1H), 1.56 – 1.46 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.88, 137.48, 126.36, 85.88, 80.54, 31.47, 30.85, 28.07, 24.99, 21.16, 20.79. IR (cm⁻¹):3445, 2930, 2359, 1639, 1393, 1076, 1024. **HRMS (ESI)** calculated for C₁₁H₁₇NO₃Na(+):234.1106; Found: 234.1100. **Melting Point:** 150-151 °C.

Benzyl 2-acetyl-3-hydroxy-2,3,4,5,9,9a-hexahydropyrido[**4,3-***f*][**1,2**]**oxazepine-8** (*7H*)-**carboxylate** (**3pa**): 65% yield, colorless oil. ¹H NMR (**500 MHz, MeOD**) δ 7.62 – 7.13 (m, 5H), 5.75 (m, 1H), 5.58 (m, 1H), 5.15 (d, J=8.9, 2H), 4.30 (d, J=32.8, 2H), 4.11 (d, J=18.5, 1H), 3.92 (d, J=15.9, 1H), 3.72 (m, 1H), 3.09 (m, 1H), 2.41 (dd, J=14.5, 7.9, 1H), 2.34 – 2.03 (m, 5H), 1.88 – 1.69 (m, 1H). **13C NMR (101 MHz, CDCl₃)** δ 175.28, 155.24, 136.32, 128.56, 128.23, 128.08, 128.00, 121.75, 80.71, 80.66, 67.51, 43.16, 30.85, 29.94, 28.07, 21.18. **HRMS** (**ESI**) calculated for $C_{18}H_{22}N_2O_5Na(+)$:369.1427; Found: 369.1420.

1-(5-ethyl-3-hydroxy-4,5-dihydrobenzo[*f*][1,2]oxazepin-2(3*H*)-yl)ethanone(3ab): 96% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (ddd, *J* = 6.9, 5.1, 2.4 Hz, 2H), 7.08 (ddd, *J* = 15.7, 10.6, 4.5 Hz, 2H), 6.08 (dd, *J* = 9.6, 5.9 Hz, 1H), 4.56 – 4.08 (m, 1H), 2.88 (d, *J* = 7.1 Hz, 1H), 2.57 – 2.31 (m, 2H), 2.23 (d, *J* = 2.7 Hz, 3H), 1.70 – 1.56 (m, 2H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.28, 157.86, 134.14, 132.34, 126.81, 124.75, 118.10, 79.94, 41.42, 31.74, 28.23, 21.79, 12.51. HRMS (ESI) calculated for C₁₃H₁₇NO₃Na(+):258.1106; Found: 258.1098.

1-(3-hydroxy-5-propyl-4,5-dihydrobenzo[*f*][**1,2**]**oxazepin-2(3***H***)-y**]**)ethanone(3ac):** 88% yield, pale yellow solid. ¹**H NMR (500 MHz, CD₂Cl₂)** δ = 7.18 (dd, *J*=11.3, 4.3, 2H), 7.11 (ddd, *J*=16.9, 11.0, 4.5, 2H), 6.08 (dd, *J*=8.8, 6.0, 1H), 4.50 (m, 1H), 3.14 – 2.98 (m, 1H), 2.51 – 2.32 (m, 2H), 2.23 (s, 3H), 1.74 – 1.52 (m, 3H), 1.50 – 1.42 (m, 1H), 0.99 (t, *J*=6.9, 3H). ¹³**C NMR (126 MHz, CD₂Cl₂)** δ 173.83, 158.04, 134.53, 132.17, 126.65, 124.64, 118.03, 76.72, 39.33, 37.43, 32.45, 21.48, 20.74, 13.77. **IR** (**cm**⁻¹): 3381, 2955, 2357, 1645, 1485, 1379, 1192, 766. **HRMS (ESI)** calculated for C₁₄H₁₉NO₃Na(+):272.1263; Found: 272.1254. **Melting Point:** 112-114 °C.

5. Characterization of Products 4 and 5

N-(2,6-bis(3-oxopentyl)phenoxy)acetamide (4): 48% yield, white solid. ¹H NMR

(400 MHz, MeOD) δ 7.08 (m, 3H), 2.96 (t, J=7.6, 4H), 2.80 (t, J=7.6, 4H), 2.47 (q, J=7.3, 4H), 1.92 (s, 3H), 1.01 (t, J=7.3, 6H). ¹³C NMR (126 MHz, MeOD) δ 212.26, 167.64, 153.88, 134.94, 128.20, 126.09, 42.49, 35.18, 24.05, 17.94, 6.64. IR (cm^{-1}) :3215, 2359, 1709, 1454, 669. **HRMS** (ESI) calculated for C₁₈H₂₅NO₄Na(+): 342.1682; Found: 342.1677. Melting Point: 87-89 °C.

3-hydroxy-2-phenoxy-2,3,4,5-tetrahydro-1H-benzo[c]azepin-1-one (5): 80% yield, white solid. ¹H NMR (400 MHz, CD_2Cl_2) δ 8.07 (dd, J=7.7, 1.0, 1H), 7.57 (td, J=7.5, 1.2, 1H), 7.42 (dd, J=11.0, 4.1, 1H), 7.38 (d, J=7.5, 1H), 7.32 (dd, J=8.5, 7.5, 2H), 7.09 (t, J=7.3, 1H), 7.01 (d, J=7.9, 2H), 5.58 (dd, J=7.5, 2.3, 1H), 5.43 (s, 1H), 3.38 - 3.16 (m, 1H), 2.97 (dt, J=14.1, 4.4, 1H), 2.70 (ddt, J=9.6, 7.6, 4.9, 1H), 2.19 (m, 1H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 170.75, 158.90, 141.04, 132.61, 132.52, 130.82, 129.55, 129.15, 126.90, 122.90, 113.56, 86.54, 36.96, 30.86. IR (cm⁻¹):3391, 2940, 2359, 1647, 1487, 1202, 752. **HRMS (ESI)** calculated for C₁₆H₁₅NO₃Na(+): 292.0950; Found: 292.0945. Melting Point: 107-108 °C.

