Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

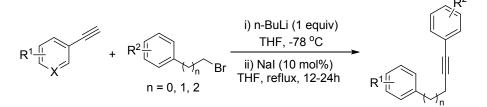
Copper-Catalyzed Endo-type trifluoromethylarylation of Alkynes

List of Contents

I. General InformationS					
II. Preparatio	n of Substrat	es		S	3
				trifluoromethylarylation S3	
IV. Synthetic	Application			S8	34
V. Mechanisti	c Study			S9	15
VI. X-ray Cry	stal data			S99)

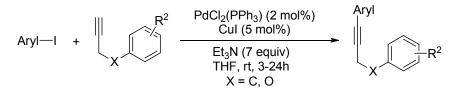
I. General Information

1. Materials:


All reagents were used as received from commercial sources unless specified otherwise, or prepared as described in the literature. DMF was purchased from ACROS, and used without further purification. **Cu powder (-100 mash, 99.999% metal base)** was purchased from Alfa Aesar. Trifluoromethyl electrophilic reagents **2a**, **2b** was purchased from Aldrich. All other reagents were purchased from commercial sources without further purification.

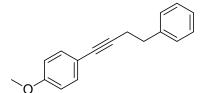
2. Analytical Methods:

¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts of ¹⁹F NMR spectra (CFCl₃ as outside standard and low field is positive) were recorded with ¹H-coupling on a Bruker 376 MHz spectrometer. ¹³C-NMR spectra were recorded with ¹H-decoupling on a Brucker 100 MHz spectrometer. Chemical shifts (δ) are reported in ppm and referenced to residual solvent peaks. Coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. GC-MS analysis was performed on Thermo Scientific AS 3000 Series GC-MS System. High-resolution mass spectra (HRMS) were recorded on a BRUKER VPEXII spectrometer with EI mode unless otherwise stated. Organic solutions were concentrated under reduced pressure on a Buchi rotary evaporator. Flash column chromatographic purification of products was accomplished using forced-flow chromatography on Silica Gel (200-300 mesh). Sartorius CPA225D (Repeatability $\leq \pm 0.05$ mg) was used to weight the catalysts and reagents.


II. Preparation of Substrates

1.General Procedure A for the Synthesis of Alkynes (1)¹

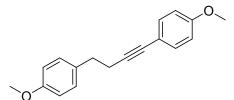
A solution of alkyne (1.0 equiv.) in tetrahydrofuran (0.25 M) was cooled to -78 °C and a solution of *n*-butyllithium (1.0 equiv., 1.6 M in hexanes) was added. The reaction mixture was allowed to warm to room temperature. Sodium iodide (0.1 equiv.) and the corresponding bromoethylbenzene (1.2 equiv.) were added. The mixture was heated to reflux for the specified length of time. The reaction mixture was cooled to room temperature and quenched by addition of ammonium chloride solution. The aqueous layer was separated and extracted with diethyl ether. The combined organics were washed (brine), dried (MgSO₄) and the solvent removed in vacuo. The crude residue was purified by flash chromatography to yield the corresponding alkyne (1).


2.General Procedure B for the Synthesis of Alkynes (1)¹

To a suspension of *trans*-dichloro-*bis*-(triphenylphosphine)palladium(II) (1-5 mol%) and copper(I) iodine (2-10 mol%) in tetrahydrofuran (0.2 M) was added the appropriate iodoarene (1.0 equiv.) and triethylamine (7.0 equiv.). The corresponding alkyne (1.1 equiv.) was added and the reaction mixture stirred at room temperature for the specified length of time. The reaction mixture was concentrated in vacuo and filtered through a plug of celite and silica, eluting with diethyl ether. The solvent was removed in vacuo and the crude residue was purified by flash chromatography to yield the corresponding alkyne (1).

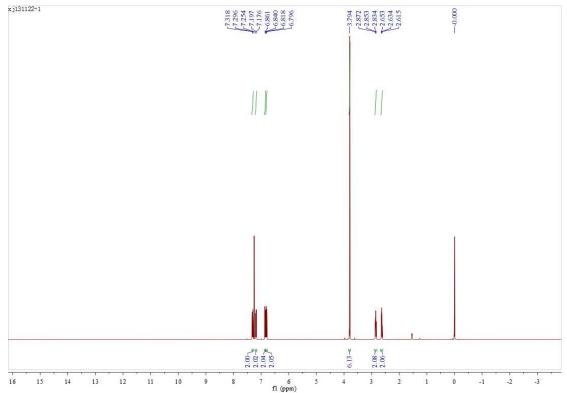
3. Substrates Spectra data

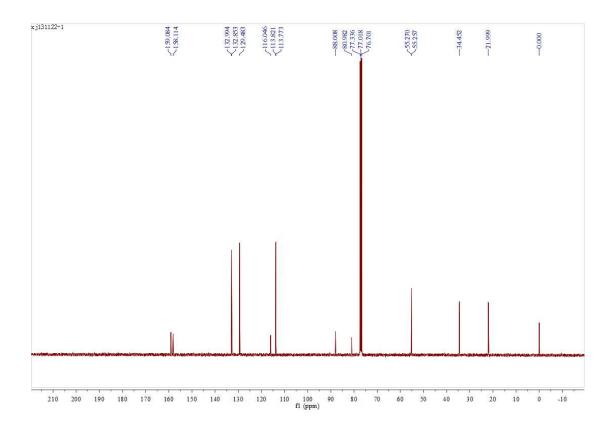
1-methoxy-4-(4-phenylbut-1-yn-1-yl)benzene (1a)

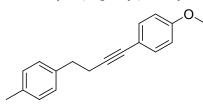

Prepared according to General Procedure A.

xj130826-1 ---0.000 -38000 12.890 12.890 12.669 12.669 12.669 7, 314 7, 305 7, 305 7, 305 7, 305 7, 305 7, 202 7, 202 7, 270 7, 270 7, 270 7, 270 7, 270 7, 270 7, 270 7, 270 7, 273 7, -3.780-36000 -34000 -32000 -30000 -28000 -26000 -24000 -22000 -20000 -18000 -16000 -14000 -12000 -10000 -8000 -6000 -4000 -2000 -0 7.12⊣ 1.97-≖ 2.02-4 3.00---2000 7 3 16 13 12 8 6 f1 (ppm) 2 -3 15 14 11 10 9 5 4 1 0 -1 -2 xj130826-2 140.810132.846128.533128.355128.355126.260~115.999 -13000 ~29.705 ~29.705 ~21.694 -159.091 87.875 81.020 777.341 777.341 777.024 76.706 -55.231 -12000 -11000 -10000 -9000 -8000 -7000 -6000 -5000 4000 -3000 -2000 -1000 -0 --1000 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) -10 30 20 10 Ö 80 70 60 50 40

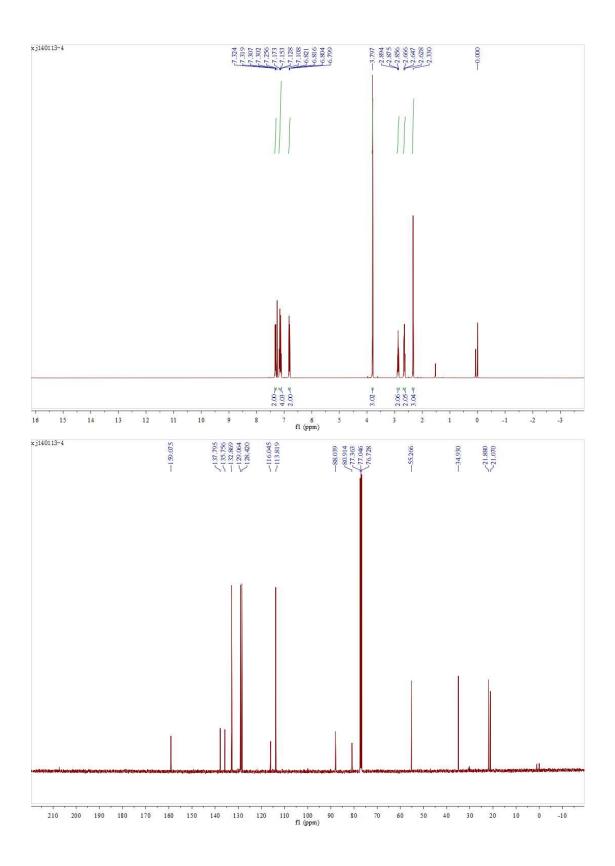
J = 7.6 Hz, 2H), 2.67 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.09, 140.81, 132.85, 128.533, 128.355, 126.26, 116.00, 113.82, 87.87, 81.02, 55.23, 35.32, 21.69.

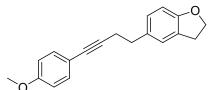

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.18 (m, 7H), 6.80 (d, *J* = 8.9 Hz, 2H), 3.78 (s, 3H), 2.91 (t,


4,4'-(but-1-yne-1,4-diyl)bis(methoxybenzene) (1b)


Prepared according to General Procedure A.

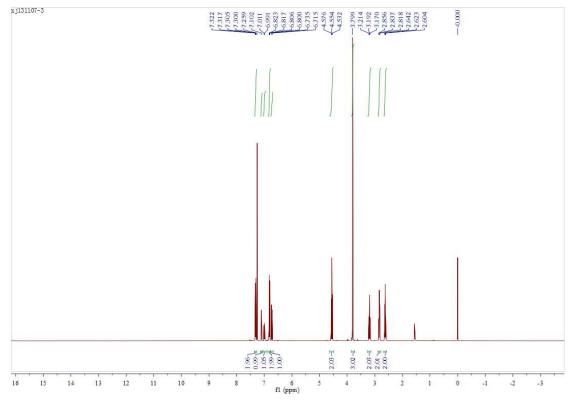
¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.79 (s, 6H), 2.85 (t, J = 7.5 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.08, 158.11, 132.99, 132.85, 129.48, 116.05, 113.82, 113.77, 88.01, 80.98, 55.27, 55.25, 34.45, 22.00.

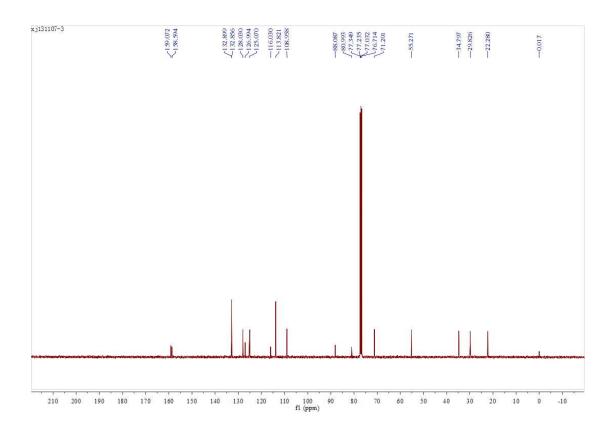

1-methoxy-4-(4-(p-tolyl)but-1-yn-1-yl)benzene (1c)


Prepared according to General Procedure A.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (d, *J* = 8.8 Hz, 2H), 7.14 (dd, *J* = 18.1, 8.0 Hz, 4H), 6.84 – 6.78 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 2.88 (t, *J* = 7.6 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.08, 137.80, 135.76, 132.87, 129.06, 128.42, 116.04, 113.82, 88.04, 80.91, 55.27, 34.93, 21.88, 21.07.

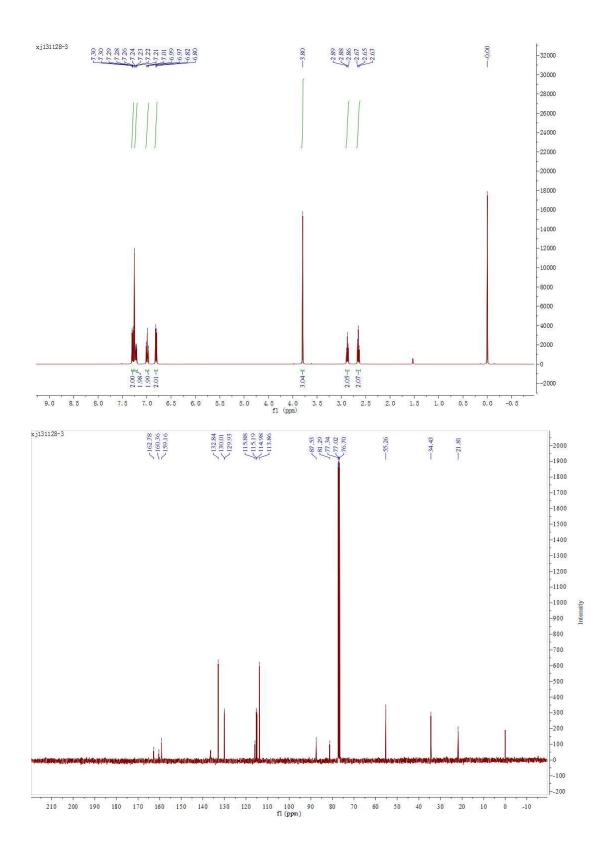

5-(4-(4-methoxyphenyl)but-3-yn-1-yl)-2,3-dihydrobenzofuran (1d)



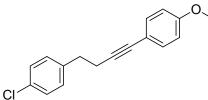
Prepared according to General Procedure A.

¹**H** NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 2H), 7.10 (s, 1H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.87 – 6.77 (m, 2H), 6.73 (d, *J* = 8.1 Hz, 1H), 4.55 (t, *J* = 8.7 Hz, 2H), 3.80 (s, 3H), 3.19 (t, *J* = 8.7 Hz, 2H), 2.84 (t, *J* = 7.5 Hz, 2H), 2.62 (t, *J* = 7.5 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.07, 158.60, 132.90, 132.86, 128.03, 126.99, 125.07, 116.03, 113.82, 108.96, 88.09, 80.99, 71.20, 55.27, 34.80, 29.83, 22.28.

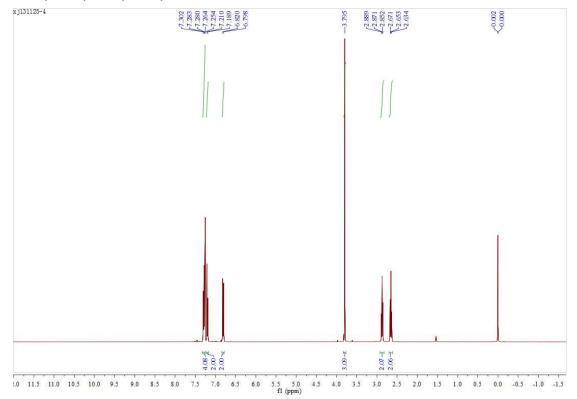


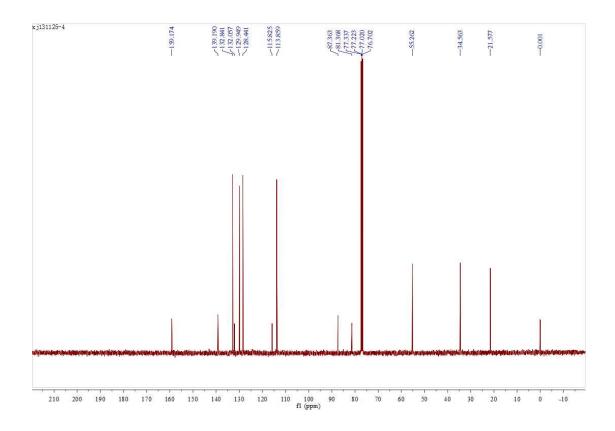
1-fluoro-4-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1e)



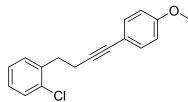
Prepared according to General Procedure A.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (d, *J* = 8 Hz, 2H), 7.25 – 7.19 (m, 2H), 6.99 (t, *J* = 8 Hz, 2H), 6.81 (d, *J* = 8 Hz, 2H), 3.80 (s, 3H), 2.88 (t, *J* = 7.4 Hz, 2H), 2.65 (t, *J* = 7.4 Hz, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 161.52 (d, *J* = 242 Hz), 159.16, 136.42 (d, *J* = 4 Hz) 132.84, 129.97 (d, *J* = 8 Hz), 115.88, 115.08 (d, *J* = 21 Hz), 113.86, 87.53, 81.29, 55.26, 34.43, 21.81.

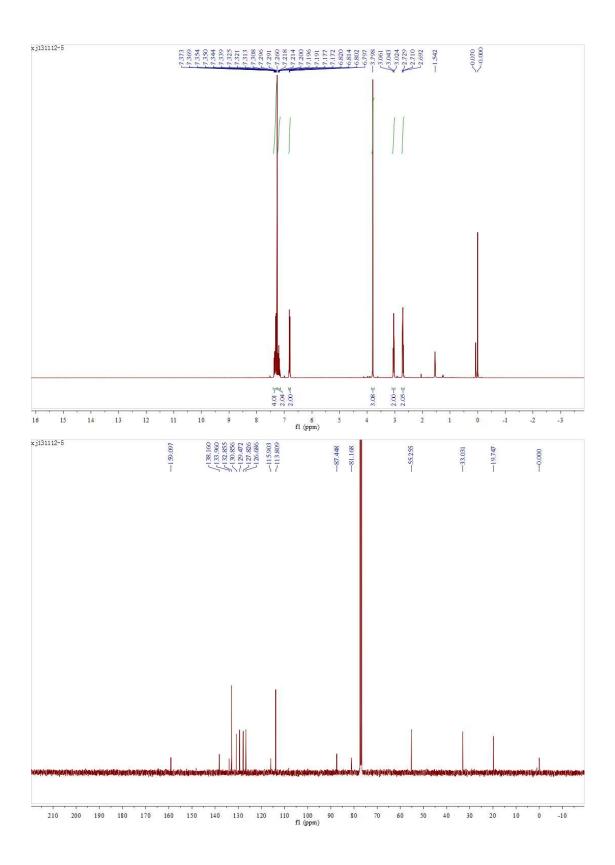

1-chloro-4-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1f)

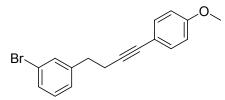


Prepared according to General Procedure A.


¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (dd, *J* = 8.3, 7.1 Hz, 4H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 2.87 (t, *J* = 7.3 Hz, 2H), 2.65 (t, *J* = 7.3 Hz, 2H).

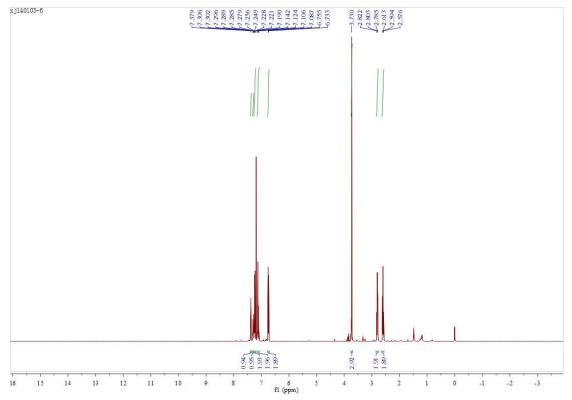
¹³C NMR (100 MHz, CDCl₃) δ 159.17, 139.19, 132.84, 132.06, 129.95, 128.44, 115.82, 113.86, 87.36, 81.37, 55.26, 34.56, 21.58.

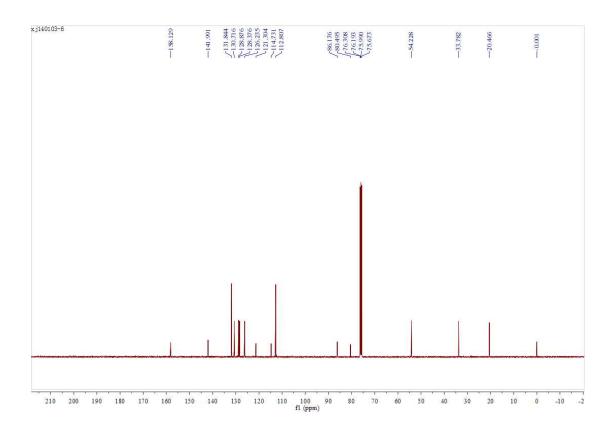

1-chloro-2-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1g)


Prepared according to General Procedure A.

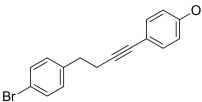
¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 4H), 7.24 – 7.14 (m, 2H), 6.81 (d, *J* = 9.2 Hz,, 2H), 3.80 (s, 3H), 3.04 (t, *J* = 7.4 Hz, 2H), 2.71 (t, *J* = 7.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 159.10, 138.16, 133.96, 132.86, 130.86, 129.47, 127.83, 126.69, 115.90, 113.81, 87.45, 81.17, 55.25, 33.03, 19.75.

