Supplementary Information

Group trend of lanthanides binding to DNA and DNAzymes with a complex but symmetric pattern

Wei Ting David Lin, Po-Jung Jimmy Huang, Rachel Pautler and Juewen Liu*

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. Fax: 519 7460435; Tel: 519 8884567 Ext. 38919;

E-mail: liujw@uwaterloo.ca.

Materials and Methods

All the DNA sequences were purchased from Eurofin Genomics. The stock DNA solutions were prepared in 5 mM HEPES, pH7.6. Metal chlorides were purchased from Sigma-Aldrich and their solutions were prepared using Milli-Q H₂O. Denaturing gel loading dye was from New England BioLabs Inc. All the gel running reagents were from Bio Basics Inc.

DNAzyme complex preparation. The DNAzyme complex (with non-cleavable Sub-dA substrate) was prepared by dissolving the substrate and enzyme strands (1 μ M each) in buffer A (25 mM NaCl, 50 mM MES, pH6.0). The complex was then annealed by heating to 80 °C and cooling to ambient room temperature. The samples were then frozen overnight.

Luminescence. 500 μ L DNAzyme complex solution (1 μ M) was combined with 5 μ L Tb³⁺ or competing ions (10 mM). The samples were incubated overnight at ambient room temperature to allow for competitive binding to reach equilibrium. The sensitized Tb³⁺ emission was measured using a fluorometer (FluoroMax-4, Horiba Scientific) by exciting at 290 nm. Peak high at 543 nm was quantified.

Tb³⁺ **luminescence lifetime**. The DNAzyme complex solution was dried using centrifugal evaporator (Vacufuge Plus, Eppendorf). The residual DNAzyme and selection buffer salt was dissolved in D₂O to the same concentration (1 μ M DNAzyme complex, 25 mM NaCl 50 mM MES, pH 6.0). TbCl₃ solution was added to both H₂O and D₂O samples to a final concentration of 100 μ M. Samples were incubated overnight. For lifetime measurement, the samples were maintained at 23 °C. Luminescence decay was measured by exciting sample at 290 nm (slit width 5nm) on a Varian Eclipse instrument for 20 ms (emission 543 nm, gate time 0.0200 ms, 50 iterations). The traces were fitted to first-order decay exponential and the decay constant was used to determine H₂O coordination number. The number of coordinated water *q* is calculated using *q* = $A(1/\tau_{H2O} - 1/\tau_{D2O})$, where *A* is 4.2 for Tb³⁺ and τ is the lifetime.^{S1}

Terbium³⁺ binding curve. To measure K_d , 1 µM DNAzyme complex was prepared in buffer B (25 mM NaCl, 10 mM MgCl₂ 50 mM MES, pH6.0). 200 uL of the DNAzyme *complex* was placed in a quartz cuvette. Its luminescence intensity was measured as a function of Tb³⁺ concentration with an incubation time of 2 min after each Tb³⁺ addition.

Activity assay. Ce13d activity in the presence of 10 μ M different lanthanides were carried out in buffer A with 1 μ M DNAzyme (using the cleavable Sub-rA substrate). After 1 h of reaction, the samples were analyzed by polyacrylamide gel electrophoresis. The gel was imaged using on a ChemiDocTM MP imaging system (Bio-Rad)

Additional references

S1. A. L. Feig, M. Panek, W. D. Horrocks, Jr and O. C. Uhlenbeck, *Chem. Biol.*, 1999, **6**, 801-810.