6. X-ray Crystallographic Data

Figure S1.

CCDC 1003334

Table S2. Crystal data and structure refinement for b4.

Identification code	shelx	
Empirical formula	C11 H13 N O3	
Formula weight	207.22	
Temperature	293(2) K	
Wavelength	1.54187 Å	
Crystal system	Orthorhombic	
Space group	P c a 21	
Unit cell dimensions	a = 13.1081(9) Å	α= 90 °.
	b = 9.6334(3) Å	β= 90 °.
	c = 8.0059(3) Å	$\gamma = 90$ °.

Volume	1010.95(9) Å ³
Z	4
Density (calculated)	1.362 Mg/m ³
Absorption coefficient	0.824 mm ⁻¹
F(000)	440
Crystal size	0.40 x 0.20 x 0.10 mm ³
Theta range for data collection	6.755 to 68.143 °.
Index ranges	-14<=h<=15, -11<=k<=10, -9<=l<=8
Reflections collected	5343
Independent reflections	1608 [R(int) = 0.0352]
Completeness to theta = 67.687 $^{\circ}$	97.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.921 and 0.775
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1608 / 2 / 140
Goodness-of-fit on F ²	1.035
Final R indices [I>2sigma(I)]	R1 = 0.0303, $wR2 = 0.0708$
R indices (all data)	R1 = 0.0386, $wR2 = 0.0788$
Absolute structure parameter	0.01(17)
Extinction coefficient	n/a
Largest diff. peak and hole	0.115 and -0.129 e.Å ⁻³

Table S3. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for b4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
O(1)	1762(1)	2641(2)	8567(2)	39(1)
O(2)	2564(2)	37(2)	11280(3)	56(1)
O(3)	674(2)	-103(2)	8445(3)	63(1)
N(1)	1679(2)	1617(2)	9820(3)	39(1)
C(1)	1214(2)	6648(3)	10234(5)	57(1)
C(2)	2013(2)	6359(3)	9174(5)	54(1)
C(3)	2186(2)	5009(3)	8661(4)	46(1)
C(4)	1544(2)	3972(2)	9202(3)	37(1)
C(5)	2580(2)	1060(3)	10371(4)	41(1)
C(6)	3533(2)	1782(3)	9841(4)	52(1)
C(7)	577(2)	5592(3)	10740(4)	51(1)

C(8)	707(2)	4215(3)	10233(3)	40(1)
C(9)	719(2)	852(3)	9771(4)	41(1)
C(10)	-152(2)	1874(3)	9627(4)	47(1)
C(11)	-41(2)	3117(3)	10793(4)	50(1)

Table S4. Bond lengths [Å] and angles $[\degree]$ for b4.

O(1)-C(4)	1.409(3)
O(1)-N(1)	1.411(3)
O(2)-C(5)	1.225(3)
O(3)-C(9)	1.405(4)
O(3)-H(3O)	0.81(2)
N(1)-C(5)	1.370(3)
N(1)-C(9)	1.458(3)
C(1)-C(2)	1.375(5)
C(1)-C(7)	1.378(4)
C(1)-H(1)	0.9300
C(2)-C(3)	1.382(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.376(4)
C(3)-H(3)	0.9300
C(4)-C(8)	1.393(3)
C(5)-C(6)	1.491(4)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-C(8)	1.397(4)
C(7)-H(7)	0.9300
C(8)-C(11)	1.511(4)
C(9)-C(10)	1.512(3)
C(9)-H(9)	0.9800
C(10)-C(11)	1.525(4)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(4)-O(1)-N(1)	111.35(19)
C(9)-O(3)-H(3O)	110(3)

C(5)-N(1)-O(1)	115.8(2)
C(5)-N(1)-C(9)	123.7(2)
O(1)-N(1)-C(9)	113.6(2)
C(2)-C(1)-C(7)	119.6(3)
C(2)-C(1)-H(1)	120.2
C(7)-C(1)-H(1)	120.2
C(1)-C(2)-C(3)	119.9(3)
C(1)-C(2)-H(2)	120.1
C(3)-C(2)-H(2)	120.1
C(4)-C(3)-C(2)	119.3(3)
C(4)-C(3)-H(3)	120.3
C(2)-C(3)-H(3)	120.3
C(3)-C(4)-C(8)	123.1(2)
C(3)-C(4)-O(1)	115.1(2)
C(8)-C(4)-O(1)	121.8(2)
O(2)-C(5)-N(1)	119.4(2)
O(2)-C(5)-C(6)	123.9(3)
N(1)-C(5)-C(6)	116.6(2)
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(1)-C(7)-C(8)	122.7(3)
C(1)-C(7)-H(7)	118.6
C(8)-C(7)-H(7)	118.6
C(4)-C(8)-C(7)	115.4(2)
C(4)-C(8)-C(11)	124.7(2)
C(7)-C(8)-C(11)	119.9(3)
O(3)-C(9)-N(1)	112.8(2)
O(3)-C(9)-C(10)	109.7(2)
N(1)-C(9)-C(10)	108.91(19)
O(3)-C(9)-H(9)	108.5
N(1)-C(9)-H(9)	108.5
C(10)-C(9)-H(9)	108.5
C(9)-C(10)-C(11)	113.1(2)
C(9)-C(10)-H(10A)	109.0

C(11)-C(10)-H(10A)	109.0
C(9)-C(10)-H(10B)	109.0
C(11)-C(10)-H(10B)	109.0
H(10A)-C(10)-H(10B)	107.8
C(8)-C(11)-C(10)	115.5(2)
C(8)-C(11)-H(11A)	108.4
C(10)-C(11)-H(11A)	108.4
C(8)-C(11)-H(11B)	108.4
C(10)-C(11)-H(11B)	108.4
H(11A)-C(11)-H(11B)	107.5