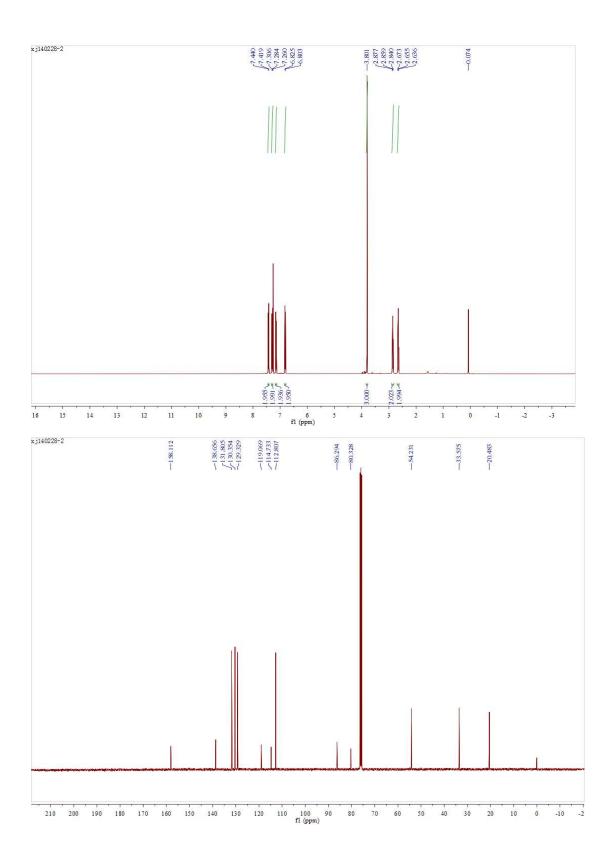

1-bromo-3-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1h)



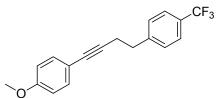
Prepared according to General Procedure A.


¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.29 (d, *J* = 6.8 Hz, 1H), 7.23 (d, *J* = 8.4 Hz, 2H), 7.15 – 7.07 (m, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 3.73 (s, 3H), 2.80 (t, *J* = 7.3 Hz, 2H), 2.59 (t, *J* = 7.3 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 158.13, 141.99, 131.84, 130.72, 128.88, 128.38, 126.23, 121.30, 114.73, 112.81, 86.18, 80.49, 54.23, 33.78, 20.47.

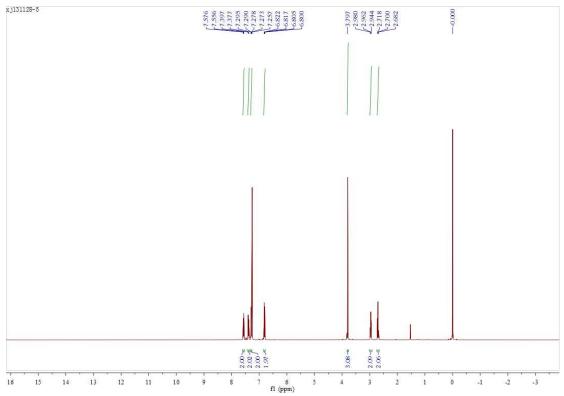


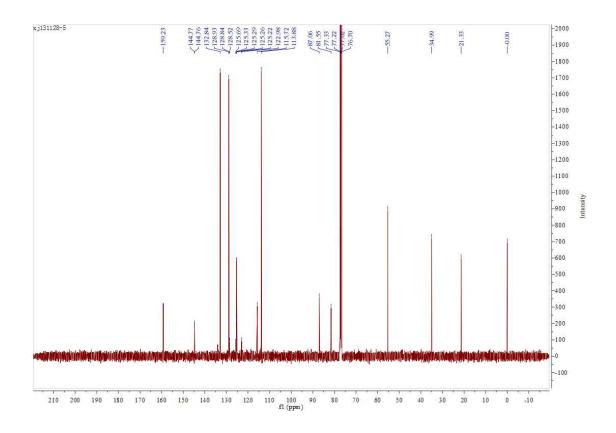
1-bromo-4-(4-(4-methoxyphenyl)but-3-yn-1-yl)benzene (1i)

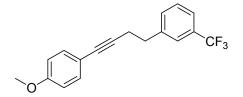


Prepared according to General Procedure A.

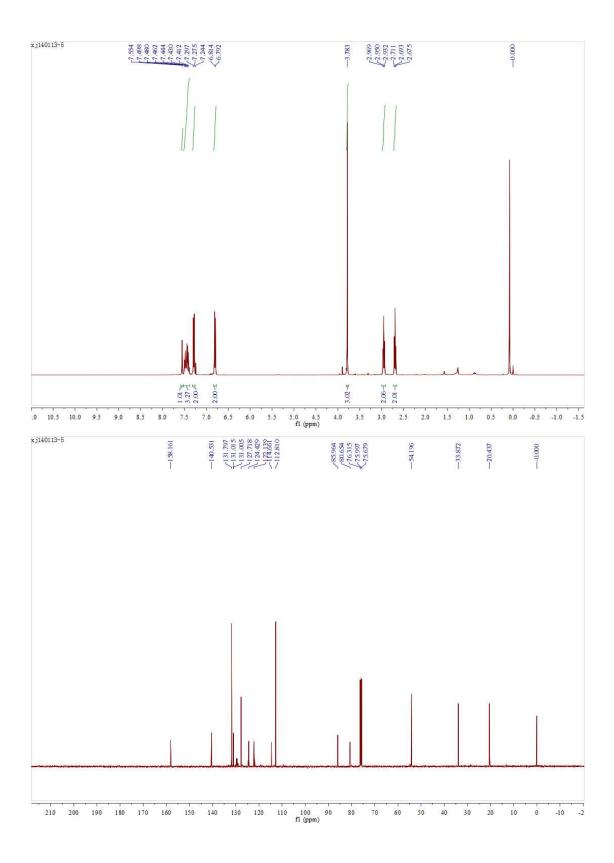
¹**H** NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 2.86 (t, *J* = 7.8 Hz, 2H), 2.65 (t, *J* = 7.8 Hz, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 158.11, 138.66, 131.80, 130.35, 129.33, 119.07, 114.73, 112.81, 86.29, 80.33, 54.23, 33.57, 20.48.

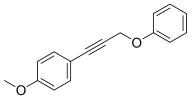



1-methoxy-4-(4-(4-(trifluoromethyl)phenyl)but-1-yn-1-yl)benzene (1j)


Prepared according to General Procedure B.

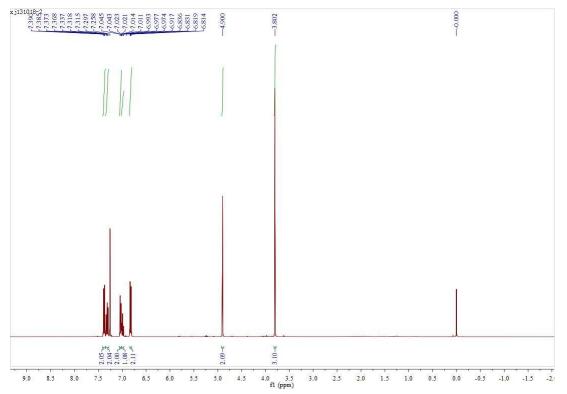
¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 2.96 (t, J = 7.3 Hz, 2H), 2.70 (t, J = 7.3 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.23, 144.76, 132.84, 128.93, 128.68 (q, J = 32 Hz), 125.28 (q, J = 3 Hz), 124.33 (q, J = 271 Hz), 115.72, 113.88, 87.06, 81.55, 55.27, 34.99, 21.33.

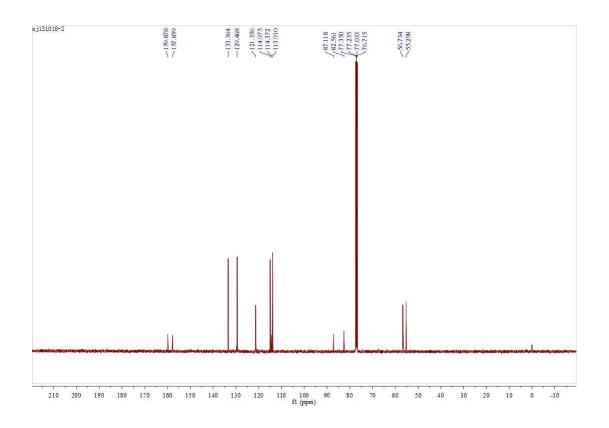

1-(4-(4-methoxyphenyl)but-3-yn-1-yl)-3-(trifluoromethyl)benzene (1k)


Prepared according to General Procedure B.

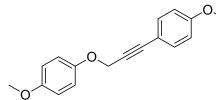
¹**H** NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.53 – 7.38 (m, 3H), 7.29 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.69 (t, *J* = 7.3 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 158.16, 140.53, 131.80, 131.01, 129.55 (q, *J* = 31 Hz), 127.72, 124.41 (q, *J* = 4 Hz), 123.23 (q, *J* = 270 Hz), 122.16 (q, *J* = 4 Hz), 114.66, 112.81, 85.96, 80.65, 54.20, 33.87, 20.44.

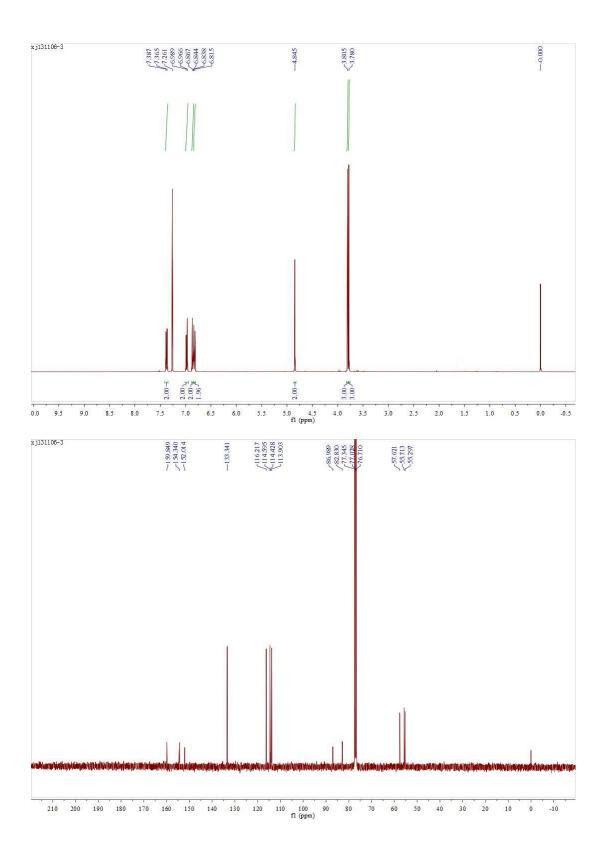

1-methoxy-4-(3-phenoxyprop-1-yn-1-yl)benzene (11)

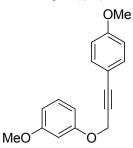


Prepared according to General Procedure B.


¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.8 Hz, 2H), 7.32 (t, *J* = 8.7 Hz, 2H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.99 (t, *J* = 7.8 Hz, 1H), 6.83 (d, *J* = 8.8 Hz, 2H), 4.90 (s, 2H), 3.80 (s, 3H).

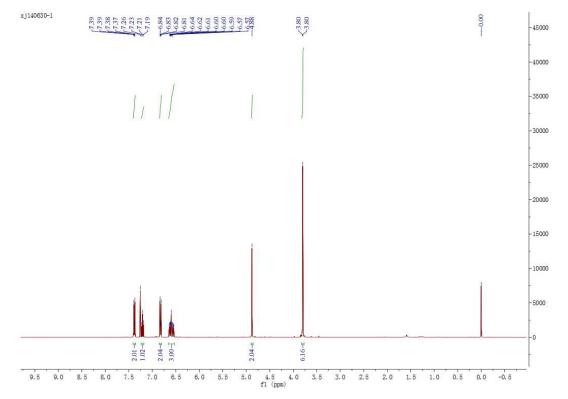
¹³**C NMR** (100 MHz, CDCl₃) δ 159.88, 157.86, 133.36, 129.47, 121.36, 114.98, 114.37, 113.91, 87.12, 82.56, 56.73, 55.30.

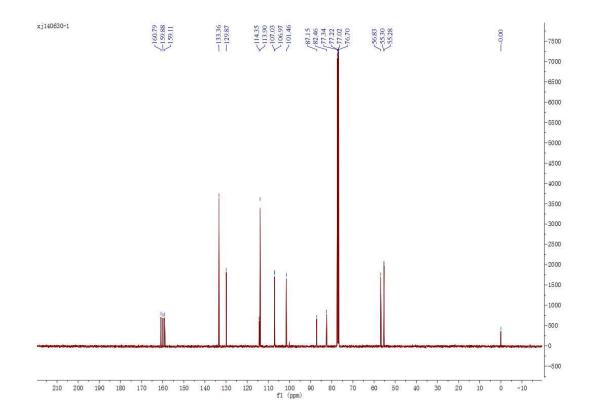

1-methoxy-4-(3-(4-methoxyphenoxy)prop-1-yn-1-yl)benzene (1m)


Prepared according to General Procedure B.

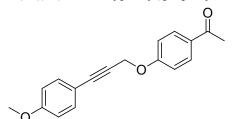
¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.9 Hz, 2H), 6.98 (d, J = 9.1 Hz, 2H), 6.86 (d, J = 9.2 Hz, 2H), 6.82 (d, J = 9.2 Hz, 2H), 4.84 (s, 2H), 3.81 (s, 3H), 3.78 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 159.85, 154.34, 152.01, 133.34, 116.22, 114.60, 114.43, 113.90, 86.99, 82.83, 57.62, 55.71, 55.30.

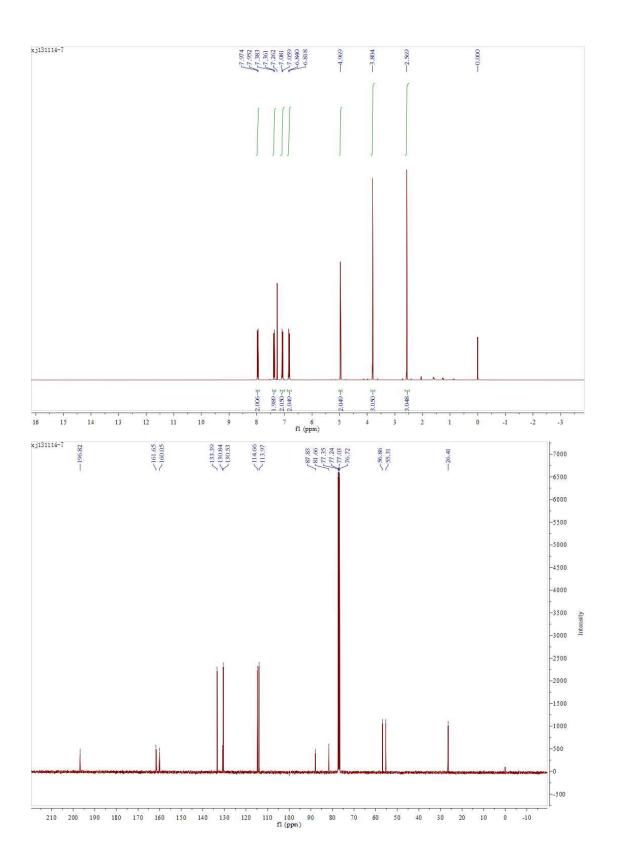

1-methoxy-3-((3-(4-methoxyphenyl)prop-2-yn-1-yl)oxy)benzene (1n)



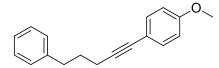
Prepared according to General Procedure B.


¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.1 Hz, 2H), 7.21 (t, J = 8.2 Hz, 1H), 6.83 (d, J = 8.1 Hz, 2H), 6.65 – 6.53 (m, 3H), 4.88 (s, 2H), 3.80 (d, J = 1.9 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 160.79, 159.88, 159.11, 133.36, 129.87, 114.35, 113.90, 107.03, 106.97, 101.46, 87.15, 82.46, 56.83, 55.30, 55.28.

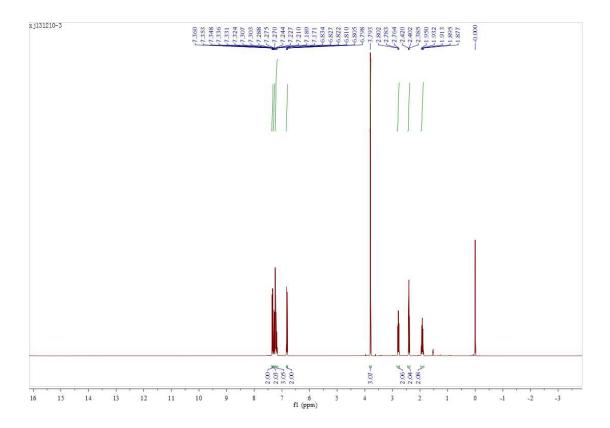


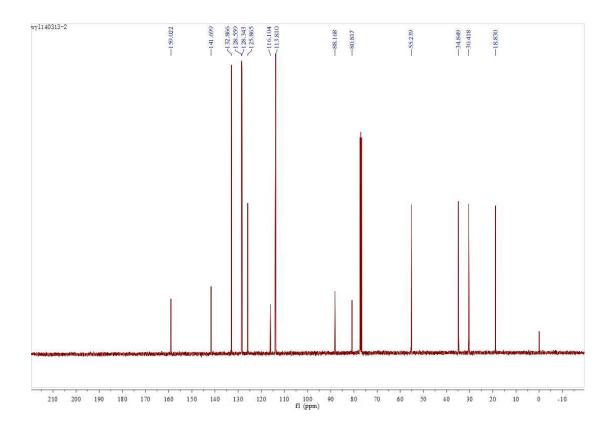
1-(4-((3-(4-methoxyphenyl)prop-2-yn-1-yl)oxy)phenyl)ethanone (10)



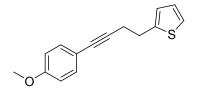
Prepared according to General Procedure B.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.9 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 4.97 (s, 2H), 3.80 (s, 3H), 2.57 (s, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 196.82, 161.65, 160.05, 133.39, 130.84, 130.53, 114.66, 113.97, 87.83, 81.66, 56.86, 55.31, 26.41.

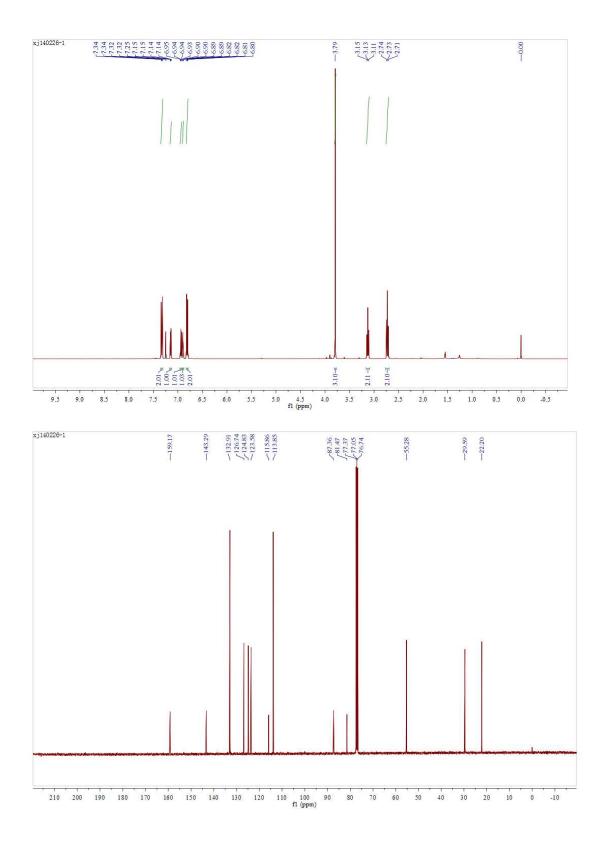

1-methoxy-4-(5-phenylpent-1-yn-1-yl)benzene (1p)

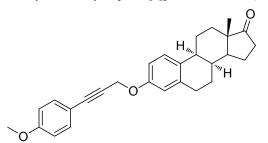


Prepared according to General Procedure B.


¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.8 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.20 (m, 3H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 2.83 (t, *J* = 7.8 Hz, 2H), 2.40 (t, *J* = 7.0 Hz, 2H), 1.97 – 1.86 (m, 2H).

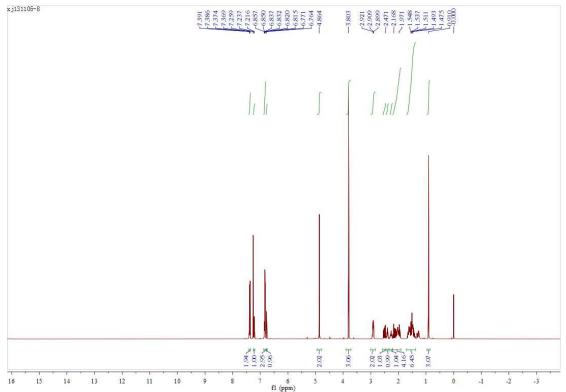
¹³C NMR(100 MHz, CDCl₃) δ 159.02, 141.70, 132.87, 128.56, 128.34, 125.87, 116.10, 113.81, 88.17, 80.82, 55.24, 34.85, 30.42, 18.83.

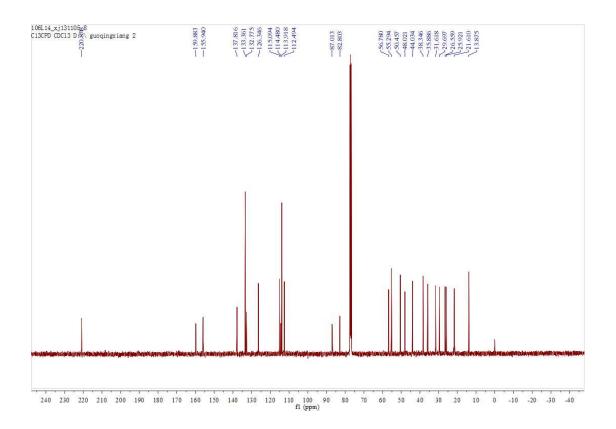

2-(4-(4-methoxyphenyl)but-3-yn-1-yl)thiophene (1r)

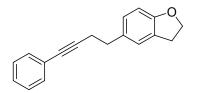

Prepared according to General Procedure A.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8 Hz, 2H), 7.15 (dd, J = 5.1, 1.2 Hz, 4H), 6.97 – 6.93 (m, 1H), 6.91 – 6.89 (m, 1H), 6.81(d, J = 8 Hz, 2H), 3.79 (s, 3H), 3.13 (t, J = 7.3 Hz, 2H), 2.73 (t, J = 7.4 Hz, 2H).

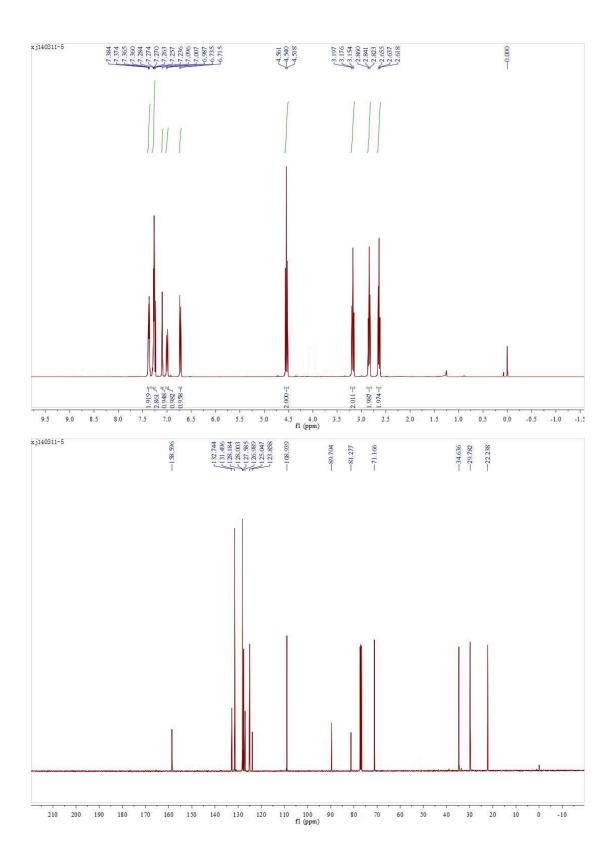
¹³C NMR (100 MHz, CDCl₃) δ 159.17, 143.29, 132.91, 126.74, 124.83, 123.58, 115.86, 113.85, 87.36, 81.47, 55.28, 29.59, 22.20.

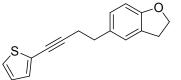



(8S,9S,13S)-3-((3-(4-methoxyphenyl)prop-2-yn-1-yl)oxy)-13-methyl-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[a]phenanthren-17(14H)-one (1s)


Prepared according to General Procedure B.

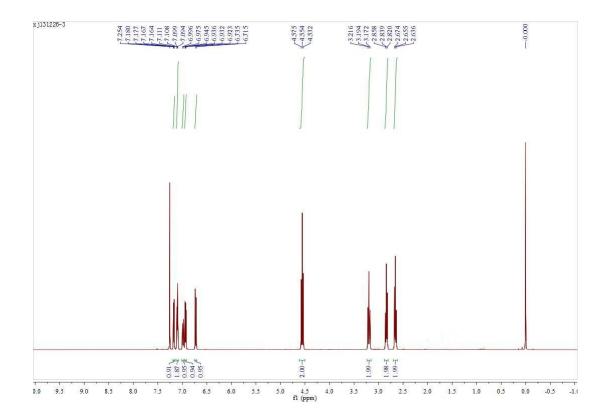
¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.4 Hz, 1H), 6.87 – 6.80 (m, 3H), 6.77 (d, J = 2.7 Hz, 1H), 4.86 (s, 2H), 3.80 (s, 3H), 2.94 – 2.89 (m, 2H), 2.54 – 2.47 (m, 1H), 2.43 – 2.36 (m, 1H), 2.32 – 2.22 (m, 1H), 2.21 – 1.90 (m, 4H), 1.71 – 1.38 (m, 6H), 0.91 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 220.88, 159.88, 155.94, 137.82, 133.36, 132.77, 126.35, 115.09, 114.48, 113.92, 112.49, 87.01, 82.80, 56.78, 55.29, 50.46, 48.02, 44.03, 38.35, 35.89, 31.62, 29.70, 26.56, 25.92, 21.61, 13.88.

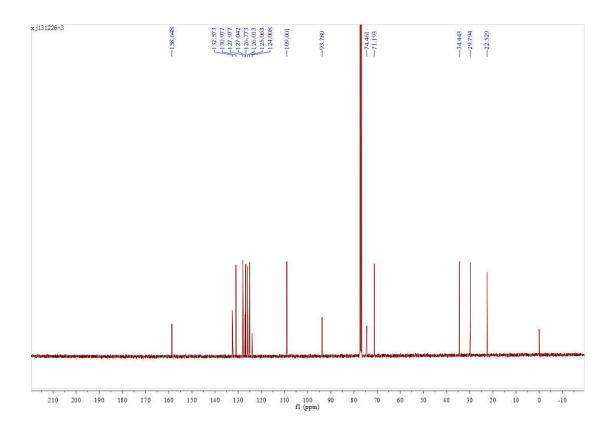

5-(4-phenylbut-3-yn-1-yl)-2,3-dihydrobenzofuran (1t)


Prepared according to General Procedure A.

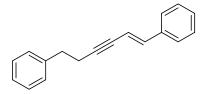
¹**H** NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.31 – 7.24 (m, 3H), 7.10 (s, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 4.54 (t, J = 8.7 Hz, 2H), 3.18 (t, J = 8.7 Hz, 2H), 2.84 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 158.60, 132.74, 131.50, 128.18, 128.00, 127.59, 126.99, 125.05, 123.86, 108.94, 89.70, 81.28, 71.17, 34.64, 29.78, 22.24.

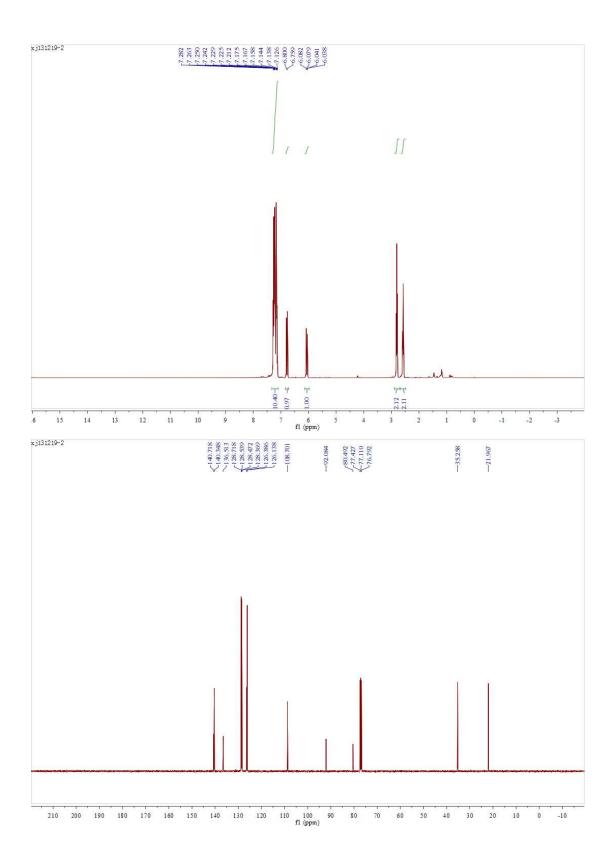

5-(4-(thiophen-2-yl)but-3-yn-1-yl)-2,3-dihydrobenzofuran (1u)



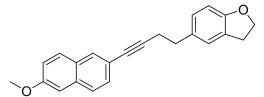
Prepared according to General Procedure A.


¹**H** NMR (400 MHz, CDCl₃) δ 7.17 (dd, J = 5.2, 1.1 Hz, 1H), 7.10 (dd, J = 5.1, 1.4 Hz, 2H), 6.99 (d, J = 8.1 Hz, 1H), 6.93 (dd, J = 5.2, 3.6 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 4.55 (t, J = 8.7 Hz, 2H), 3.19 (t, J = 8.7 Hz, 2H), 2.84 (t, J = 7.5 Hz, 2H), 2.65 (t, J = 7.5 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 158.65, 132.57, 130.98, 127.98, 127.04, 126.77, 126.01, 125.06, 124.01, 109.00, 93.78, 74.46, 71.19, 34.44, 29.79, 22.53.



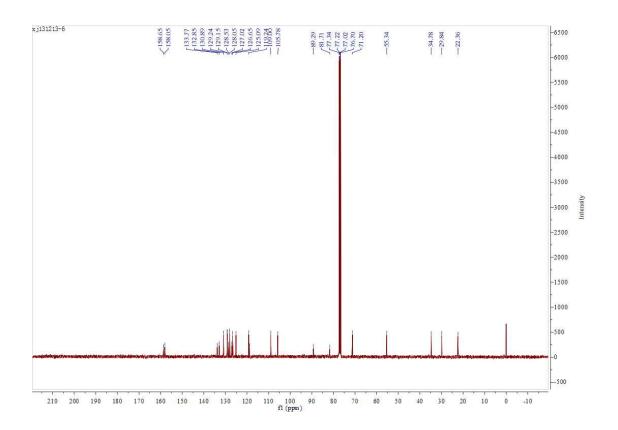
(E)-hex-1-en-3-yne-1,6-diyldibenzene (1v)¹



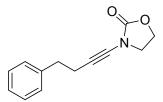
To a suspension of tetrakis(triphenylphosphine)palladium(0) (0.29 mmol) and (*E*)-styrylboronic acid (5 mmol) in dioxane (50 mL) was added (4-bromobut-3-yn-1-yl)benzene (7 mmol) and 3.0 M aqueous potassium hydroxide (10 mL) and the mixture stirred at 90 °C for 14 h. The reaction mixture was concentrated in vacuo and filtered through a plug of silica, eluting with diethyl ether (3×10 mL). The solvent was removed in vacuo and the crude residue was purified by flash chromatography to give compound **1u** as a yellow solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.10 (m, 10H), 6.78 (d, *J* = 16.2 Hz, 1H), 6.06 (d, *J* = 16.2, 1H), 2.80 (t, *J* = 7.6 Hz, 2H), 2.57 (t, *J* = 7.6 Hz, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 140.72, 140.35, 136.51, 128.72, 128.54, 128.47, 128.37, 126.39, 126.14, 108.70, 92.08, 80.49, 35.26, 21.97.

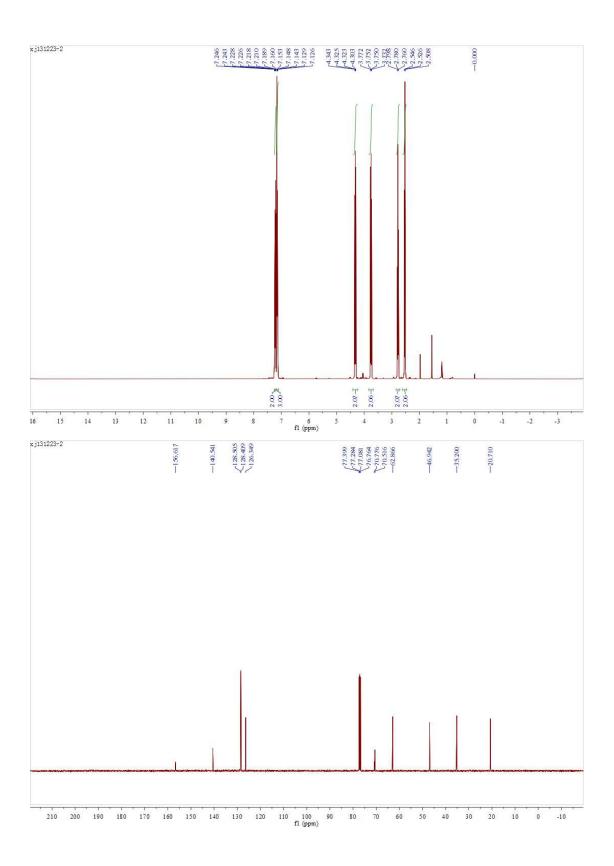
5-(4-(6-methoxynaphthalen-2-yl)but-3-yn-1-yl)-2,3-dihydrobenzofuran (1w)



Prepared according to General Procedure A.


¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.65 (t, *J* = 9.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 1H), 7.17 – 7.11 (m, 2H), 7.09 (s, 1H), 7.02 (d, *J* = 8 Hz, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 4.56 (t, *J* = 8.7 Hz, 2H), 3.93 (s, 3H), 3.20 (t, *J* = 8.6 Hz, 2H), 2.88 (t, *J* = 7.5 Hz, 2H), 2.68 (t, *J* = 7.4 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 158.65, 158.05, 133.77, 132.85, 130.89, 129.24, 129.15, 128.53, 128.05, 127.02, 126.65, 125.09, 119.24, 118.84, 109.00, 105.78, 89.29, 81.71, 71.20, 55.34, 34.78, 29.84, 22.36.



3-(4-phenylbut-1-yn-1-yl)oxazolidin-2-one (1x)¹

To a solution of oxazolidin-2-one (10 mmol), $CuCl_2$ (0.4 mmol) and sodium carbonate (4 mmol) in toluene (20 mL) was added pyridine (4 mmol). Oxygen was bubbled through the reaction mixture (20 min). The reaction was heated to 70 °C under an atmosphere of oxygen. A solution of but-3-yn-1-ylbenzene (2 mmol) in toluene (20 mL) was added dropwise over 4 h, by use of a syringe pump. Once the addition was complete, the reaction mixture was stirred at 70 °C for a further 12 h. The reaction mixture was cooled to room temperature and filtered through a plug of celite, eluting with dichloromethane (3 × 25 mL). The solvent was removed in vacuo and the crude residue was purified by flash chromatography to give compound **1w** as a white solid.

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.19 – 7.10 (m, 3H), 4.41 – 4.24 (m, 2H), 3.83 – 3.68 (m, 2H), 2.78 (t, J = 7.6 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.62, 140.54, 128.50, 128.41, 126.35, 70.78, 70.52, 62.87, 46.94, 35.20, 20.71.

III. General Procedure for Copper-Catalyzed Trifluoromethylaryl-

ation of Alkynes.

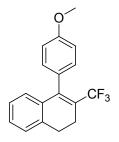
1. General Procedure C for Copper-Catalyzed Trifluoromethylarylation of Alkynes.

A reaction tube was charged with Cu (1.28 mg, 10 mmol%), **1** (0.2 mmol) and **2a** (0.24 mmol, 81.6 mg), the vessel was sealed before being evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 μ L), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 24 h at the specified temperature. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products **3**.

2. General Procedure D for Copper-Catalyzed Trifluoromethylarylation of

Alkynes.

A reaction tube was charged with Cu (1.28 mg, 10 mmol%), 1 (0.2 mmol) and 2a (0.4 mmol, 136 mg), the vessel was sealed before being evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 μ L), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 24 h at the specified temperature. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products **3**.

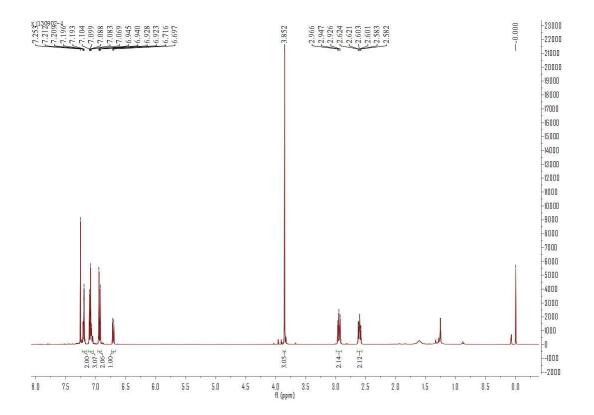

3. General Procedure E for Copper-Catalyzed Trifluoromethylarylation of

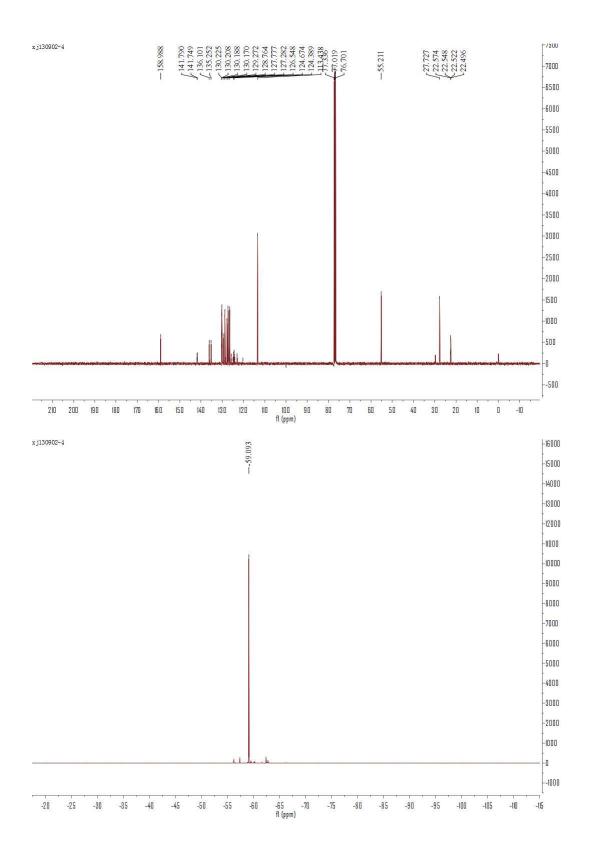
Alkynes.

A reaction tube was charged with Cu (0.32 mg, 2.5 mmol%), 1 (0.4 mmol) and 2b (0.2 mmol, 80.4 mg), the vessel was sealed before being evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 μ L), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 24 h at the specified temperature. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products **3**.

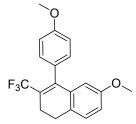
4. Copper-Catalyzed Trifluoromethylarylation of Alkynes.

4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3a)


Prepared according to General Procedure C.

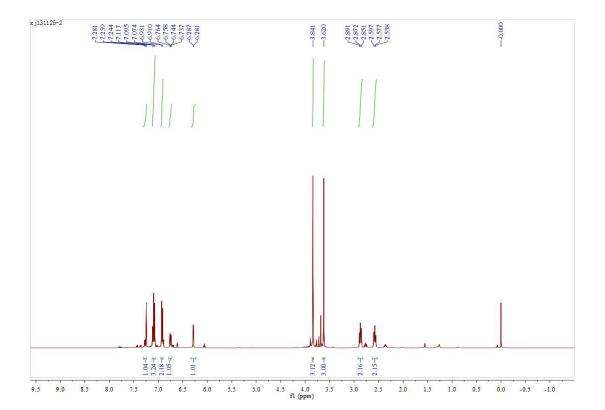

¹**H NMR** (400 MHz, CDCl₃) δ 7.22– 7.19 (m, 2H), 7.12 – 7.04 (m, 3H), 6.94 (d, *J* = 8.8Hz, 2H), 6.71 (d, *J* = 7.8 Hz, 1H), 3.85 (s, 3H), 2.95 (t, *J* = 8.0 Hz, 2H), 2.60 (t, *J* = 7.9, 2H).