Table S5. Anisotropic displacement parameters (Å²x 10³)for b4. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	40(1)	39(1)	38(1)	0(1)	6(1)	-5(1)
O(2)	48(1)	49(1)	71(2)	3(1)	-5(1)	8(1)
O(3)	56(1)	65(1)	66(2)	-17(1)	10(1)	-26(1)
N(1)	31(1)	39(1)	45(1)	4(1)	0(1)	-2(1)
C(1)	66(2)	42(2)	64(2)	-1(2)	-6(2)	10(2)
C(2)	55(2)	43(1)	64(2)	8(2)	-6(2)	-6(1)
C(3)	40(1)	50(1)	47(2)	5(1)	3(1)	-4(1)
C(4)	36(1)	39(1)	36(1)	-1(1)	-4(1)	1(1)
C(5)	35(1)	41(1)	45(2)	-11(1)	-1(1)	5(1)
C(6)	33(1)	72(2)	51(2)	-6(2)	3(1)	-2(1)
C(7)	51(2)	54(2)	50(2)	-1(2)	3(2)	16(1)
C(8)	35(1)	46(1)	39(2)	4(1)	-2(1)	5(1)
C(9)	34(1)	45(1)	44(2)	6(1)	3(1)	-10(1)
C(10)	31(1)	55(2)	56(2)	13(2)	-2(1)	-6(1)
C(11)	34(1)	59(2)	55(2)	7(2)	10(1)	7(1)

Table S6. Hydrogen bonds for b4 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

#1 -x+1/2,y,z-1/2

Figure S2.

CCDC 1003335

Table S7. Crystal data and structure refinement for	r b15.		
Identification code	shelx		
Empirical formula	C11 H17 N O3		
Formula weight	211.25		
Temperature	293(2) K		
Wavelength	1.54187 Å		
Crystal system	Monoclinic		
Space group	P 21/c		
Unit cell dimensions	a = 11.9758(10) Å	α= 90 °.	
	b = 6.7000(5) Å	β=110.070(8) °.	
	c = 14.3713(11) Å	$\gamma = 90$ °.	
Volume	1083.10(16) Å ³		
Z	4		
Density (calculated)	1.296 Mg/m ³		
Absorption coefficient	0.770 mm ⁻¹		
F(000)	456		
Crystal size	$0.320 \text{ x } 0.140 \text{ x } 0.100 \text{ mm}^3$		
Theta range for data collection	6.559 to 59.966 °.		
Index ranges	-13<=h<=11, -7<=k<=7, -15<=	=l<=16	
Reflections collected	5306		
Independent reflections	1519 [R(int) = 0.0676]		
Completeness to theta = 67.687 $^{\circ}$	77.7 %		
Absorption correction	Semi-empirical from equivalent	its	
Max. and min. transmission	0.926 and 0.626		

Refinement method	Full-matrix least-squares on ${\sf F}^2$
Data / restraints / parameters	1519 / 0 / 138
Goodness-of-fit on F ²	1.105
Final R indices [I>2sigma(I)]	R1 = 0.0996, wR2 = 0.2607
R indices (all data)	R1 = 0.1146, wR2 = 0.2680
Extinction coefficient	0.029(4)
Largest diff. peak and hole	0.611 and -0.379 e.Å ⁻³

Table S8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for b15. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
O(1)	2344(3)	2120(5)	798(2)	40(1)
O(2)	3116(4)	3328(6)	-972(3)	60(1)
O(3)	5169(4)	3992(7)	1154(3)	70(1)
N(4)	3471(4)	2293(7)	694(3)	41(1)
C(5)	4262(5)	3564(8)	1320(4)	46(1)
C(6)	2257(4)	286(8)	1323(4)	42(1)
C(7)	1221(5)	629(9)	1666(4)	51(2)
C(8)	2777(6)	-51(8)	-693(4)	53(2)
C(9)	2918(6)	-1726(8)	68(5)	55(2)
C(10)	3519(5)	1769(8)	-278(4)	47(1)
C(11)	4002(6)	4304(9)	2200(4)	56(2)
C(12)	2120(5)	-1520(8)	673(4)	44(1)
C(13)	923(6)	-1323(10)	2077(5)	65(2)
C(14)	1339(5)	-2935(9)	673(4)	54(2)
C(15)	559(6)	-2933(10)	1275(5)	67(2)

Table S9. Bond lengths [Å] and angles [] for b15.

O(1)-N(4)	1.412(5)
O(1)-C(6)	1.464(6)
O(2)-C(10)	1.411(7)
O(2)-H(2)	0.8200
O(3)-C(5)	1.223(7)
N(4)-C(5)	1.359(7)
N(4)-C(10)	1.461(7)
C(5)-C(11)	1.487(8)

C(6)-C(12)	1.502(7)
C(6)-C(7)	1.502(7)
C(6)-H(6)	0.9800
C(7)-C(13)	1.527(8)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-C(10)	1.506(8)
C(8)-C(9)	1.536(8)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(12)	1.503(8)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-H(10)	0.9800
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-C(14)	1.332(8)
C(13)-C(15)	1.529(10)
C(13)-H(13A)	0.9700
C(13)-H(13B)	0.9700
C(14)-C(15)	1.474(9)
C(14)-H(14)	0.9300
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
N(4)-O(1)-C(6)	111.3(3)
C(10)-O(2)-H(2)	109.5
C(5)-N(4)-O(1)	117.1(4)
C(5)-N(4)-C(10)	122.4(4)
O(1)-N(4)-C(10)	115.7(4)
O(3)-C(5)-N(4)	118.8(5)
O(3)-C(5)-C(11)	123.1(5)
N(4)-C(5)-C(11)	118.0(5)
O(1)-C(6)-C(12)	111.6(4)
O(1)-C(6)-C(7)	104.7(4)
C(12)-C(6)-C(7)	113.6(4)
O(1)-C(6)-H(6)	108.9