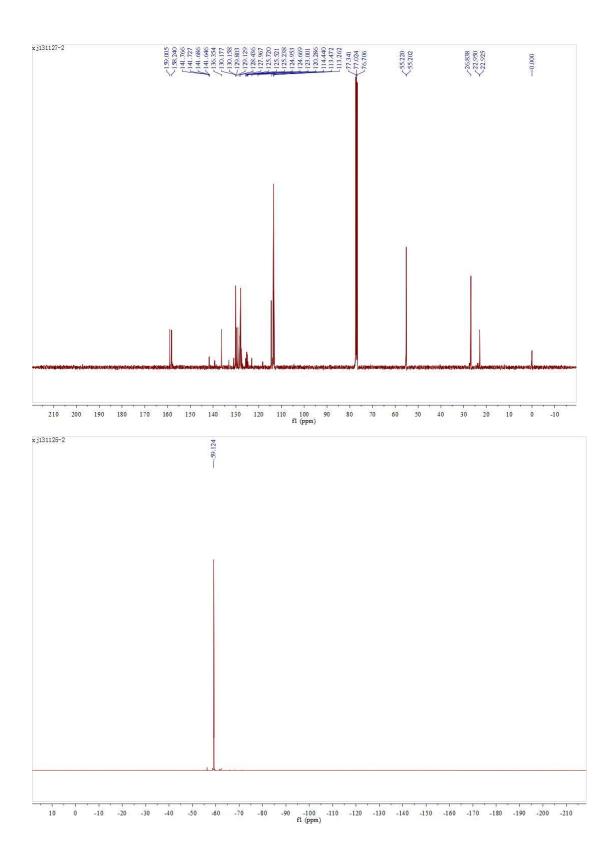
¹³**C NMR** (100 MHz, CDCl₃) δ 158.99, 141.77 (q, *J* = 4.0 Hz), 136.10, 135.25, 130.20 (q, *J* = 2.0, Hz), 129.27, 128.76, 127.78, 127.28, 126.55, 124.50 (q, *J* = 28.5 Hz), 124.36 (q, *J* = 271 Hz), 113.44, 55.21, 27.73, 22.54 (q, *J* = 2.6 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.09.

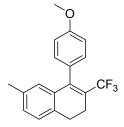
HRMS calcd for C₁₈H₁₅F₃O ([M]⁺): 304.1075; found: 304.1071.

6-methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3b)



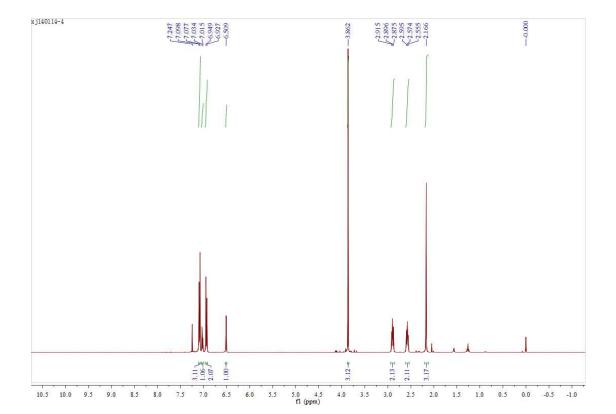

Prepared according to General Procedure C.

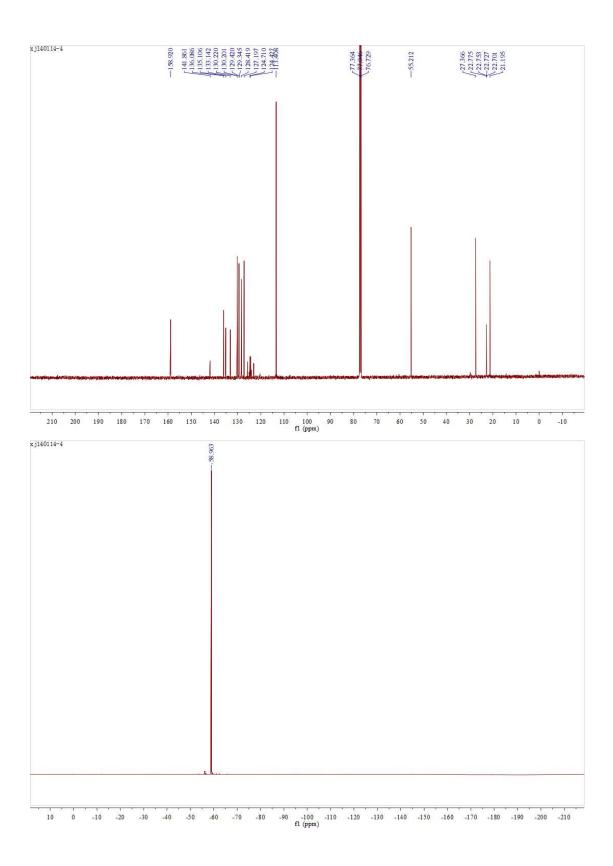
¹**H NMR** (400 MHz, CDCl₃) δ 7.10 (m, 3H), 6.92 (d, J = 8.8 Hz, 2H), 6.75 (dd, J = 8.2, 2.6 Hz, 1H), 6.28 (d, J = 2.6 Hz, 1H), 3.84 (s, 3H), 3.62 (s, 3H), 2.87 (t, J = 7.9 Hz, 2H), 2.58 (t, J = 7.9 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.01, 158.25, 141.72 (q, J = 4.0 Hz), 136.36, 130.17 (q, J = 1.9 Hz), 129.81, 129.14, 127.98, 125.10 (q, J = 28.4 Hz), 124.37 (q, J = 272 Hz), 114.44, 113.48, 113.27, 55.24, 26.84, 22.94 (q, J = 2.6 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.13.

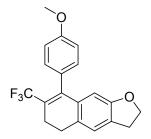
HRMS calcd for C₁₉H₁₇F₃O₂ ([M]⁺): 334.1181; found: 334.1184.

4-(4-methoxyphenyl)-6-methyl-3-(trifluoromethyl)-1,2-dihydronaphthalene (**3c**)


Prepared according to General Procedure C.

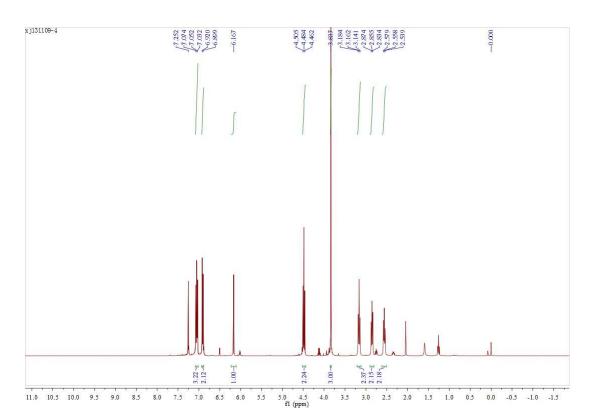

¹**H NMR** (400 MHz, CDCl₃) δ 7.09 (d, J = 8.4 Hz, 3H), 7.02 (d, J = 7.7 Hz, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.51 (s, 1H), 3.86 (s, 3H), 2.90 (t, J = 8.0 Hz, 2H), 2.57 (t, J = 8.0 Hz, 2H), 2.17 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.92, 141.88 (q, J = 4.0 Hz), 136.09, 135.11, 133.14, 130.21 (q, J = 1.9 Hz), 129.42, 129.35, 128.42, 127.20, 124.56 (q, J = 28.3 Hz), 124.42 (q, J = 272 Hz), 113.41, 55.21,

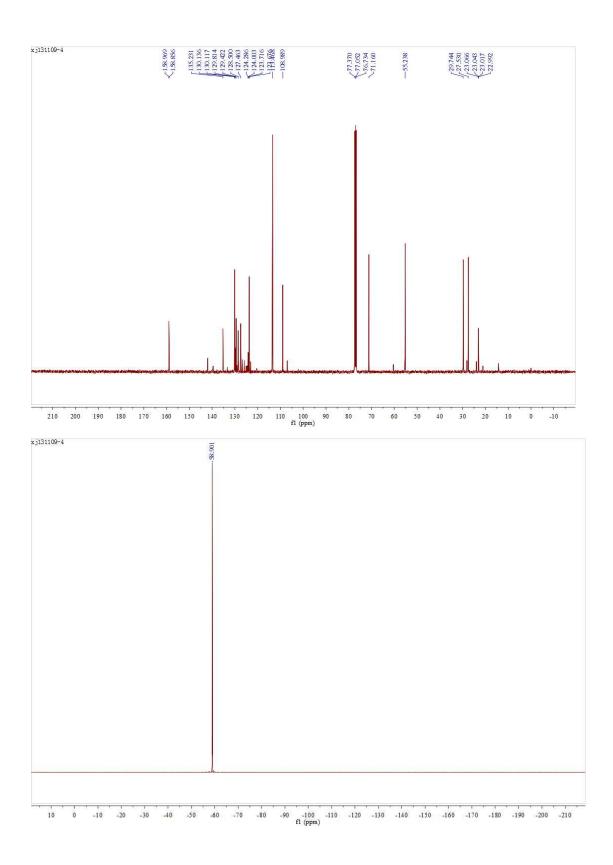
27.37, 22.74 (q, J = 2.6 Hz), 21.20.


¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.96.

HRMS calcd for $C_{19}H_{17}F_3O([M]^*)$: 318.1231; found: 318.1228.

8-(4-methoxyphenyl)-7-(trifluoromethyl)-2,3,5,6-tetrahydronaphtho[2,3-b]furan (3d)



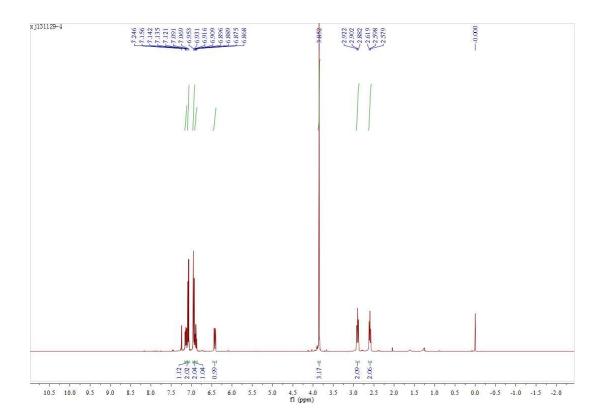

Prepared according to General Procedure C.

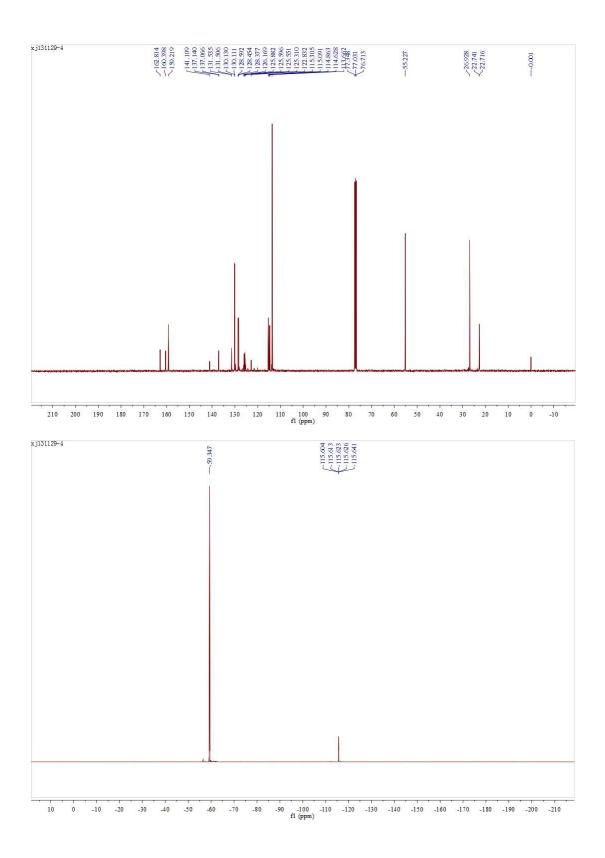
¹**H NMR** (400 MHz, CDCl₃) δ 7.09 – 7.02 (m, 3H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.17 (s, 1H), 4.48 (t, *J* = 8.6 Hz, 2H), 3.83 (s, 3H), 3.16 (t, *J* = 8.6 Hz, 2H), 2.86 (t, *J* = 8.3 Hz, 2H), 2.56 (t, *J* = 7.9 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.91, 141.99 (q, *J* = 4.0 Hz), 135.23, 130.13 (q, *J* = 1.9 Hz), 129.81, 129.42, 128.50, 127.46, 124.47 (q, *J* = 272 Hz), 124.15 (q, *J* = 28.3 Hz), 123.68, 113.47, 108.99, 71.16, 55.24, 29.74, 27.53, 23.03 (q, *J* = 2.6 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -58.90.

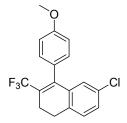
HRMS calcd for $C_{20}H_{17}F_3O_2$ ([M]⁺): 346.1181; found: 346.1180.

6-fluoro-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3e)



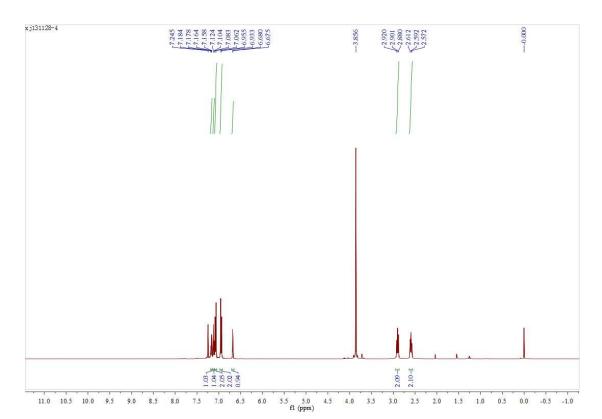

Prepared according to General Procedure C.

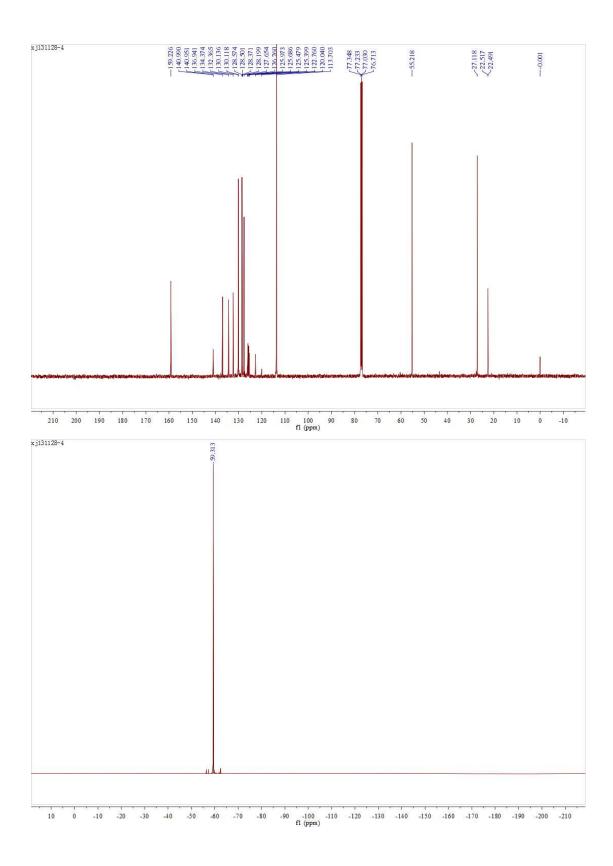
¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (dd, *J* = 8.2, 5.7 Hz, 1H), 7.08 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.89 (td, *J* = 8.3, 2.7 Hz, 1H), 6.42 (dd, *J* = 10.4, 2.6 Hz, 1H), 3.85 (s, 3H), 2.90 (t, *J* = 8.0 Hz, 2H), 2.60 (t, *J* = 8.0 Hz, 2H).


¹³C NMR (100 MHz, CDCl₃) δ 161.6 (d, J = 242 Hz), 159.22, 141.11, 137.10 (d, J = 7.4 Hz), 131.52 (d, J = 2.9 Hz), 130.12 (q, J = 1.9 Hz), 128.60, 128.42 (d, J = 7.7 Hz), 125.74 (q, J = 28.6 Hz), 124.19 (q, J = 272 Hz), 115.20 (d, J = 21.4 Hz), 114.75 (d, J = 23.5 Hz), 113.66, 55.23, 26.93, 22.73 (q, J = 2.7 Hz).

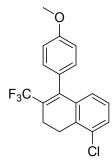
¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.35 (s), -115.37 – -115.70 (m). HRMS calcd for $C_{18}H_{14}F_4O$ ([M]⁺): 322.0981; found: 322.0978.

6-chloro-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3f)


Prepared according to General Procedure C.

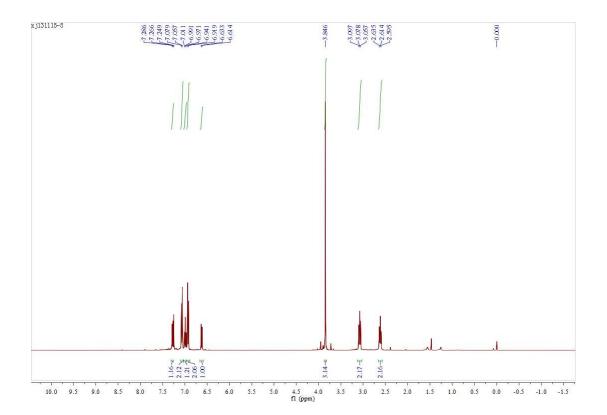

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.0, 1H), 7.11 (d, *J* = 8.0, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 2 Hz, 1H), 3.86 (s, 3H), 2.900 (t, *J* = 8.0, 2H), 2.59 (t, *J* = 8.0 Hz, 2H).

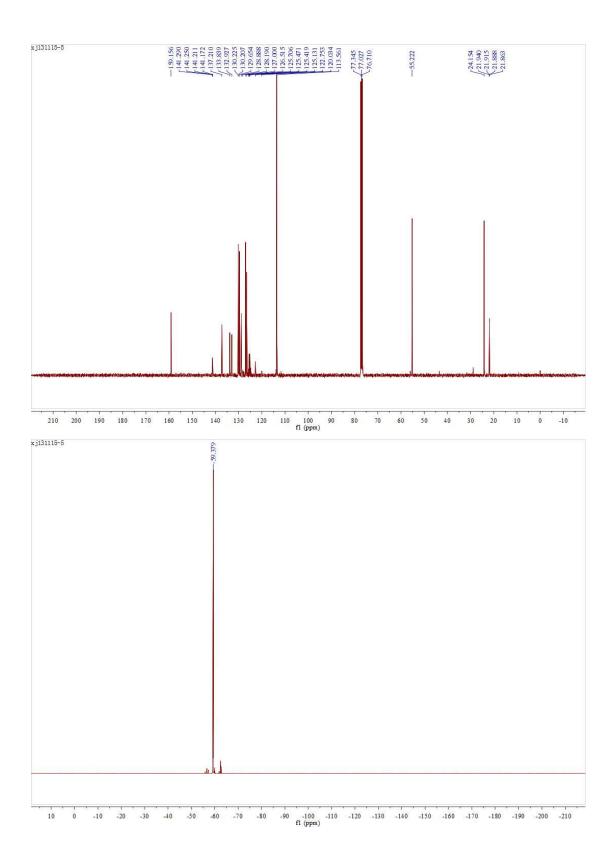
¹³**C NMR** (100 MHz, CDCl₃) δ 159.23, 140.97 (q, *J* = 4.0 Hz), 136.94, 134.37, 132.37, 130.13 (q, *J* = 1.9 Hz), 128.57, 128.50, 128.37, 127.65, 125.88 (q, *J* = 28.7 Hz), 124.12 (q, *J* = 271 Hz), 113.70, 55.22, 27.12, 22.50 (q, *J* = 2.6 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.31.

HRMS calcd for $C_{18}H_{14}ClF_{3}O([M]^{+})$: 338.0685; found: 338.0683.

8-chloro-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3g)


Prepared according to General Procedure D.

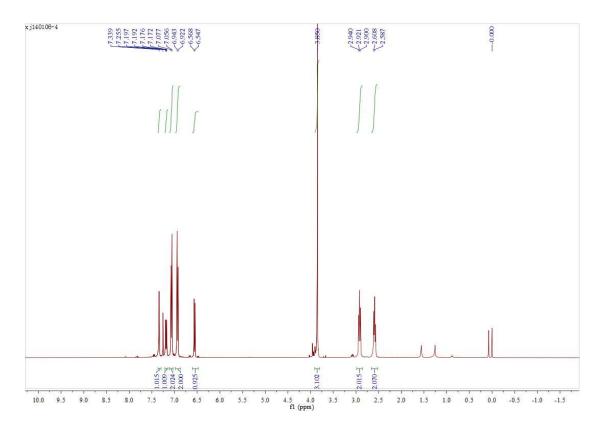

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.99 (t, *J* = 7.9 Hz, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.62 (d, *J* = 7.8 Hz, 1H), 3.85 (s, 3H), 3.08 (t, *J* = 8.0 Hz, 2H), 2.61 (t, *J* = 8.0 Hz, 2H).

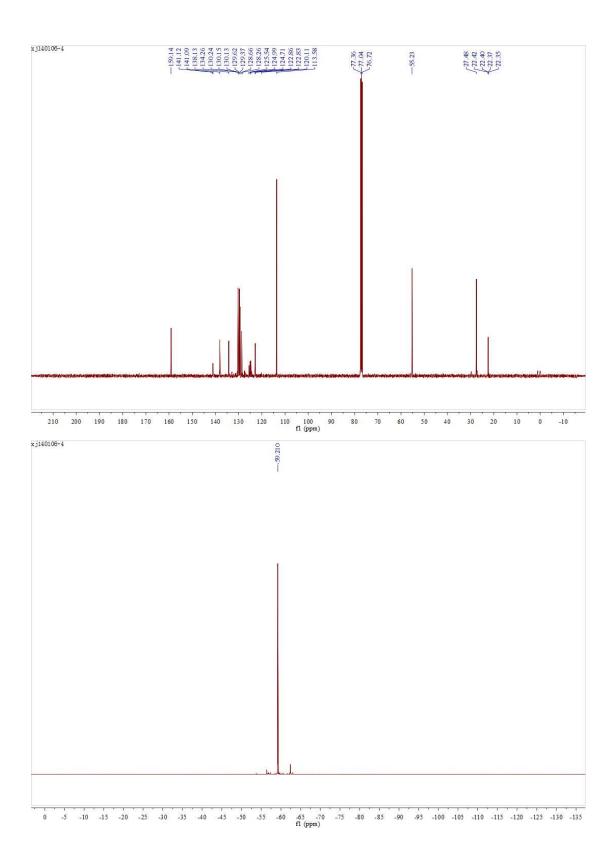
¹³**C NMR** (100 MHz, CDCl₃) δ 159.16, 141.23 (q, *J* = 4.0 Hz), 137.21, 133.84, 132.93, 130.22 (q, *J* = 1.9 Hz), 129.65, 128.89, 127.00, 126.52, 125.28 (q, *J* = 28.8 Hz), 124.11 (q, *J* = 272 Hz), 113.56, 55.22, 24.15, 21.90 (q, *J* = 2.6 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.38.

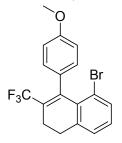
HRMS calcd for $C_{18}H_{14}ClF_{3}O([M]^{+})$: 338.0685; found: 338.0686.

7-bromo-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3h)


Prepared according to General Procedure C.

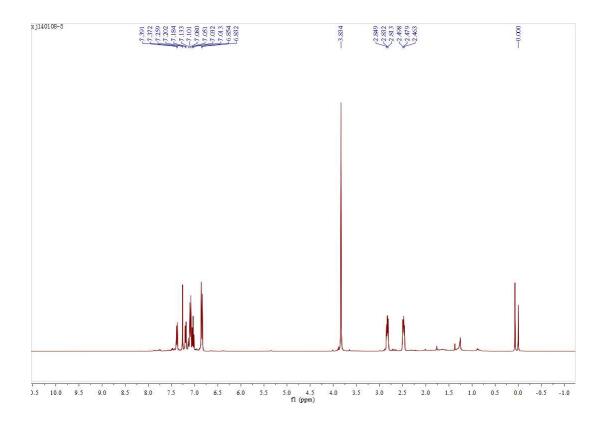

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 7.18 (dd, J = 8.4, 1.8 Hz, 1H), 7.07 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 8.6 Hz, 2H), 6.56 (d, J = 8.4 Hz, 1H), 3.85 (s, 3H), 2.92 (t, J = 8.4 Hz, 2H), 2.60 (d, J = 8.1 Hz, 2H).

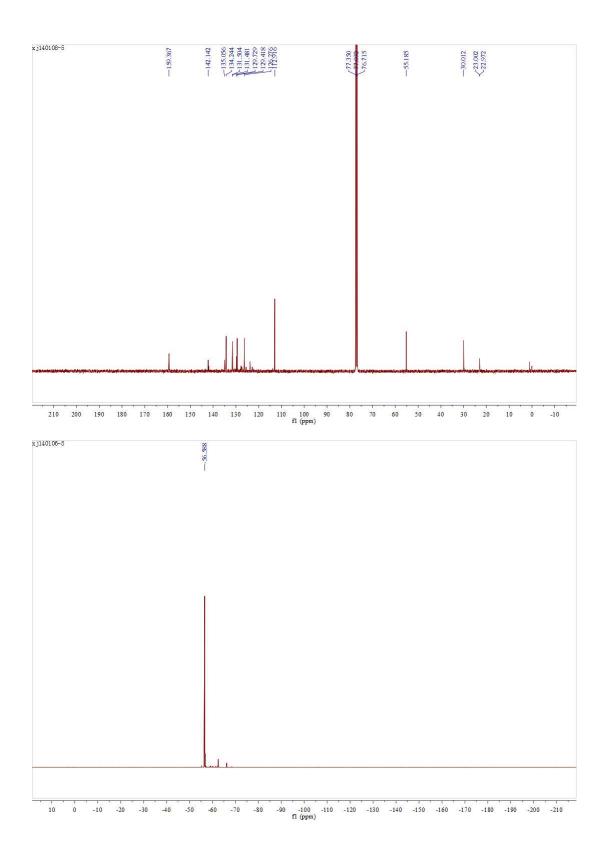
¹³**C NMR** (100 MHz, CDCl₃) δ 159.14, 141.11 (q, *J* = 3.9 Hz), 138.13, 134.26, 130.24, 130.14 (q, *J* = 2.0 Hz), 129.62, 129.37, 128.66, 124.19 (q, *J* = 271 Hz), 124.85 (q, *J* = 28.6 Hz), 122.86, 113.58, 55.23, 27.48, 22.39 (q, *J* = 2.7 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.21.

HRMS calcd for $C_{18}H_{14}BrF_{3}O([M]^{+})$: 382.0180; found: 382.0183.

5-bromo-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (**3h**')


Prepared according to General Procedure C.

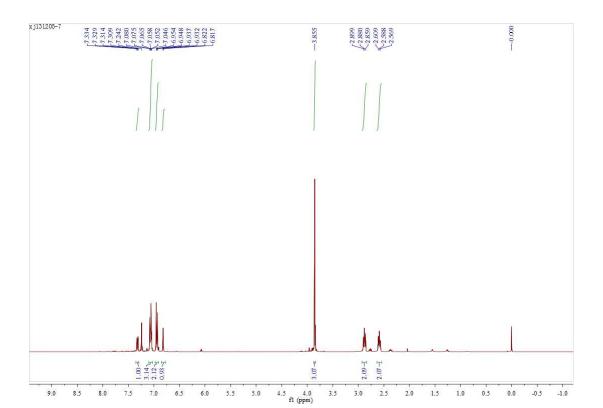

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.9 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 2H), 7.03 (t, *J* = 7.7 Hz, 1H), 6.84 (d, *J* = 8.7 Hz, 2H), 3.83 (s, 3H), 2.83(t, *J* = 6.8 Hz, 2H), 2.48 (t, *J* = 6.4 Hz, 2H).

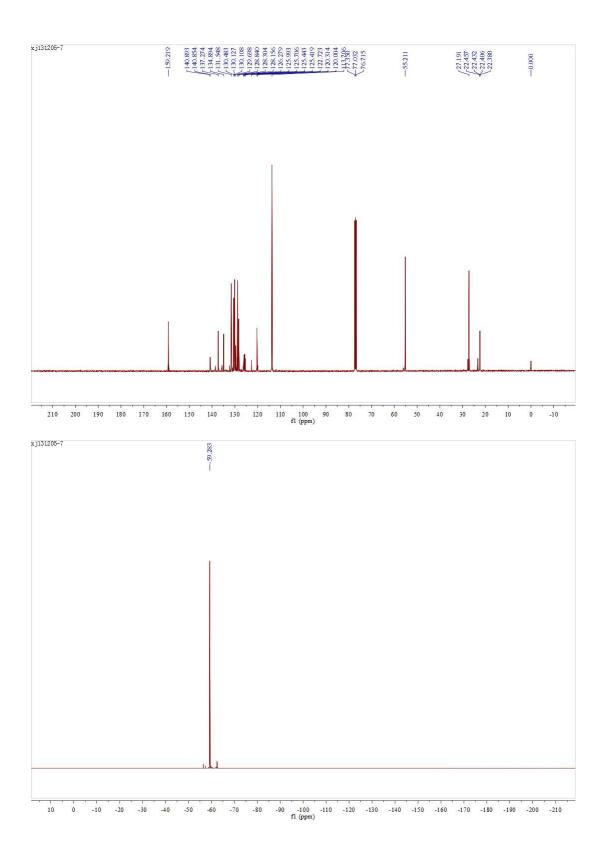
¹³**C NMR** (100 MHz, CDCl₃) δ 159.35, 142.13, 141.88 (q, *J* = 4.2 Hz), 135.04, 134.23, 131.48 (q, *J* = 2.3 Hz), 129.72, 129.41, 127.66 (q, *J* = 29.4 Hz), 126.26, 124.15 (q, *J* = 271 Hz), 123.79, 112.90, 55.17, 30.00, 22.96 (q, *J* = 3.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -56.59.

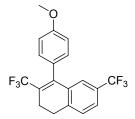
HRMS calcd for C₁₈H₁₄BrF₃O ([M]⁺): 382.0180; found: 382.0181.

6-bromo-4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (3i)


Prepared according to General Procedure C.

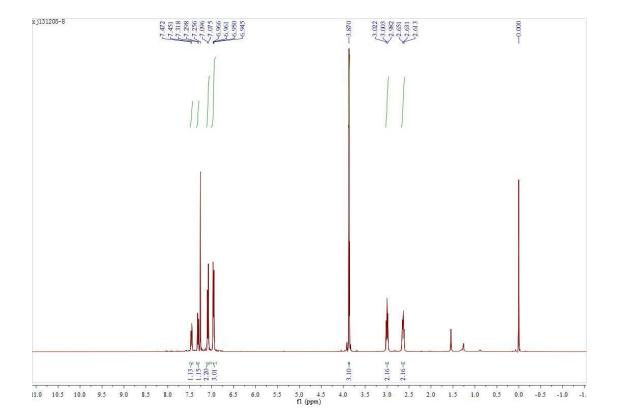

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.10 – 7.03 (m, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 1.8 Hz, 1H), 3.85 (s, 3H), 2.88 (t, *J* = 8.0 Hz, 2H), 2.59 (t, *J* = 8.0 Hz, 2H).

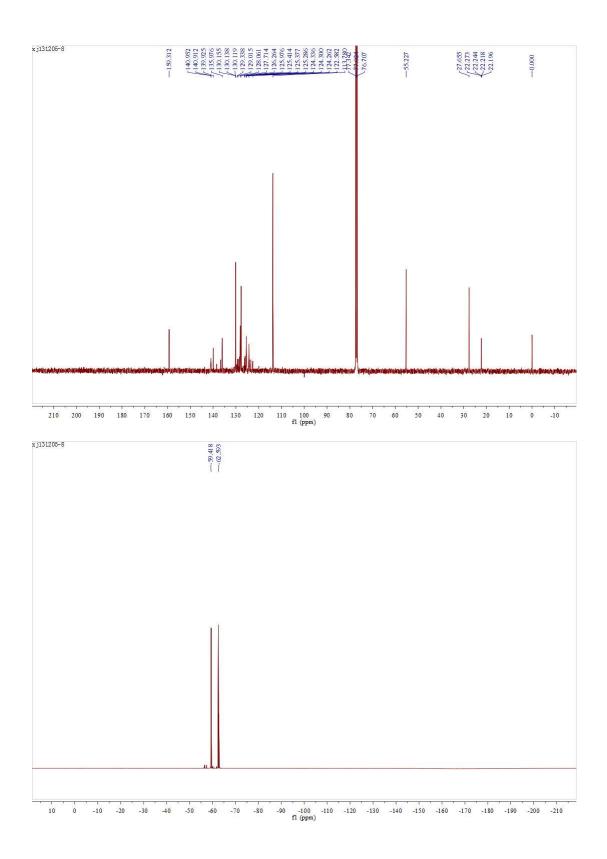
¹³**C NMR** (100 MHz, CDCl₃) δ 159.22, 140.87 (q, *J* = 4.0 Hz), 137.27, 134.89, 131.55, 130.48, 130.12 (q, *J* = 1.9 Hz), 128.84, 128.30, 125.85 (q, *J* = 28.7 Hz), 124.08 (q, *J* = 272 Hz), 120.31, 113.71, 55.21, 27.19, 22.42 (q, *J* = 2.6 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.28.

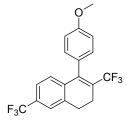
HRMS calcd for $C_{18}H_{14}BrF_{3}O([M]^{+})$: 382.0180; found: 382.0182.

4-(4-methoxyphenyl)-3,6-bis(trifluoromethyl)-1,2-dihydronaphthalene (3j)

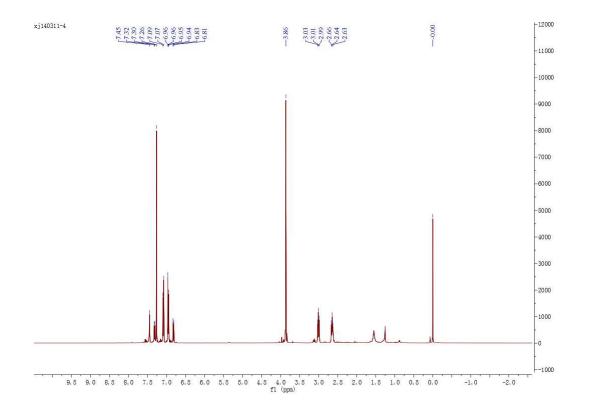


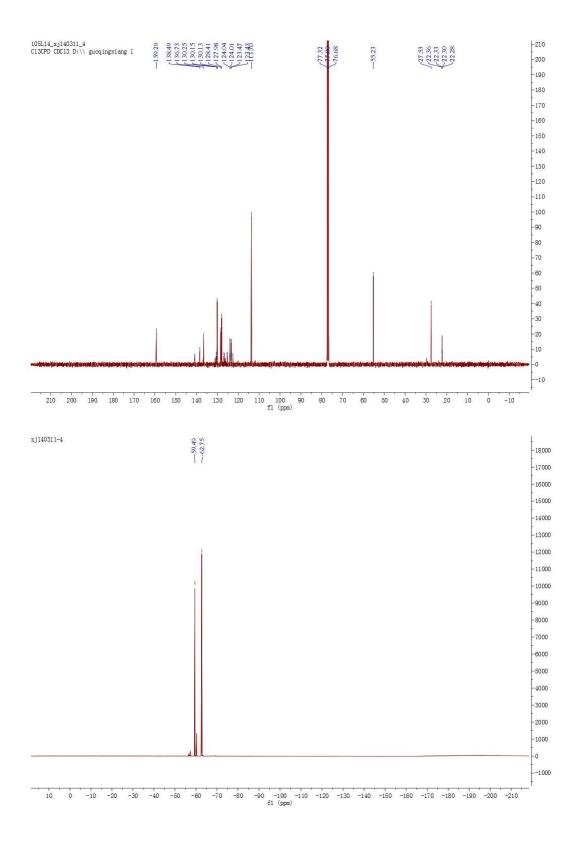

Prepared according to General Procedure E.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.4 Hz, 1H), 7.31 (d, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.96 (m, 3H), 3.87 (s, 3H), 3.00 (t, *J* = 8.0 Hz, 2H), 2.63 (t, *J* = 8.0 Hz, 2H).

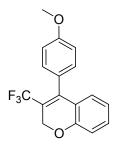

¹³C NMR (100 MHz, CDCl₃) δ 159.31, 140.93 (q, J = 4.2 Hz), 139.93, 135.98, 130.14 (q, J = 1.9 Hz), 129.17 (q, J = 32.3 Hz), 128.06, 127.71, 126.12 (q, J = 28.8 Hz), 125.40 (q, J = 3.7 Hz), 124.28 (q, J = 3.6 Hz), 121.32 (q, J = 272 Hz), 121.23 (q, J = 272 Hz), 113.78, 55.23, 27.65, 22.23 (q, J = 2.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -59.42, -62.59.

HRMS calcd for C₁₉H₁₄F₆O ([M]⁺): 372.0949; found: 372.0946.


4-(4-methoxyphenyl)-3,7-bis(trifluoromethyl)-1,2-dihydronaphthalene (3k)

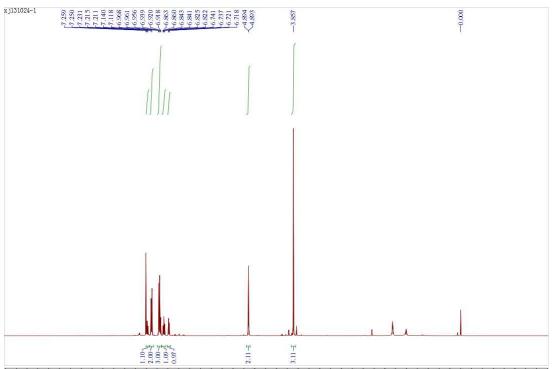


Prepared according to General Procedure E.

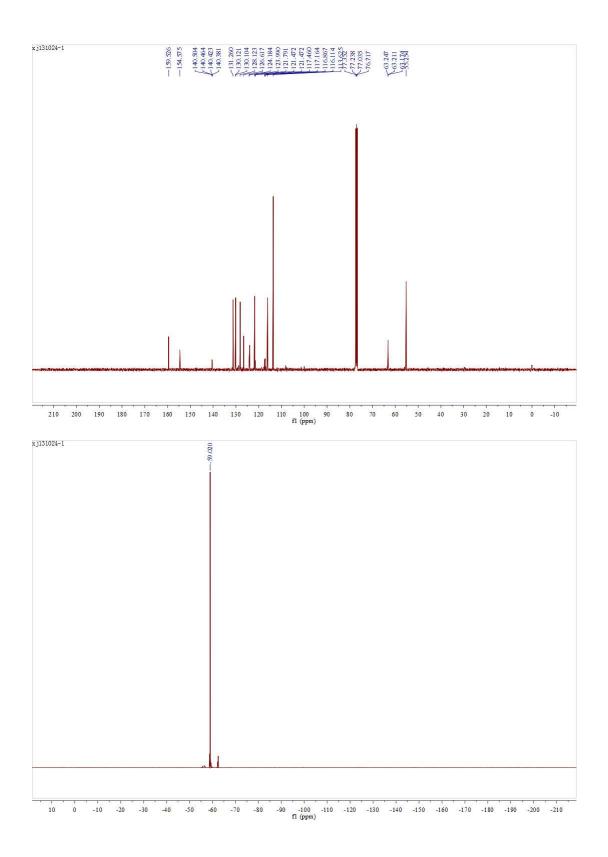

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.31 (d, J = 8.1 Hz, 1H), 7.08 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.2 Hz, 1H), 3.86 (s, 3H), 3.00 (t, J = 7.9 Hz, 2H), 2.64 (t, J = 7.9 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.29, 140.88 (q, J = 5.0 Hz), 138.49, 136.73, 130.42 (q, J = 33.1 Hz), 130.14 (q, J = 1.8 Hz), 128.41, 127.98, 126.82 (q, J = 29.0 Hz), 124.03 (q, J = 3.6 Hz), 123.98 (q, J = 272 Hz), 123.92 (q, J = 271 Hz), 123.45 (q, J = 4.0 Hz), 113.68, 55.23, 27.53, 22.31 (q, J = 2.5 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.49, -62.75.

HRMS calcd for C₁₉H₁₄F₆O ([M]⁺): 372.0949; found: 372.0954.

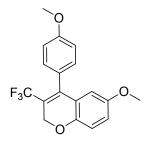
4-(4-methoxyphenyl)-3-(trifluoromethyl)-2H-chromene (3I)


Prepared according to General Procedure E.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (dd, *J* = 11.1, 4.5 Hz, 1H), 7.13 (d, *J* = 8.8 Hz, 2H), 7.00 – 6.90 (m, 3H), 6.84 (t, *J* = 7.7 Hz, 1H), 6.73 (d, *J* = 7.8, 1H), 4.89 (s, 2H), 3.86 (s, 3H).

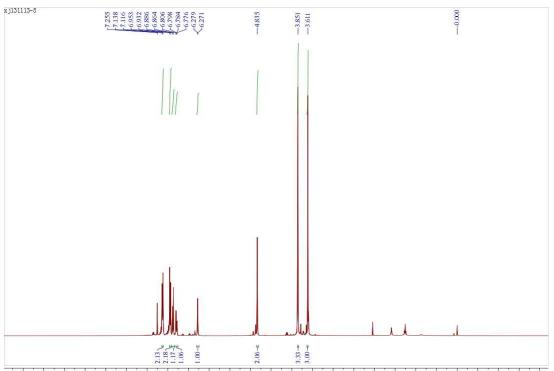

¹³**C NMR** (100 MHz, CDCl₃) δ 159.53, 154.57, 140.44 (q, *J* = 4.1 Hz), 131.26, 130.11 (q, *J* = 1.7 Hz), 128.12, 126.62, 123.99, 122.82 (q, *J* = 271 Hz), 121.79, 117.31 (q, *J* = 29.6 Hz), 116.11, 113.62, 63.19 (q, *J* = 3.7 Hz), 55.25.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.02.