C(12)-C(6)-H(6)	108.9
C(7)-C(6)-H(6)	108.9
C(6)-C(7)-C(13)	109.0(5)
C(6)-C(7)-H(7A)	109.9
C(13)-C(7)-H(7A)	109.9
C(6)-C(7)-H(7B)	109.9
C(13)-C(7)-H(7B)	109.9
H(7A)-C(7)-H(7B)	108.3
C(10)-C(8)-C(9)	113.8(5)
C(10)-C(8)-H(8A)	108.8
C(9)-C(8)-H(8A)	108.8
C(10)-C(8)-H(8B)	108.8
C(9)-C(8)-H(8B)	108.8
H(8A)-C(8)-H(8B)	107.7
C(12)-C(9)-C(8)	114.1(5)
C(12)-C(9)-H(9A)	108.7
C(8)-C(9)-H(9A)	108.7
C(12)-C(9)-H(9B)	108.7
C(8)-C(9)-H(9B)	108.7
H(9A)-C(9)-H(9B)	107.6
O(2)-C(10)-N(4)	112.5(4)
O(2)-C(10)-C(8)	107.9(4)
N(4)-C(10)-C(8)	111.2(4)
O(2)-C(10)-H(10)	108.4
N(4)-C(10)-H(10)	108.4
C(8)-C(10)-H(10)	108.4
C(5)-C(11)-H(11A)	109.5
C(5)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(5)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(14)-C(12)-C(6)	120.0(5)
C(14)-C(12)-C(9)	121.4(5)
C(6)-C(12)-C(9)	118.5(5)
C(7)-C(13)-C(15)	110.9(5)
C(7)-C(13)-H(13A)	109.5
C(15)-C(13)-H(13A)	109.5

C(7)-C(13)-H(13B)	109.5
C(15)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	108.1
C(12)-C(14)-C(15)	125.9(6)
C(12)-C(14)-H(14)	117.1
C(15)-C(14)-H(14)	117.1
C(14)-C(15)-C(13)	111.7(5)
C(14)-C(15)-H(15A)	109.3
C(13)-C(15)-H(15A)	109.3
C(14)-C(15)-H(15B)	109.3
C(13)-C(15)-H(15B)	109.3
H(15A)-C(15)-H(15B)	108.0

Table S10.Anisotropic displacement parameters (Ųx 10³)for b15.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	45(2)	31(2)	46(2)	0(2)	20(2)	-1(2)
O(2)	77(3)	47(2)	55(2)	6(2)	22(2)	-10(2)
O(3)	64(3)	74(3)	74(3)	5(2)	27(2)	-22(2)
N(4)	49(2)	41(3)	40(2)	-5(2)	22(2)	-8(2)
C(5)	50(3)	39(3)	47(3)	7(2)	15(2)	-5(3)
C(6)	43(3)	35(3)	46(3)	3(2)	14(2)	2(2)
C(7)	54(3)	51(3)	59(3)	-1(3)	31(3)	0(3)
C(8)	76(4)	43(3)	52(3)	-11(3)	38(3)	-7(3)
C(9)	70(4)	38(3)	67(4)	-6(3)	36(3)	4(3)
C(10)	51(3)	45(3)	52(3)	-1(3)	26(3)	3(3)
C(11)	67(4)	50(3)	47(3)	-7(3)	14(3)	-15(3)
C(12)	49(3)	30(3)	52(3)	7(2)	19(2)	5(2)
C(13)	66(4)	72(4)	65(4)	9(3)	35(3)	-8(3)
C(14)	63(4)	37(3)	63(4)	-3(3)	22(3)	-6(3)
C(15)	68(4)	53(4)	86(5)	14(4)	33(4)	-14(3)

Table S11. Hydrogen bonds for b15 [Å and $\$].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(2)-H(2)O(3)#1	0.82	2.16	2.807(6)	135.3

#1 -x+1,-y+1,-z

Figure S3.

CCDC 1003336

or c1.		
shelx		
C18 H24 N O4		
318.38		
293(2) K		
1.54187 Å		
Monoclinic		
Рс		
a = 12.7071(2) Å	$\alpha = 90$ °.	
$b=4.847~\text{\AA}$	β=98.347(7)°.	
c = 14.6978(10) Å	$\gamma = 90$ °.	
895.67(6) Å ³		
2		
1.180 Mg/m ³		
0.675 mm ⁻¹		
342		
$0.20 \ x \ 0.20 \ x \ 0.20 \ mm^3$		
6.576 to 68.144 °.		
-15<=h<=15, -5<=k<=5, -17<=l<=17		
	br c1. shelx C18 H24 N O4 318.38 293(2) K 1.54187 Å Monoclinic P c a = 12.7071(2) Å b = 4.847 Å c = 14.6978(10) Å 895.67(6) Å ³ 2 1.180 Mg/m ³ 0.675 mm ⁻¹ 342 0.20 x 0.20 x 0.20 mm ³ 6.576 to 68.144 °. -15<=h<=15, -5<=k<=5, -17<=	

Reflections collected	10812
Independent reflections	3101 [R(int) = 0.0314]
Completeness to theta = 67.687 $^{\circ}$	98.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.859 and 0.737
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3101 / 2 / 211
Goodness-of-fit on F ²	1.071
Final R indices [I>2sigma(I)]	R1 = 0.0470, wR2 = 0.1179
R indices (all data)	R1 = 0.0509, wR2 = 0.1291
Absolute structure parameter	0.52(6)
Extinction coefficient	n/a
Largest diff. peak and hole	0.260 and -0.261 e.Å ⁻³