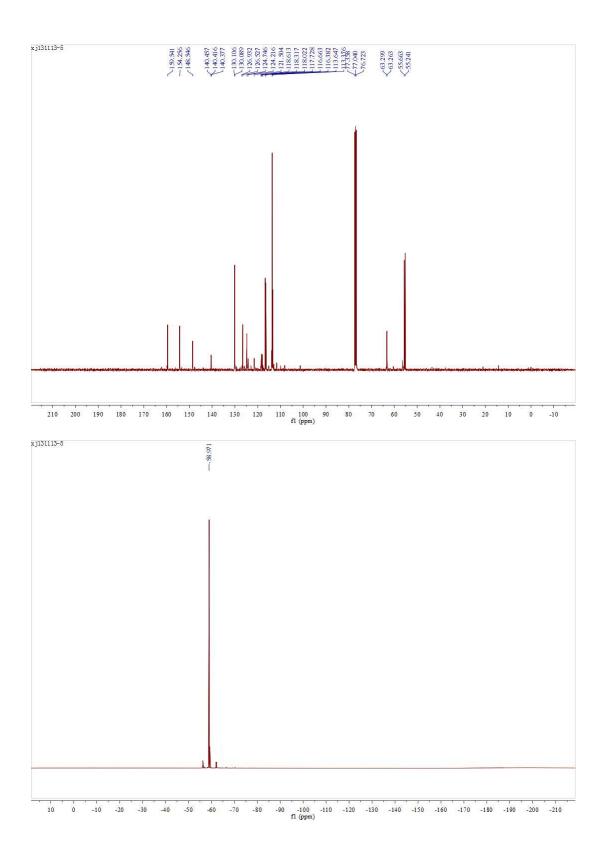

HRMS calcd for $C_{17}H_{13}F_3O_2$ ([M]⁺): 306.0868; found: 306.0871.

).5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.

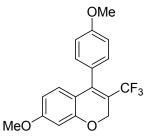
6-methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-2H-chromene (**3m**)



Prepared according to General Procedure E.


¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 1H), 6.79 (dd, *J* = 8.8, 2.9 Hz, 1H), 6.28 (d, *J* = 2.9 Hz, 1H), 4.83 (s, 2H), 3.85 (s, 3H), 3.61 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 159.54, 154.26, 148.55, 140.44 (q, *J* = 4.0 Hz), 130.10 (q, *J* = 1.7 Hz), 126.53, 124.75, 122.85 (q, *J* = 271 Hz), 118.17 (q, *J* = 29.5 Hz), 116.66, 116.38, 113.65, 113.38, 63.28 (q, *J* = 3.6 Hz), 55.66, 55.24.

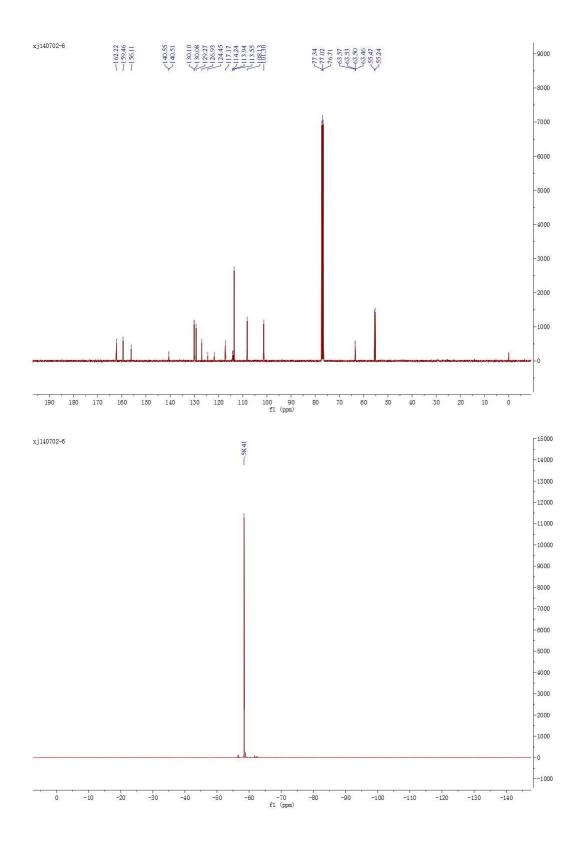
¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.97.


HRMS calcd for C₁₈H₁₅F₃O₃ ([M]⁺): 336.0973; found: 336.0975.

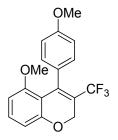
4.5 4.0 3.5 3.0 2.5 2.0 fl (ppm) 10.5 10.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 1.5 1.0 0.5 -0.5 -1.0 -1.5 -2.0 9.5 9.0 7.5 0.0

7-methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-2H-chromene (3n)

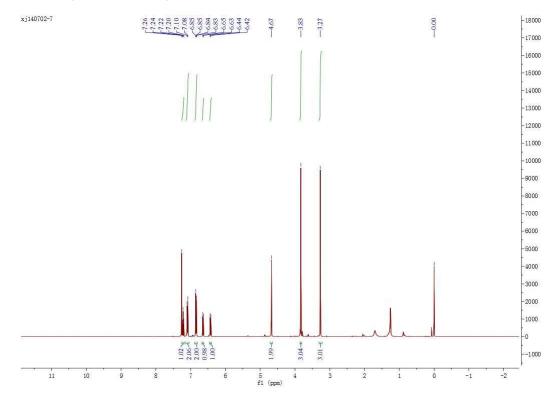


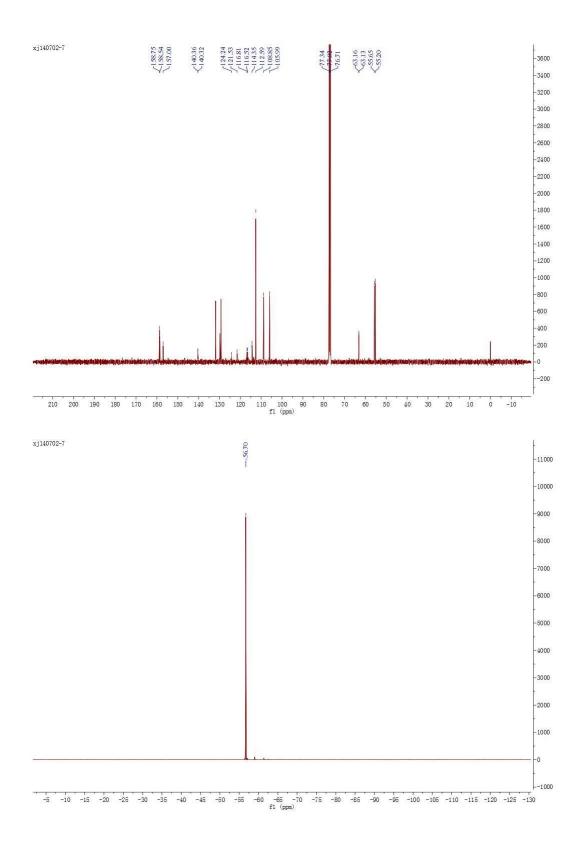

Prepared according to General Procedure E.

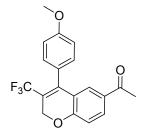
¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.64 (d, *J* = 8.7 Hz, 1H), 6.48 (d, *J* = 2.5 Hz, 1H), 6.39 (dd, *J* = 8.7, 2.5 Hz, 1H), 4.87 (s, 2H), 3.85 (s, 3H), 3.79 (s, 3H).


¹³C NMR (100 MHz, CDCl₃) δ 162.22, 159.46, 156.11, 140.53 (q, J = 4.1 Hz), 130.09 (q, J = 1.7 Hz), 129.27, 126.93, 123.10 (q, J = 271 Hz), 117.17, 114.09 (q, J = 30 Hz), 113.55, 108.13, 101.30, 63.51 (q, J = 3.6 Hz), 55.47, 55.24.

¹⁹F NMR (376 MHz, CDCl₃) δ -58.41.

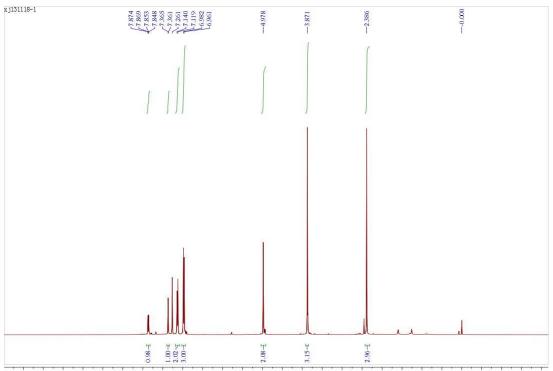



5-methoxy-4-(4-methoxyphenyl)-3-(trifluoromethyl)-2H-chromene (**3n**')

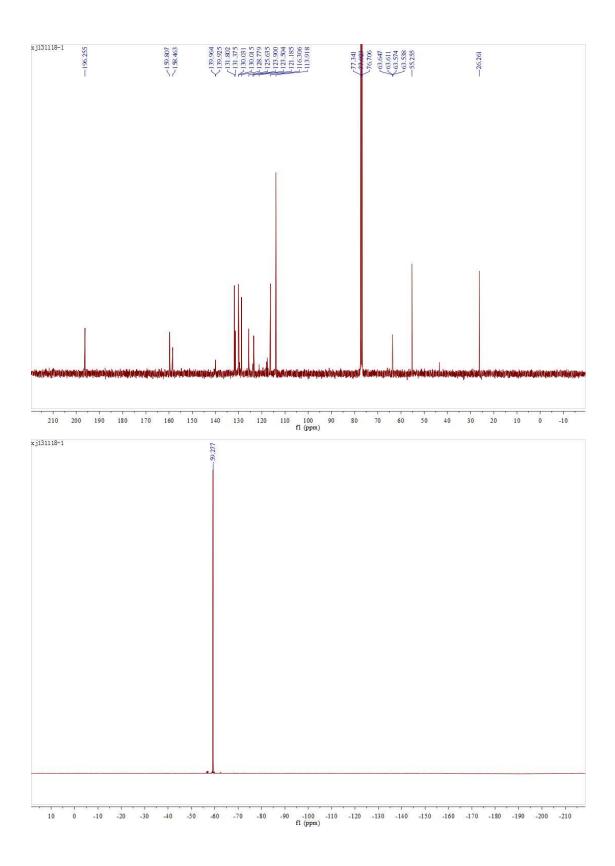

¹H NMR (400 MHz, CDCl₃) δ 7.22 (t, *J* = 8.2 Hz, 1H), 7.09 (d, *J* = 8.6 Hz, 1H), 6.85 (d, *J* = 8.1 Hz, 1H), 6.64 (d, *J* = 8.1 Hz, 1H), 6.43 (d, *J* = 8.0 Hz, 1H), 4.67 (s, 1H), 3.83 (s, 2H), 3.27 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.75, 158.54, 157.00, 140.34 (q, *J* = 4.1 Hz), 131.85, 129.80, 129.24 (q, *J* = 1.9 Hz), 122.88(q, *J* = 271 Hz), 116.67(q, *J* = 29 Hz), 114.35, 112.59, 108.85, 105.99, 63.15 (q, *J* = 3.7 Hz), 55.65, 55.20.

¹⁹F NMR (376 MHz, CDCl₃) δ -56.70.

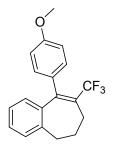
1-(4-(4-methoxyphenyl)-3-(trifluoromethyl)-2H-chromen-6-yl)ethanone (30)


Prepared according to General Procedure E.

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.36 (d, *J* = 1.8 Hz, 1H), 7.13 (d, *J* = 8.6 Hz, 2H), 6.97 (d, *J* = 8.6 Hz, 3H), 4.98 (s, 2H), 3.87 (s, 3H), 2.39 (s, 3H).

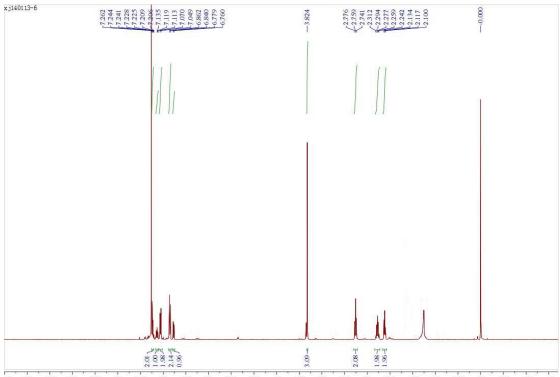

¹³**C NMR** (100 MHz, CDCl₃) δ 196.25, 159.81, 158.46, 139.94 (q, *J* = 4.0 Hz), 131.80, 131.38, 130.02 (q, *J* = 1.7 Hz), 128.78, 125.63, 123.50, 122.54 (q, *J* = 271 Hz), 116.31, 113.92, 63.59 (q, *J* = 3.6 Hz), 55.26, 26.26.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.28.

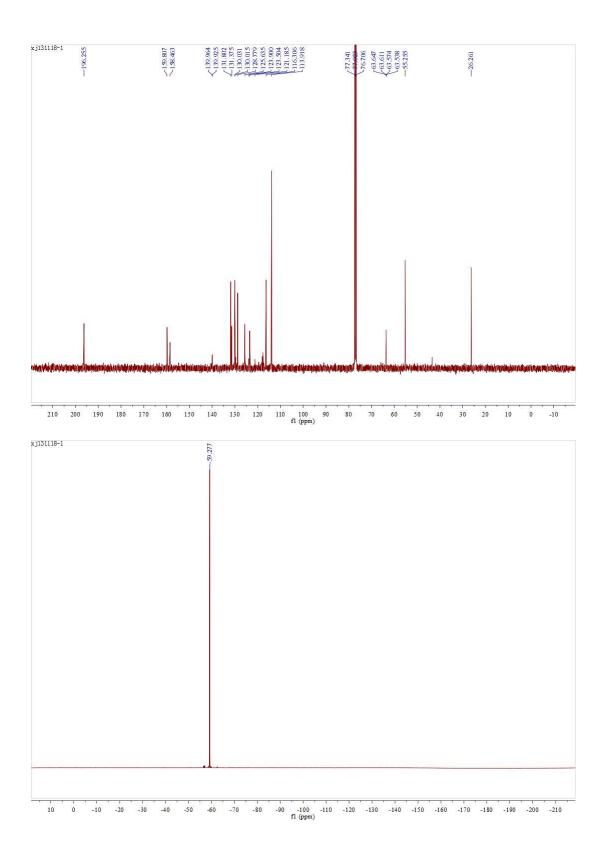

HRMS calcd for $C_{19}H_{15}F_3O_3$ ([M]⁺): 348.0973; found: 348.0976.

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 fl (ppm)

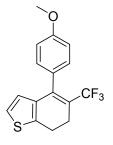
9-(4-methoxyphenyl)-8-(trifluoromethyl)-6,7-dihydro-5H-benzo[7]annulene (3p)



¹**H** NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.16 – 7.11 (m, 1H), 7.06 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 7.5 Hz, 1H), 3.82 (s, 3H), 2.76 (t, *J* = 7.0 Hz, 2H), 2.32 – 2.24 (m, 2H), 2.12 (t, *J* = 6.9 Hz, 2H).

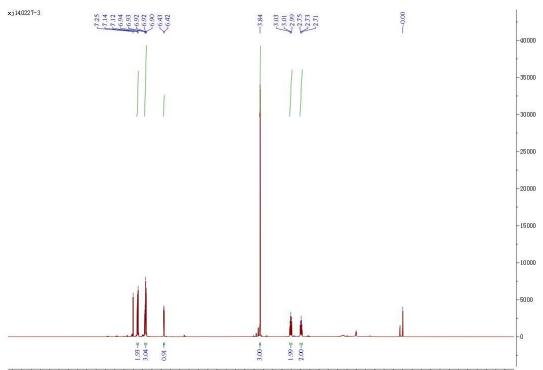

¹³**C NMR** (100 MHz, CDCl₃) δ 159.29, 146.47 (q, *J* = 2.5 Hz), 141.20, 141.04, 132.60, 130.77 (q, *J* = 2.1 Hz), 130.24, 128.55, 128.33, 126.20, 126.12 (q, *J* = 31.3 Hz), 124.88 (q, *J* = 274 Hz), 113.18, 55.21, 35.69, 31.81, 26.38 (q, *J* = 2.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -58.49.

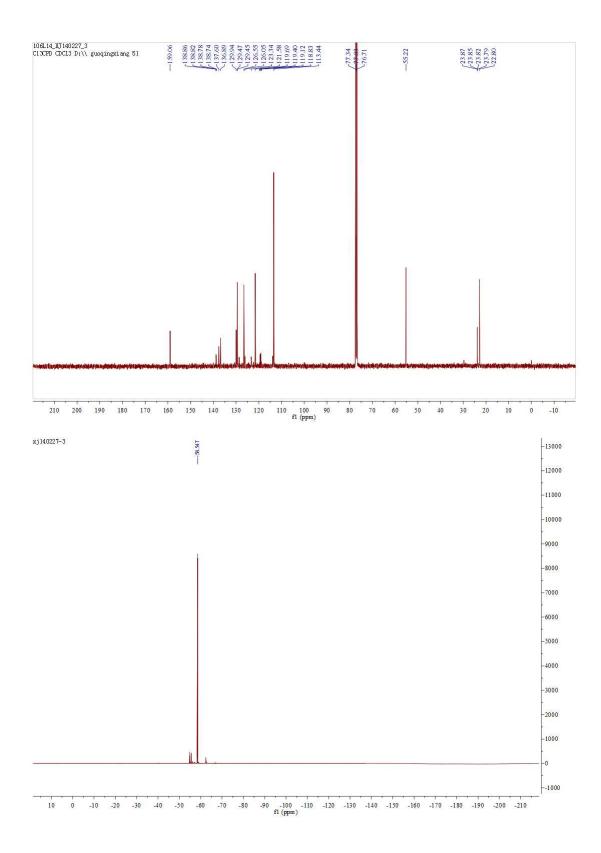

HRMS calcd for C₁₉H₁₇F₃O ([M]⁺): 318.1231; found: 318.1234.

4.5 4.0 fl (ppm) 1.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5

4-(4-methoxyphenyl)-5-(trifluoromethyl)-6,7-dihydrobenzo[b]thiophene (3r)

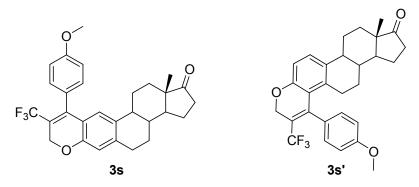

Prepared according to General Procedure E.

¹**H NMR** (400 MHz, CDCl₃) δ 7.13 (d, J = 8.8 Hz, 2H), 6.95 – 6.88 (m, 3H), 6.43 (d, J = 5.2 Hz, 1H), 3.84 (s, 3H), 3.01 (t, J = 8.7 Hz, 2H), 2.73 (t, J = 8.5 Hz, 2H).

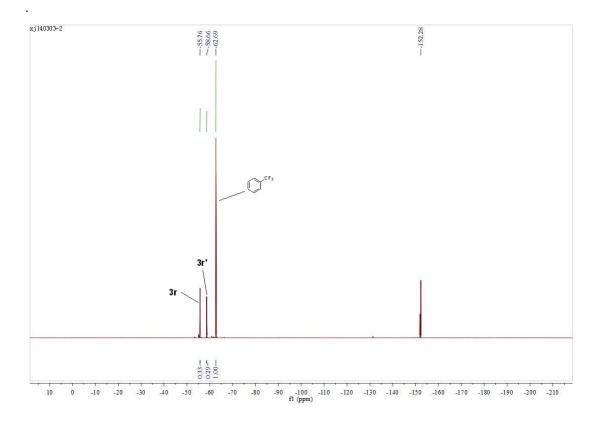

¹³**C NMR** (100 MHz, CDCl₃) δ 159.06, 138.80 (q, *J* = 4.2 Hz), 137.60, 136.89, 129.94, 129.46 (q, *J* = 2.0 Hz), 126.55, 124.70 (q, *J* = 271 Hz), 121.58, 119.29 (q, *J* = 28.6 Hz), 113.44, 55.22, 23.83 (q, *J* = 3 Hz), 22.80.

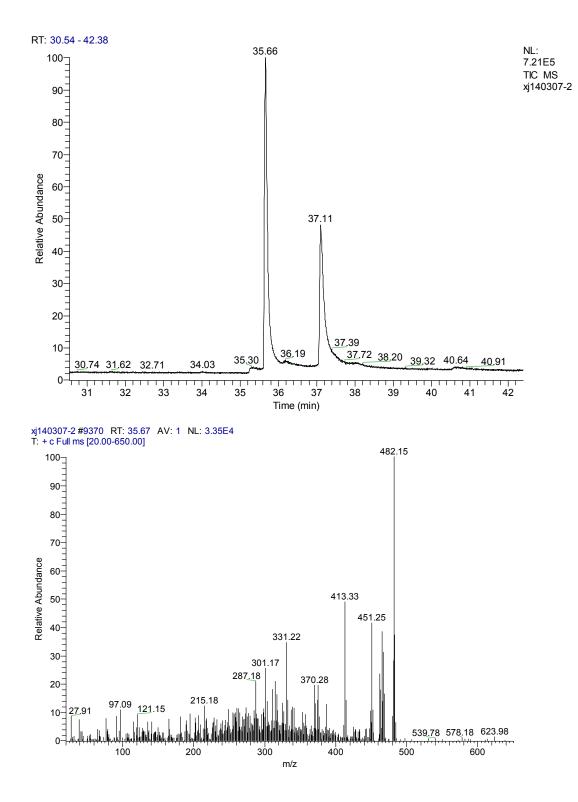
¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.55.

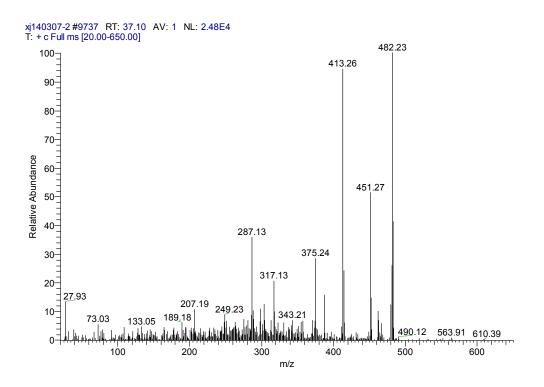
HRMS calcd for C₁₆H₁₃F₃OS ([M]⁺): 310.0639; found: 310.06341.

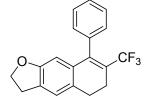


10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -1.0 -2.0 fl (rom)

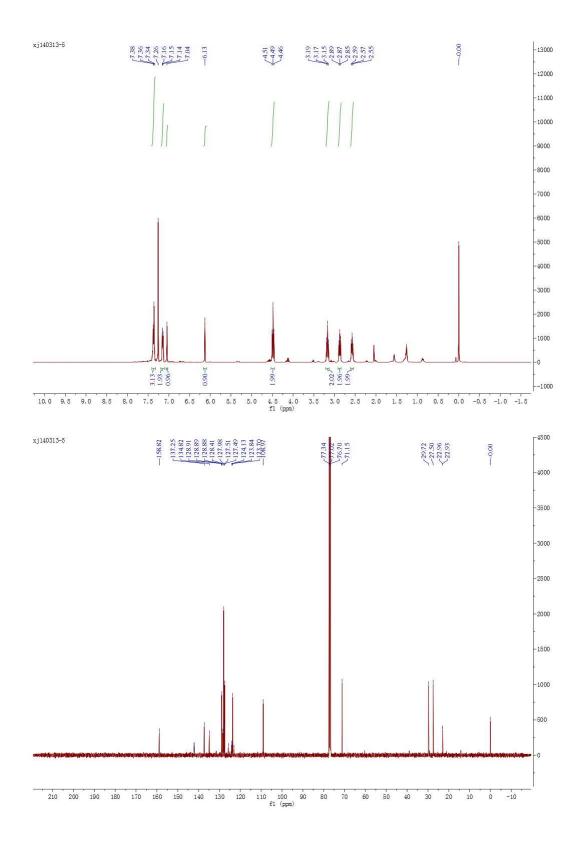


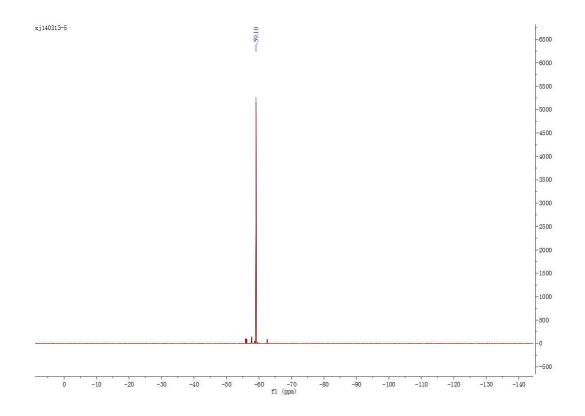

(13aS)-10-(4-methoxyphenyl)-13a-methyl-9-(trifluoromethyl)-3,3a,3b,4,5,8,11b,12,13,13a-decahydrocyclopenta [5,6]naphtho [1,2-g]chromen-1(2H)-one (**3r**) and (8aS)-1-(4-methoxyphenyl)-8a-


methyl-2-(trifluoromethyl)-6b,7,8,8a,10,11,11a,11b,12,13-decahydrocyclopenta[5,6]naphtho[2,1-f]chromen-9(3H)-one (**3s'**)

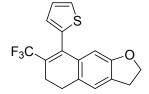

Note: Prepared according to General Procedure **E**, and the yield and ratio were determined by ¹⁹F NMR with PhCF₃ as internal stansard. The two products can not be separated from each other by column chromatographic for the similar polarity, and the molecular weight and structures was determined by GC-MS and HRMS (calcd for $C_{29}H_{30}F_3O_3$ ([M+H]⁺): 483.2147; found: 483.2145.

8-phenyl-7-(trifluoromethyl)-2,3,5,6-tetrahydronaphtho[2,3-b]furan (3t)



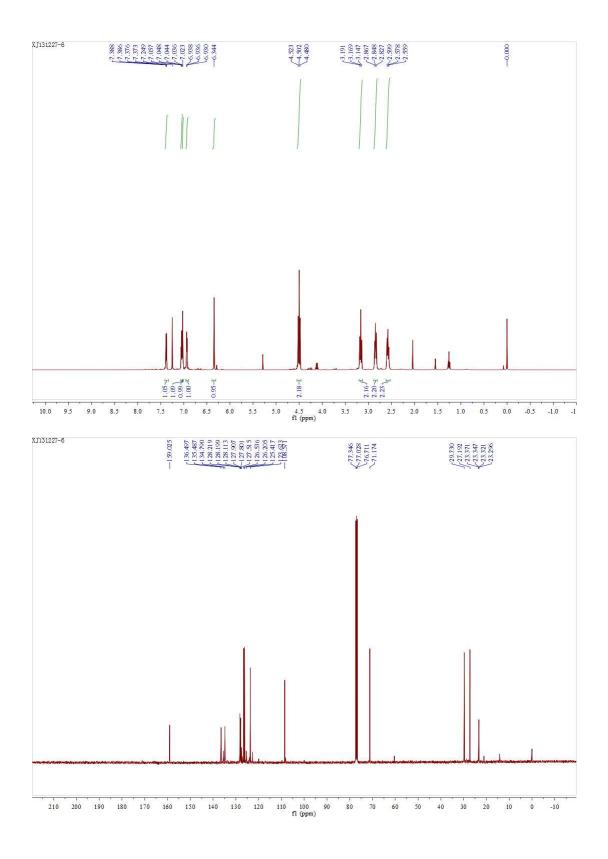

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (m, 3H), 7.15 (d, *J* = 8 Hz, 2H), 7.04 (s, 1H), 6.13 (s, 1H), 4.49 (t, *J* = 8.7 Hz, 2H), 3.17 (t, *J* = 8.7 Hz, 2H), 2.87 (t, *J* = 8 Hz, 2H), 2.57 (t, *J* = 7.9 Hz, 2H).

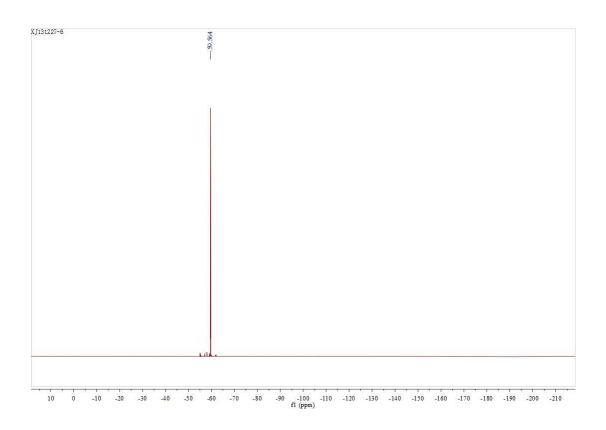
¹³**C NMR** (100 MHz, CDCl₃) δ 158.82, 142.12 (q, *J* = 2 Hz), 137.25, 134.82, 128.90 (q, *J* = 2 Hz), 128.41, 127.98, 127.51, 127.49, 124.35 (q, *J* = 271 Hz), 123.98 (q, *J* = 29 Hz), 123.70, 108.97, 71.15, 29.72, 27.50, 22.95 (q, *J* = 2.5 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.10.

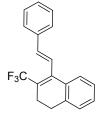
HRMS calcd for C₁₉H₁₅F₃O ([M]⁺): 316.1075; found: 316.1078.

8-(thiophen-2-yl)-7-(trifluoromethyl)-2,3,5,6-tetrahydronaphtho[2,3-b]furan (3u)

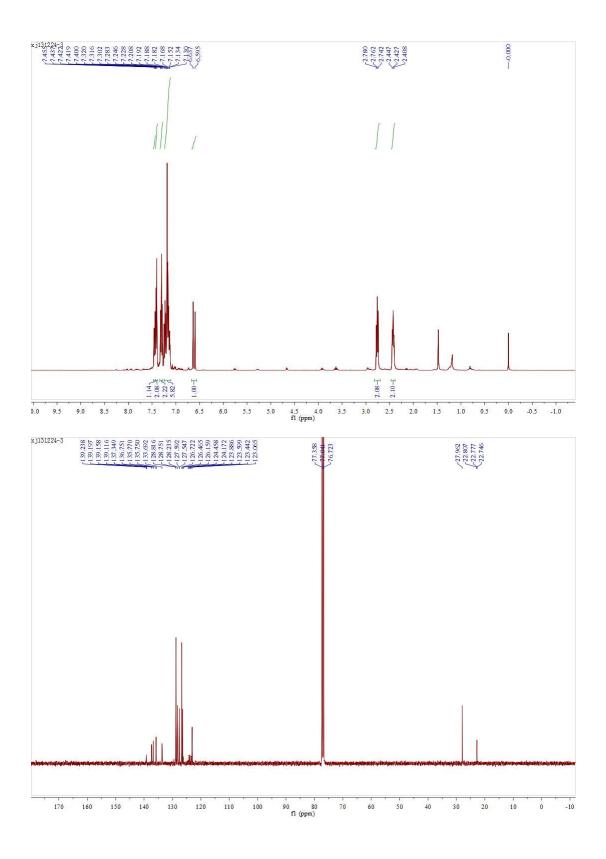

Prepared according to General Procedure E.

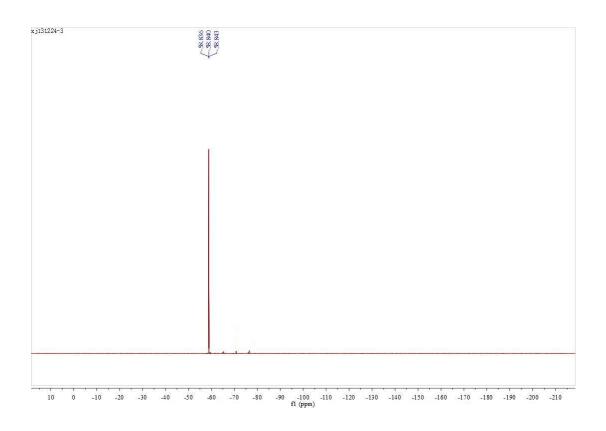

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 (dd, J = 5.1, 1.0 Hz, 1H), 7.04 (m, 1H), 7.02 (s, 1H), 6.93 (d, J = 3.2 Hz, 1H), 6.34 (s, 1H), 4.50 (t, J = 8.7 Hz, 2H), 3.17 (t, J = 8.6 Hz, 2H), 2.85 (t, J = 8.4 Hz, 2H), 2.58 (t, J = 7.9 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.03, 136.50, 135.47 (q, *J* = 4.0 Hz), 134.79, 128.21 (q, *J* = 2.0 Hz), 128.11, 127.90, 127.66 (q, *J* = 28.6 Hz), 126.54, 126.20, 124.06 (q, *J* = 271 Hz), 123.62, 108.57, 71.17, 29.73, 27.19, 23.33 (q, *J* = 2.6 Hz).

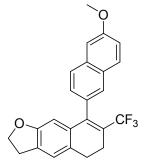

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.56.

HRMS calcd for C₁₇H₁₃F₃OS ([M]⁺): 322.0639; found: 322.0642.


(E)-4-styryl-3-(trifluoromethyl)-1,2-dihydronaphthalene (**3v**)

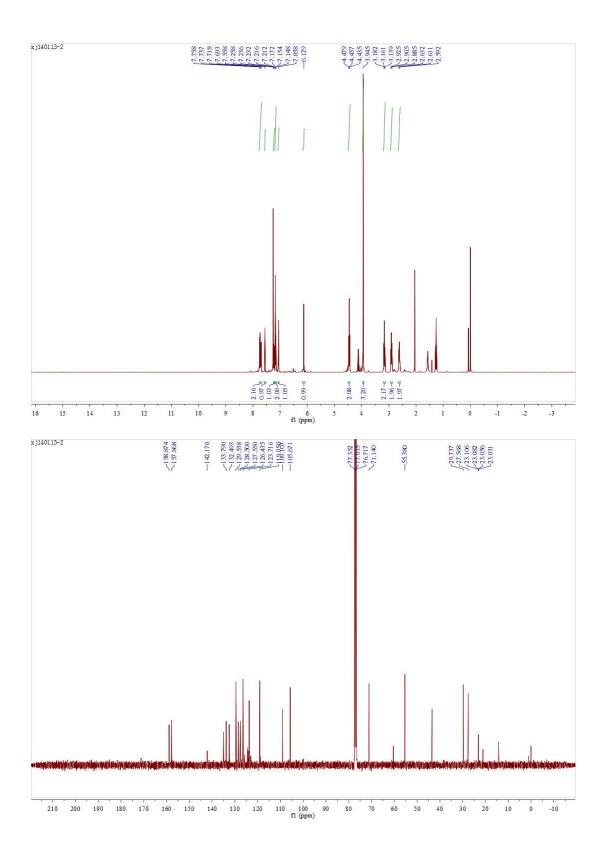


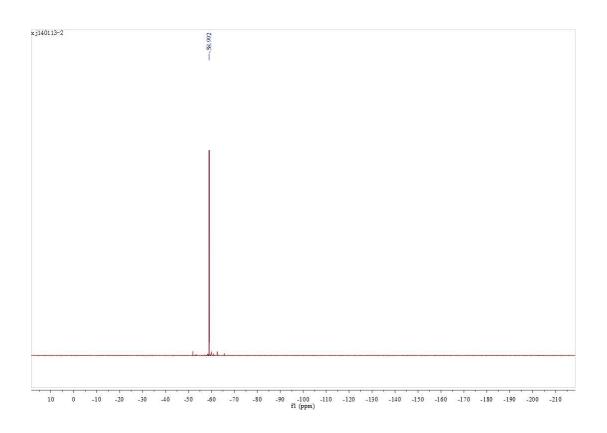
¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (t, *J* = 7.2 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.31 (t, *J* = 5.6 Hz, 2H), 7.24 – 7.10 (m, 5H), 6.62 (d, *J* = 16.5 Hz, 1H), 2.76 (t, *J* = 7.8 Hz, 2H), 2.43 (t, *J* = 7.7 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 139.18 (q, *J* = 4.2 Hz), 137.35, 136.75, 135.76 (q, *J* = 2.0 Hz), 133.69, 128.81, 128.75, 128.24, 127.59, 127.55, 126.72, 126.46, 124.80 (q, *J* = 271 Hz), 124.03 (q, *J* = 28.6 Hz), 123.07, 27.96, 22.79 (q, *J* = 3.1 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.84.

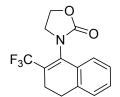
HRMS calcd for $C_{19}H_{15}F_3$ ([M]⁺): 300.1126; found: 300.1129.

8-(6-methoxynaphthalen-2-yl)-7-(trifluoromethyl)-2,3,5,6-tetrahydronaphtho[2,3-b]furan (3w)

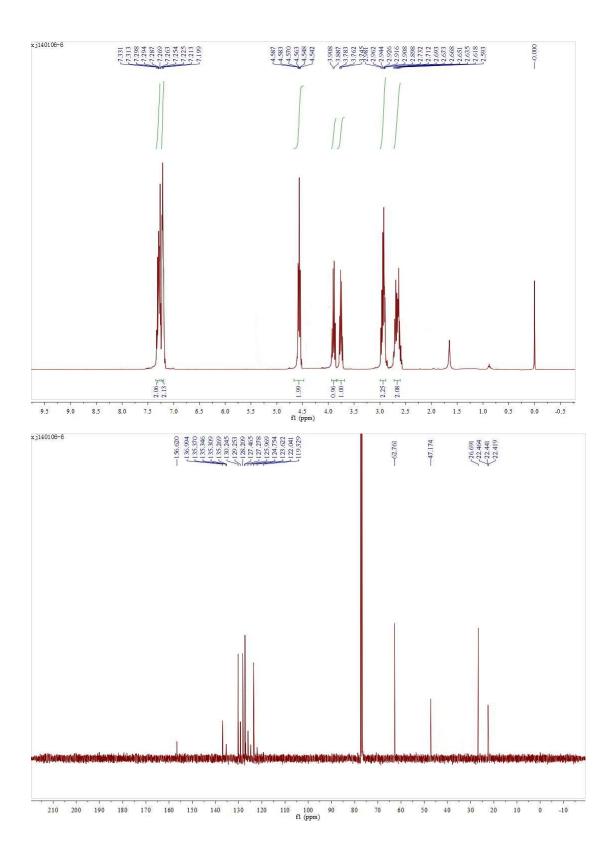


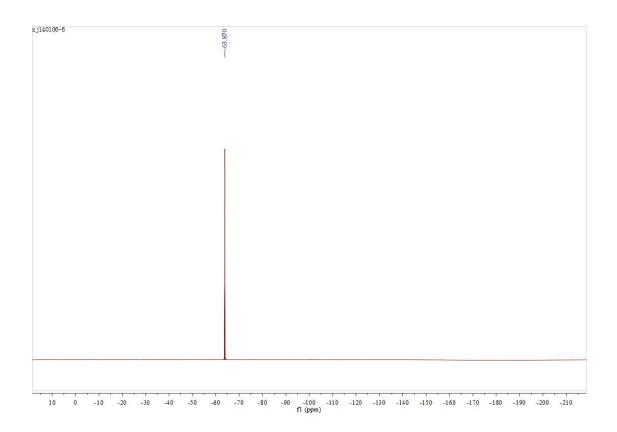

¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 10 Hz, 1H), 7.56 (s, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 7.19 – 7.14 (m, 2H), 7.06 (s, 1H), 6.13 (s, 1H), 4.46 (t, J = 8.7 Hz, 2H), 3.94 (s, 3H), 3.16 (t, J = 8.7 Hz, 2H), 2.90 (t, J = 8.0 Hz, 2H), 2.61 (t, J = 7.9 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 158.87, 157.87, 142.17, 135.04, 133.79, 132.49, 129.54, 128.50, 128.45, 127.68, 127.63, 127.45, 126.44, 124.44 (q, J = 272 Hz), 124.33 (q, J = 28.5 Hz), 123.72, 119.05, 109.11, 105.67, 71.14, 55.38, 29.74, 27.57, 23.07 (q, J = 2.5 Hz).


¹⁹F NMR (376 MHz, CDCl₃) δ -58.99.

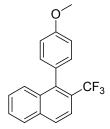
HRMS calcd for C₂₄H₁₉F₃O₂ ([M]⁺): 396.1337; found: 396.1334.