Table S13. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for c1. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	6709(2)	9315(5)	658(2)	72(1)
O(2)	4096(2)	3333(4)	1713(1)	45(1)
O(3)	2708(2)	-195(5)	773(2)	63(1)
O(4)	1036(3)	-1810(6)	2439(3)	90(1)
N(1)	3046(2)	4102(5)	1353(2)	44(1)
C(1)	8249(7)	6705(16)	-189(6)	138(3)
C(2)	7819(4)	5417(9)	599(3)	74(1)
C(3)	6984(2)	7087(6)	970(2)	51(1)
C(4)	6490(2)	5816(6)	1746(2)	47(1)
C(5)	5612(2)	7571(7)	2049(2)	50(1)
C(6)	5112(2)	6227(6)	2815(2)	44(1)
C(7)	4350(2)	4184(6)	2637(2)	40(1)
C(8)	3871(2)	2893(6)	3326(2)	42(1)
C(9)	3016(2)	741(6)	3131(2)	46(1)
C(10)	1937(3)	1986(7)	3220(2)	55(1)
C(11)	985(3)	321(7)	2866(2)	54(1)
C(12)	-62(3)	1461(12)	3041(5)	92(2)
C(13)	-1023(4)	-148(13)	2695(5)	103(2)
C(15)	2455(2)	2212(6)	846(2)	47(1)

C(16)	1401(3)	3342(9)	398(3)	71(1)
C(18)	4198(3)	3790(7)	4224(2)	53(1)
C(19)	4943(3)	5819(8)	4421(2)	58(1)
C(20)	5404(3)	7027(7)	3727(2)	55(1)

Table S14. Bond lengths [Å] and angles [] for c1.

O(1)-C(3)	1.205(4)
O(2)-N(1)	1.412(3)
O(2)-C(7)	1.411(3)
O(3)-C(15)	1.219(4)
O(4)-C(11)	1.215(5)
N(1)-C(15)	1.340(4)
C(1)-C(2)	1.488(7)
C(1)-H(1A)	0.9600
C(1)-H(1B)	0.9600
C(1)-H(1C)	0.9600
C(2)-C(3)	1.498(5)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.512(4)
C(4)-C(5)	1.519(4)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.517(4)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(6)-C(7)	1.383(4)
C(6)-C(20)	1.394(4)
C(7)-C(8)	1.402(4)
C(8)-C(18)	1.395(4)
C(8)-C(9)	1.503(4)
C(9)-C(10)	1.521(4)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.484(5)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700

C(11)-C(12)	1.496(5)
C(12)-C(13)	1.476(7)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(15)-C(16)	1.507(5)
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(18)-C(19)	1.366(5)
C(18)-H(18)	0.9300
C(19)-C(20)	1.378(5)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
N(1)-O(2)-C(7)	110.87(18)
C(15)-N(1)-O(2)	116.8(2)
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(1)-C(2)-C(3)	114.6(4)
C(1)-C(2)-H(2A)	108.6
C(3)-C(2)-H(2A)	108.6
C(1)-C(2)-H(2B)	108.6
C(3)-C(2)-H(2B)	108.6
H(2A)-C(2)-H(2B)	107.6
O(1)-C(3)-C(2)	121.9(3)
O(1)-C(3)-C(4)	121.5(3)
C(2)-C(3)-C(4)	116.6(3)
C(3)-C(4)-C(5)	113.3(2)
C(3)-C(4)-H(4A)	108.9
C(5)-C(4)-H(4A)	108.9
C(3)-C(4)-H(4B)	108.9

C(5)-C(4)-H(4B)	108.9
H(4A)-C(4)-H(4B)	107.7
C(4)-C(5)-C(6)	112.4(2)
C(4)-C(5)-H(5A)	109.1
C(6)-C(5)-H(5A)	109.1
C(4)-C(5)-H(5B)	109.1
C(6)-C(5)-H(5B)	109.1
H(5A)-C(5)-H(5B)	107.9
C(7)-C(6)-C(20)	117.5(3)
C(7)-C(6)-C(5)	121.7(2)
C(20)-C(6)-C(5)	120.8(3)
C(6)-C(7)-C(8)	123.3(2)
C(6)-C(7)-O(2)	116.5(2)
C(8)-C(7)-O(2)	120.1(2)
C(18)-C(8)-C(7)	116.3(3)
C(18)-C(8)-C(9)	120.3(2)
C(7)-C(8)-C(9)	123.4(2)
C(8)-C(9)-C(10)	110.1(2)
C(8)-C(9)-H(9A)	109.6
C(10)-C(9)-H(9A)	109.6
C(8)-C(9)-H(9B)	109.6
C(10)-C(9)-H(9B)	109.6
H(9A)-C(9)-H(9B)	108.1
C(11)-C(10)-C(9)	116.9(3)
C(11)-C(10)-H(10A)	108.1
C(9)-C(10)-H(10A)	108.1
C(11)-C(10)-H(10B)	108.1
C(9)-C(10)-H(10B)	108.1
H(10A)-C(10)-H(10B)	107.3
O(4)-C(11)-C(10)	122.8(3)
O(4)-C(11)-C(12)	121.2(3)
C(10)-C(11)-C(12)	116.0(3)
C(13)-C(12)-C(11)	117.2(4)
C(13)-C(12)-H(12A)	108.0
C(11)-C(12)-H(12A)	108.0
C(13)-C(12)-H(12B)	108.0
C(11)-C(12)-H(12B)	108.0
H(12A)-C(12)-H(12B)	107.2

C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(3)-C(15)-N(1)	124.7(3)
O(3)-C(15)-C(16)	122.6(3)
N(1)-C(15)-C(16)	112.6(3)
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(19)-C(18)-C(8)	121.8(3)
C(19)-C(18)-H(18)	119.1
C(8)-C(18)-H(18)	119.1
C(18)-C(19)-C(20)	120.4(3)
C(18)-C(19)-H(19)	119.8
C(20)-C(19)-H(19)	119.8
C(19)-C(20)-C(6)	120.7(3)
C(19)-C(20)-H(20)	119.6
C(6)-C(20)-H(20)	119.6

Symmetry transformations used to generate equivalent atoms:

32(1)

59(2)

35(1)

118(5)

O(3)

O(4)

N(1)

C(1)

97(2)

70(2)

53(1)

162(7)

displacement factor exponent takes the form: -2 π^2 [$h^2a^{*2}U^{11}$ + + 2 h k a* b* U ¹²]				2]		
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	86(2)	51(1)	82(2)	19(1)	24(1)	-2(1)
O(2)	47(1)	47(1)	42(1)	-4(1)	10(1)	8(1)

59(1)

140(3)

43(1)

160(6)

Table S15.Anisotropic displacement parameters (Å²x 10³)for c1.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

-5(1)

-30(2)

-1(1)

18(4)

9(1)

11(2)

1(1)

117(6)

1(1) -2(1)

3(1)

0(5)

C(2)	77(2)	62(2)	89(3)	-3(2)	36(2)	-6(2)
C(3)	51(2)	42(2)	62(2)	0(1)	12(1)	-10(1)
C(4)	45(1)	40(2)	56(2)	5(1)	6(1)	-1(1)
C(5)	50(2)	38(1)	63(2)	6(1)	13(1)	1(1)
C(6)	41(1)	39(1)	51(2)	3(1)	6(1)	10(1)
C(7)	41(1)	36(1)	42(1)	0(1)	7(1)	7(1)
C(8)	46(1)	37(1)	45(1)	5(1)	9(1)	10(1)
C(9)	51(2)	37(1)	51(2)	6(1)	15(1)	5(1)
C(10)	51(2)	50(2)	67(2)	-6(1)	18(1)	2(1)
C(11)	54(2)	43(2)	64(2)	4(1)	11(1)	3(1)
C(12)	51(2)	83(3)	142(4)	-31(3)	18(2)	0(2)
C(13)	61(3)	93(3)	153(5)	-14(3)	5(3)	0(2)
C(15)	65(2)	35(1)	40(1)	3(1)	6(1)	-1(1)
C(16)	70(2)	64(2)	72(2)	1(2)	-16(2)	-4(2)
C(18)	57(2)	62(2)	39(1)	6(1)	7(1)	10(1)
C(19)	58(2)	68(2)	46(2)	-5(1)	-1(1)	7(2)
C(20)	49(2)	53(2)	60(2)	-4(1)	-2(1)	2(1)

Table S16. Hydrogen bonds for c1 [Å and].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(2)-H(2B)O(1)#1	0.97	2.39	3.283(5)	153.7
C(10)-H(10B)O(4)#2	0.97	2.46	3.360(5)	154.4

#1 x,y-1,z #2 x,y+1,z

Figure S4.

Table S17. Crystal data and structure refinement for 1.

1
C11 H13 N O2
191.22

Temperature	273(2) K	
Wavelength	0.71073 A	
Crystal system, space group	"monoclinic", " P 21/c "	
Unit cell dimensions	a = 20.667(3) A alpha = 90 deg.	
	b = 5.2935(8) A beta = 94.551(4) deg.	
	c = 9.2989(12) A gamma = 90 deg.	
Volume	1014.1(2) A^3	
Z, Calculated density	4, 1.252 Mg/m^3	
Absorption coefficient	0.086 mm^-1	
F(000)	408	
Crystal size	0.16 x 0.12 x 0.12 mm	
Theta range for data collection	2.97 to 25.04 deg.	
Limiting indices	-24<=h<=22, -6<=k<=6, -11<=l<=10	
Reflections collected / unique	8734 / 1792 [R(int) = 0.0518]	
Completeness to theta $= 25.04$	99.8 %	
Max. and min. transmission	0.9897 and 0.9863	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	1792 / 0 / 128	
Goodness-of-fit on F^2	1.011	
Final R indices [I>2sigma(I)]	R1 = 0.0443, $wR2 = 0.0825$	
R indices (all data)	R1 = 0.1038, $wR2 = 0.0994$	
Largest diff. peak and hole	0.129 and -0.126 e.A^-3	

Table S18. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 1. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)
O(1)	2532(1)	3311(2)	6674(1)	55(1)
N(1)	3611(1)	3346(3)	7428(2)	53(1)
O(2)	3914(1)	4128(3)	5200(1)	69(1)
C(8)	1900(1)	4104(4)	6793(2)	45(1)
C(3)	1746(1)	6091(3)	7656(2)	47(1)
C(9)	3043(1)	4894(4)	7305(2)	47(1)
C(2)	2268(1)	7484(4)	8534(2)	63(1)
C(1)	2881(1)	5921(4)	8732(2)	54(1)
C(7)	1428(1)	2745(4)	6001(2)	61(1)
C(10)	3989(1)	2969(4)	6343(2)	53(1)
C(4)	1092(1)	6674(4)	7687(2)	68(1)
C(6)	788(1)	3370(5)	6060(3)	72(1)
C(11)	4504(1)	1008(4)	6619(2)	80(1)
C(5)	620(1)	5347(5)	6899(3)	77(1)

O(1)-C(8)	1.385(2)
O(1)-C(9)	1.436(2)
N(1)-C(10)	1.339(2)
N(1)-C(9)	1.428(2)
N(1)-H(1)	0.8600
O(2)-C(10)	1.226(2)
C(8)-C(3)	1.375(2)
C(8)-C(7)	1.377(3)
C(3)-C(4)	1.390(3)
C(3)-C(2)	1.494(3)
C(9)-C(1)	1.497(2)
C(9)-H(9)	0.9800
C(2)-C(1)	1.513(3)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(7)-C(6)	1.369(3)
C(7)-H(7)	0.9300
C(10)-C(11)	1.494(3)
C(4)-C(5)	1.367(3)
C(4)-H(4)	0.9300
C(6)-C(5)	1.367(3)
C(6)-H(6)	0.9300
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(5)-H(5)	0.9300
C(8)-O(1)-C(9)	117.27(14)
C(10)-N(1)-C(9)	123.32(15)
C(10)-N(1)-H(1)	118.3
C(9)-N(1)-H(1)	118.3
C(3)-C(8)-C(7)	121.67(18)
C(3)-C(8)-O(1)	122.78(17)
C(7)-C(8)-O(1)	115.54(17)
C(8)-C(3)-C(4)	116.87(19)
C(8)-C(3)-C(2)	120.42(17)
C(4)-C(3)-C(2)	122.70(19)
N(1)-C(9)-O(1)	105.72(14)

 $Table \ S19. \quad Bond \ lengths \ [A] \ and \ angles \ [deg] \ for \ 1.$

N(1)-C(9)-C(1)	112.17(14)
O(1)-C(9)-C(1)	111.42(14)
N(1)-C(9)-H(9)	109.1
O(1)-C(9)-H(9)	109.1
C(1)-C(9)-H(9)	109.1
C(3)-C(2)-C(1)	110.97(16)
C(3)-C(2)-H(2A)	109.4
C(1)-C(2)-H(2A)	109.4
C(3)-C(2)-H(2B)	109.4
C(1)-C(2)-H(2B)	109.4
H(2A)-C(2)-H(2B)	108.0
C(9)-C(1)-C(2)	109.58(15)
C(9)-C(1)-H(1A)	109.8
C(2)-C(1)-H(1A)	109.8
C(9)-C(1)-H(1B)	109.8
C(2)-C(1)-H(1B)	109.8
H(1A)-C(1)-H(1B)	108.2
C(6)-C(7)-C(8)	119.9(2)
C(6)-C(7)-H(7)	120.1
C(8)-C(7)-H(7)	120.1
O(2)-C(10)-N(1)	122.55(19)
O(2)-C(10)-C(11)	122.34(18)
N(1)-C(10)-C(11)	115.10(18)
C(5)-C(4)-C(3)	122.0(2)
C(5)-C(4)-H(4)	119.0
C(3)-C(4)-H(4)	119.0
C(5)-C(6)-C(7)	119.9(2)
C(5)-C(6)-H(6)	120.1
C(7)-C(6)-H(6)	120.1
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(4)-C(5)-C(6)	119.8(2)
C(4)-C(5)-H(5)	120.1
C(6)-C(5)-H(5)	120.1

Table S20. Anisotropic displacement parameters (A² x 10³) for 1. The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2 a^{2} U11 + ... + 2 h k a^{2} b^{2} U12$]

	U11	U22	U33	U23	U13	U12
O(1)	52(1)	61(1)	52(1)	-17(1)	6(1)	1(1)
N(1)	56(1)	71(1)	33(1)	6(1)	7(1)	12(1)
O(2)	82(1)	91(1)	36(1)	-1(1)	14(1)	-4(1)
C(8)	50(1)	46(1)	40(1)	5(1)	9(1)	0(1)
C(3)	60(1)	41(1)	42(1)	3(1)	10(1)	5(1)
C(9)	53(1)	51(1)	37(1)	2(1)	4(1)	-2(1)
C(2)	76(2)	51(1)	60(1)	-14(1)	9(1)	5(1)
C(1)	65(1)	57(1)	41(1)	-8(1)	5(1)	-1(1)
C(7)	63(1)	60(1)	59(1)	-6(1)	5(1)	-5(1)
C(10)	51(1)	67(1)	41(1)	-13(1)	5(1)	-6(1)
C(4)	70(2)	63(2)	73(2)	1(1)	17(1)	17(1)
C(6)	57(2)	78(2)	80(2)	5(1)	0(1)	-11(1)
C(11)	68(1)	99(2)	74(2)	-17(1)	10(1)	18(1)
C(5)	55(2)	88(2)	88(2)	10(2)	10(1)	7(1)

Table S21. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for 1.

	х	у	Z	U(eq)
H(1)	3715	2618	8241	63
H(9)	3112	6302	6650	56
H(2A)	2119	7886	9471	75
H(2B)	2360	9058	8057	75
H(1A)	3236	6960	9141	65
H(1B)	2819	4540	9393	65
H(7)	1544	1406	5427	73
H(4)	971	8007	8260	82
H(6)	468	2451	5529	86
H(11A)	4362	-550	6169	120
H(11B)	4585	753	7639	120
H(11C)	4895	1560	6225	120
H(5)	185	5788	6934	92
7. Mechanistic Studies

7.1 Reversibility of C-H activation

7.1.1 Synthesis of ^{*t*}BuCOOD²

$$\begin{array}{c|c} & & \\ & &$$

To a thoroughly dried round-bottom flask equipped with magnetic stir bar were added (^tBuCO)₂O (9.3 g, 0.05 mol, 1 equiv), D₂O (5 ml), and DCl (20%, 0.005 mol, 0.1 equiv, 0.8mL; 80% D₂O). The reaction was allowed to proceed at rt for 3 days. (If the starting material was not consumed completely, you can allow the reaction to stirred at 90 °C and the progress was monitored by TLC.) Upon complete consumption of starting material, the reaction was cooled to room temperature and underwent an extraction process with CD₂Cl₂. The CD₂Cl₂ solution was dried over MgSO₄ and filtered. Purification by distillation reduced at (collection of 163-164°C pressure component) affords the desired product ^tBuCOOD (6.07 g, 59% yield).

7.1.2 General procedure for the catalytic deuterium labeling experiments.

N-Phenoxyacetamides substrates (1) (0.2 mmol), $[Cp*RhCl_2]_2$ (3 mol%), Ag_2CO_3 (10 mol%) and PivOD (2 eq) were weighed into a 15ml pressure tube, to which was added CD₃CN (1ml) in a glove box. The reaction vessel was stirred at room temperature for 18h. After reaction, 1,4-dimethoxybenzene (0.2 mmol) was added as an internal standard. Then the mixture was subjected to ¹HNMR.

N-Phenoxyacetamides substrates (1) (0.2 mmol), $[Cp*RhCl_2]_2$ (3 mol%), Ag_2CO_3 (10 mol%) and PivOD (2 equiv) were weighed into a 15ml pressure tube, to which was added unsaturated aldehyde (2 equiv) in CD₃CN (2 mL) in a glove box. The reaction vessel was stirred at room temperature for 18h. After reaction, 1,4-dimethoxybenzene (0.2 mmol) was added as an internal standard. Then the mixture was subjected to ¹HNMR.

7.2 KIE Experiment

7.2.1 Synthesis of deuterated substrate $1a-d_5$

Following the general procedure for the synthesis of substrate 1^1 , deuterated substrate **1a-d**₅was obtained from (d₅-phenyl)boronic acid.

7.2.2 Determination of kinetic isotope effect from two parallel reactions.

N-Phenoxyacetamides substrates (1) or (d₅-phenyl)boronic acid (0.1 mmol), $[Cp*RhCl_2]_2$ (3 mol%), Ag_2CO_3 (10 mol%) and PivOH or PivOD (2 eq) were weighed into a 15ml pressure tube, to which respectively was added acrolein (2 eq) in CH₃CN or CD₃CN (1 ml) in a glove box. The reaction vessel was stirred at room temperature for 10min. After reaction, 1,4-dimethoxybenzene (0.1 mmol) was added as an internal standard. Then the mixture was subjected to ¹HNMR.

Parallel reaction: K_H/K_D=1.3

7.3 Synthesis and analysis of the possible intermediate

First, we synthesized the catalyst Cp*Rh(OAc)₂.³ Then we attempted to synthesize the cyclometalated intermediates.

intermediate A'

By following the relate method⁴, to a solution of $[Cp*RhCl_2]_2$ (0.10 mmol) and Ag₂CO₃ (0.2mmol) in CH₂Cl₂ (2 ml) was added pyridine (0.20 mmol) at room temperature. After vigorous stirring for 4 h, NaOAc (0.50 mmol) and *N*-Phenoxyacetamide(1a) (0.2 mmol) were added to the solution with TEA (0.2 ml), and vigorous stirring was continued for 12 h. After the reaction was complete, the solvent was filtered and evaporated under reduced pressure. The crude product was obtained with 90% yield. The structure was identified by NMR. ¹H NMR (500 MHz, CDCl₃) δ 8.86 (s, 1H), 7.67 (d, J=7.0, 1H), 7.58 (t, J=7.6, 1H), 7.16 (dd, J=7.4, 6.5, 2H), 6.93 (dd, J=10.8, 4.1, 1H), 6.87 (t, J=6.8, 1H), 6.62 (d, J=7.7, 1H), 2.27 (s, 3H), 1.58 (s, 15H). ¹³C NMR (126 MHz, CDCl₃) δ 174.29, 161.66, 154.40, 136.69, 134.66, 125.00 (2C), 124.41, 120.34, 105.55, 95.77 (d, J=6.3 HZ), 21.89, 9.29.

The complex 1(1eq), acrolein(2eq) and PivOH(2eq) were added to the solution of CH₃CN.The mixture was stirred at rt. When the reaction was complete, the solvent was filtered and evaporated. The crude product was purified by column chromatography on silica gel to afford the desired product.

8. Synthetic transformations

The compound 3aa was dissolved in CH_2Cl_2 , then added Pd/C with H_2 balloon. The mixture was stirred at rt for overnight. Then the mixture was filtered and evaporated.

N-(chroman-2-yl)acetamide (6): 80% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 6.98 (m, 2H), 6.86 (ddd, J = 18.1, 12.2, 4.6 Hz, 2H), 6.27 (d, J = 8.0

Hz, 1H), 5.89 (ddd, J = 9.2, 8.5, 2.7 Hz, 1H), 2.96 (ddd, J = 15.8, 9.5, 6.0 Hz, 1H), 2.81 (dt, J = 16.8, 5.6 Hz, 1H), 2.15 (dtd, J = 14.2, 5.8, 2.7 Hz, 1H), 2.05 (s, 3H), 1.92 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.87, 153.37, 129.22, 127.63, 120.84, 120.70, 117.15, 75.84, 26.97, 23.52, 23.31. HRMS (ESI) calculated for C₁₁H₁₄NO₃ (+):192.0954; Found:192.1000. Melting Point: 144-146 °C.

References

- 1. H. M. Petrassi, K. B. Sharpless and J. W. Kelly, Org. Lett., 2001, 3, 139.
- B. Liu, C. Song, C. Sun, S. Zhou and J. Zhu, J. Am. Chem. Soc., 2013, 135, 16625.
- 3. C. Wang and Y. Huang, Org. Lett., 2013, 15, 5294.
- 4. N. Wang, B. Li, H. Song, S. Xu and B. Wang, Chem. Eur. J., 2013, 19, 358.

¹H and ¹³C NMR Spectra of Substrates and Products

-4

140 130 120 110 100 f1 (ppm) 50 30 0 210 200 . 190 180 170 160 150 . 90 80 . 70 . 60 . 40 20 10 -10

120 110 100 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 fl (ppm)

- 12.49

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7</t

20140321-089-3-1 20140321-089-3-1 NMR400		135, 53 130, 24 130, 24 128, 256 127, 83 127, 83 124, 77 118, 86		— 30.97 — 27.82
---	--	---	--	--------------------

A 6,6,91 6,6,91 6,6,91 6,6,92 6,6,91 7,6,6,92 6,6,91 6,6,92 4,7 7,7,92 812 7,2,22 818 7,2,22 7,2

-- 5. 98

dpp=02=084=1 56 69 dpp=02=084=1, 500M 86 1 1	- 132.67 - 132.89 - 127.84 - 127.84 - 112.05	$\xi_{76,80}^{80,22}$	- 29, 93 - 27, 44 - 21, 75
--	--	-----------------------	----------------------------------

3ja

100 90 f1 (ppm)

3na

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