3-(2-(trifluoromethyl)-3,4-dihydronaphthalen-1-yl)oxazolidin-2-one (3x)

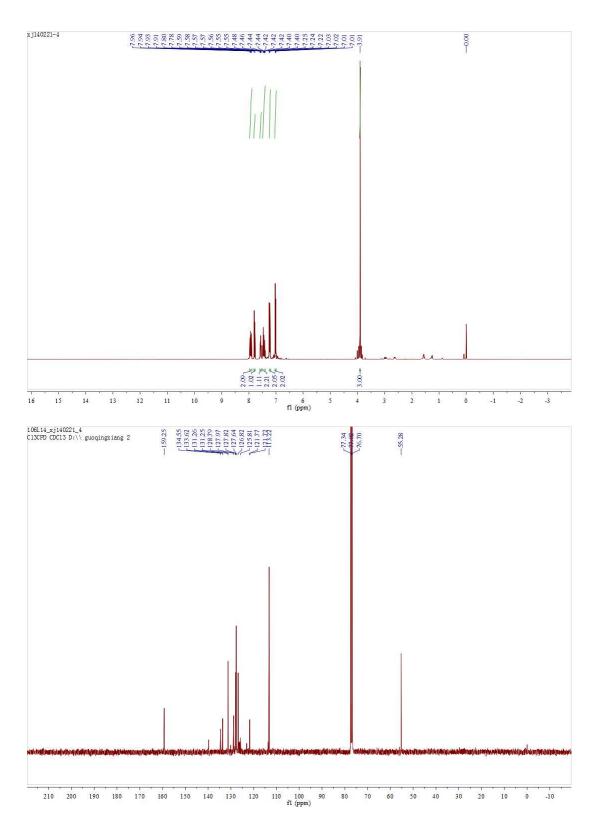
¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.21 (m, 2H), 4.67 – 4.48 (m, 2H), 3.90 (dd, J = 16.7, 8.5 Hz, 1H), 3.75 (dd, J = 15.3, 8.4 Hz, 1H), 2.99 – 2.89 (m, 2H), 2.73 – 2.59 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.62, 136.99, 135.32 (q, J = 3.7 Hz), 130.25, 129.25, 128.21, 127.28, 125.97, 123.62, 123.39 (q, J = 271 Hz), 62.76, 47.17, 26.69, 22.45 (q, J = 2.3 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.87.

HRMS calcd for $C_{14}H_{12}F_3NO_2$ ([M]⁺): 283.0820; found: 283.0824.

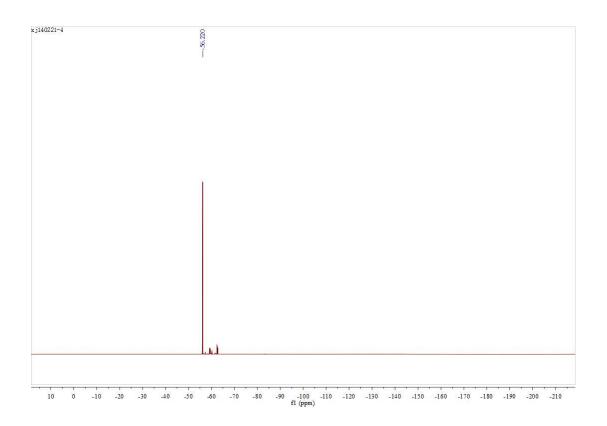


IV. Synthetic Application

1. Representative Procedure for Aromatization²


To a solution of 4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2-dihydronaphthalene (**3a**, 0.2 mmol) in toluene (2 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (2 equiv) and the mixture heated to reflux for 16 h. The reaction mixture was cooled to room temperature and quenched by addition of NaHCO₃. The aqueous layer was separated and extracted with dichloromethane. The combined organics were washed with brine, dried (MgSO₄) and the solvent removed in vacuo. Purification by flash chromatography gave **4a**.

1-(4-methoxyphenyl)-2-(trifluoromethyl)naphthalene (4a)



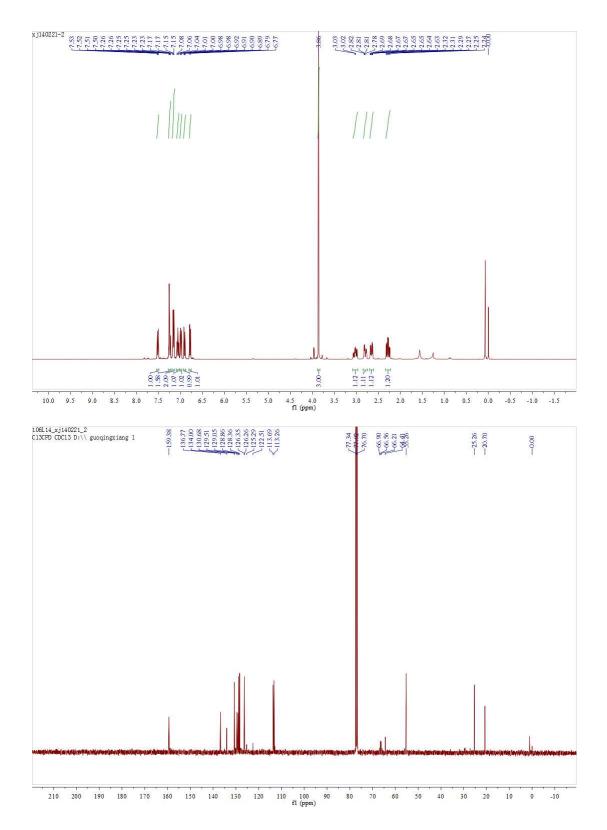
¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (dd, J = 13.5, 8.5 Hz, 2H), 7.79 (d, J = 8.8 Hz, 1H), 7.57 (t, J = 6.6Hz, 1H), 7.50 – 7.39 (m, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.02 (d, J = 8.8 Hz, 2H), 3.91 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 159.25, 139.81, 134.55, 133.62, 131.25 (q, J = 1.3 Hz), 128.79, 127.97, 127.82, 127.66, 127.63, 126.82, 126.24 (q, J = 29 Hz), 124.45(q, J = 273 Hz), 121.74 (q, J = 5.0 Hz), 113.22, 55.28;

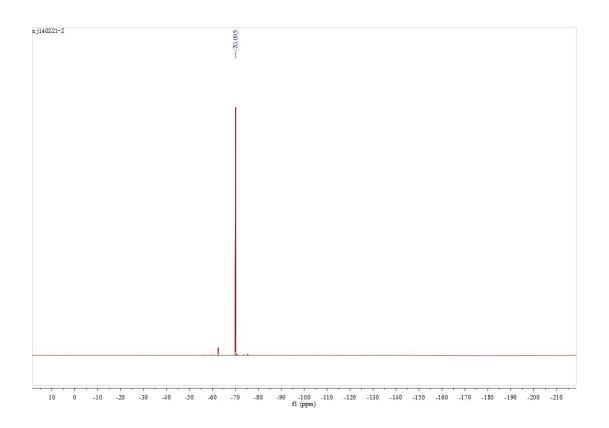
¹⁹F NMR (376 MHz, CDCl₃) δ -56.22.

HRMS calcd for C₁₈H₁₃F₃O ([M]⁺): 302.0918; found: 302.0922.

2. Representative Procedure for Epoxidation³

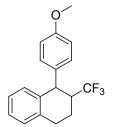
A solution of m-Chloroperbenzoic acid (70% w/w, 0.8 mmol, 4 equiv) in CHCl₃ (2 mL) was added dropwise to a solution of 4-(4-methoxyphenyl)-3-(trifluoromethyl)-1,2- dihydronaphthalene (**3a**, 0.2 mmol) in CHCl₃ (0.6 mL) at 0 °C, and the solution was warmed to room temperature. After the solution was stirred for 12 h, CH₂Cl₂ (10 mL) was added, and the reaction mixture was washed with 2.5 M NaOH three times. The organic phase was dried over sodium sulfate and concentrated under reduced pressure, and purified by column chromatography on silica gel with petroleum ether / ethyl acetate to afford **5a**.


7b-(4-methoxyphenyl)-1a-(trifluoromethyl)-1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene (5a)


¹**H** NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 8.5, 2.2 Hz, 1H), 7.25 (t, J = 7.4Hz, 1H), 7.16 (d, J = 8.4, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.99 (dd, J = 8.5, 2.7 Hz, 1H), 6.91 (dd, J = 8.5, 2.7 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 3.86 (s, 3H), 3.09 – 2.97 (m, 1H), 2.85 – 2.75 (m, 1H), 2.66 (m, 1H), 2.28 (m, 1H);

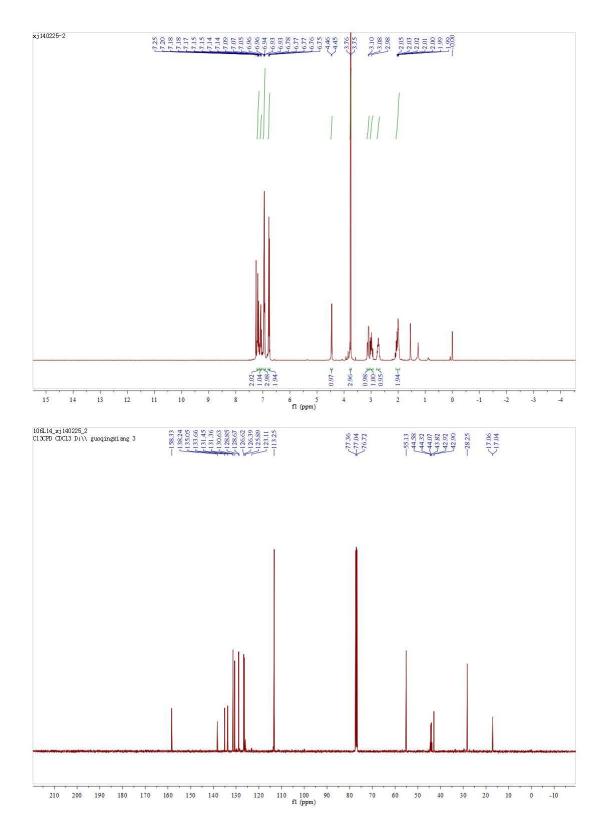
¹³**C NMR** (100 MHz, CDCl₃) δ 159.38, 136.77, 134.00, 130.68, 129.51, 129.05, 128.86, 128.36, 126.35, 126.26, 123.90 (q, *J* =278 Hz), 113.69, 113.26, 66.38 (q, *J* =35 Hz), 64.41, 55.26, 25.26, 20.70;

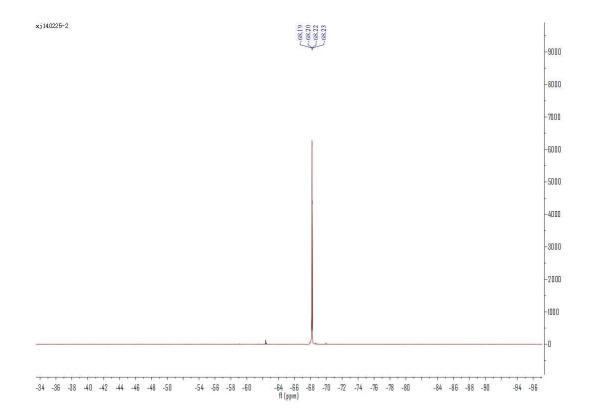
¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.09.


HRMS calcd for $C_{18}H_{15}F_3O_2$ ([M]⁺): 320.1024; found: 320.1029.

3. Representative Procedure for Hydrogenation⁴

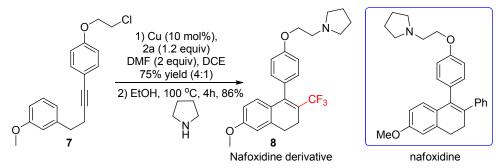
An oven-dried reaction tube was charged with a magnetic stir-bar, **3a** (0.2 mmol), and 5% Pd on carbon (18 mg). The vessel was sealed before being evacuated and filled with argon, and then methanol (2 ml) and THF (0.2 ml) was added. The reaction was stirred at room temperature under H_2 atmosphere (345 kpa) for 12 h. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products **6a**.


1-(4-methoxyphenyl)-2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalene (6a)

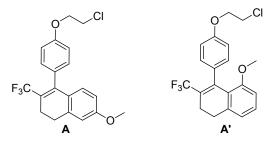

¹**H** NMR (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 2H), 7.07 (t, *J* = 7.3 Hz, 1H), 6.99 – 6.90 (m, 3H), 6.81 – 6.73 (m, 2H), 4.46 (d, *J* = 4.2 Hz, 1H), 3.75 (d, *J* = 1.5 Hz, 3H), 3.15 – 3.07 (m, 1H), 3.04 – 2.93 (m, 1H), 2.77 – 2.69 (m, 1H), 2.09 – 1.94 (m, 2H);

¹³**C NMR** (100 MHz, CDCl₃) δ 158.33, 138.24, 135.05, 133.66, 131.40 (q, *J* = 8.7 Hz), 130.63, 128.85, 127.28, 126.62, 126.39, 113.25, 55.13, 44.20 (q, *J* = 25 Hz), 42.91 (q, *J* = 1.8 Hz), 28.25, 17.05 (q, *J* = 2.3 Hz);

¹⁹**F** NMR (376 MHz, CDCl₃) δ -68.20 (d, J = 11.3 Hz), -68.22 (d, J = 11.3 Hz).



HRMS calcd for $C_{18}H_{17}F_{3}O([M]^{+})$: 306.1231; found: 306.1235.



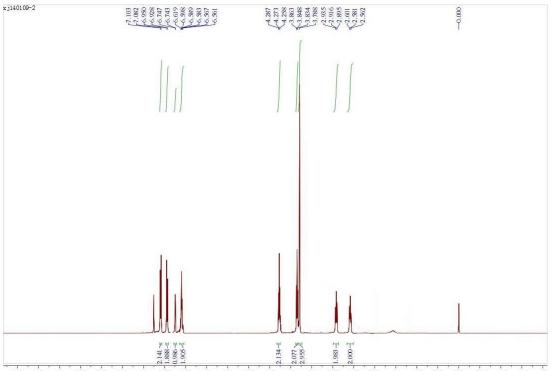
4. Synthesis of Nafoxidine derivative 8

1-(4-(4-(2-Chloroethoxy)phenyl)but-3-yn-1-yl)-3-methoxybenzene (7) was prepared according to the literature¹.

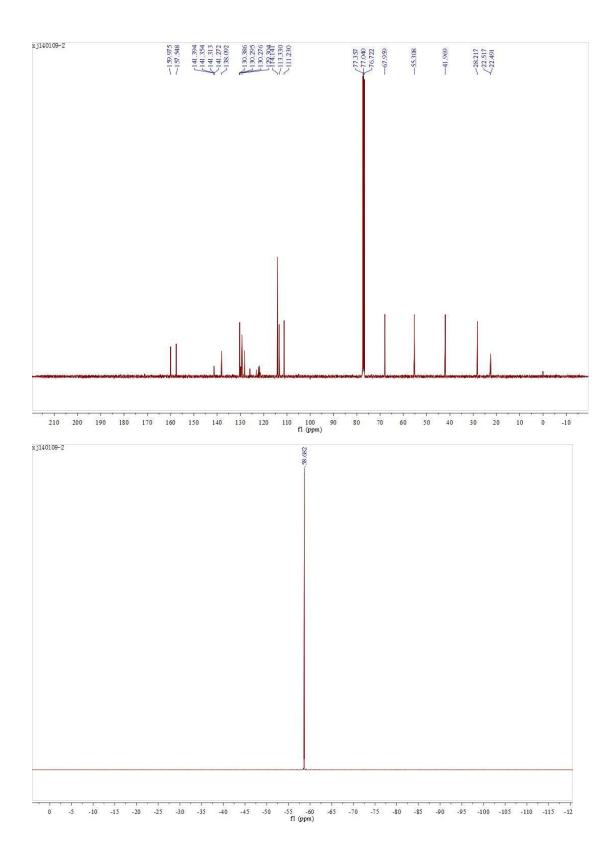
4-(4-(2-chloroethoxy)phenyl)-7-methoxy-3-(trifluoromethyl)-1,2-dihydronaphthalene (A)

Prepared according to General Procedure **D**. A reaction tube was charged with Cu (2.56 mg, 10 mmol%), **1A** (0.4 mmol) and **2a** (0.48 mmol, 163.2 mg), the vessel was sealed before being evacuated and filled with argon (three times). DMF (0.8 mmol, 61.6 μ L), and DCE (2 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction

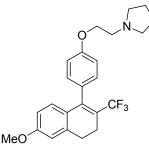
mixture was kept for 24 h at 80 °C. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products A as a white solid. The isomer A' was isolated as a mixture with A (1:4) to give an overall isolated yield of 75%.


Characterisation data for major isomer (A):

¹**H** NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.74 (d, J = 1.6 Hz, 1H), 6.64 – 6.54 (m, 2H), 4.27 (t, J = 5.9 Hz, 2H), 3.85 (t, J = 5.9 Hz, 2H), 3.79 (s, 3H), 2.91 (t, J = 8.0 Hz, 2H), 2.58 (t, J = 7.9 Hz, 2H).

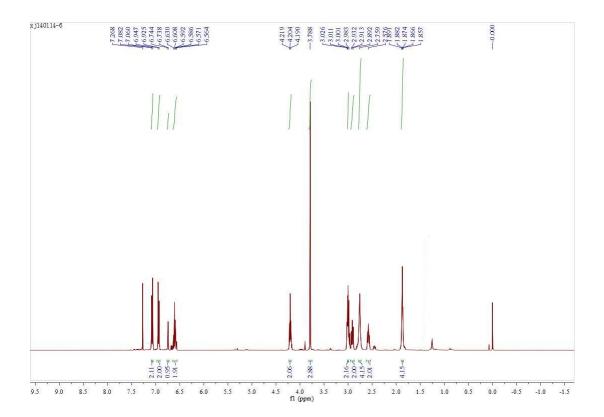

¹³**C NMR** (100 MHz, CDCl₃) δ 159.98, 157.55, 141.33 (q, *J* = 4.1 Hz), 138.09, 130.39, 130.28 (q, *J* = 1.8 Hz), 129.30, 128.21, 124.55 (q, *J* = 271 Hz), 121.97 (q, *J* = 28.4 Hz), 114.14, 113.33, 111.23, 67.96, 55.31, 41.97, 28.22, 22.50 (q, *J* = 2.6 Hz).

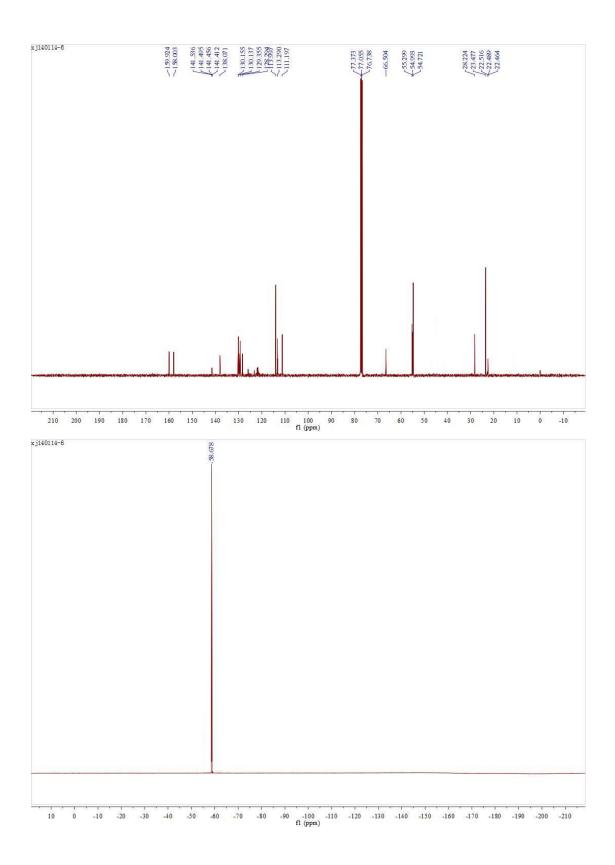
¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.68.


HRMS calcd for $C_{20}H_{18}ClF_{3}O_{2}$ ([M]⁺): 382.0947; found: 382.0949.

4.5 4.0 fl (ppm) 3.0 10.5 10.0 8.5 8.0 7.0 6.5 6.0 5.5 3.5 2.5 2.0 -0.5 -1.0 -1.5 -2.0 7.5 1.0 0.0 1.5

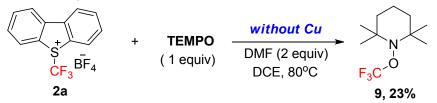
1-(2-(4-(6-methoxy-2-(trifluoromethyl)-3,4-dihydronaphthalen-1-yl)phenoxy)ethyl)pyrrolidine (8)

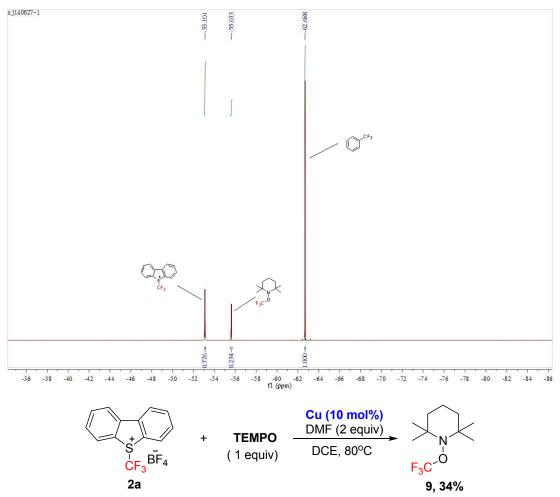

4-(4-(2-chloroethoxy)phenyl)-7-methoxy-3-(trifluoromethyl)-1,2-dihydronaphthalene (A) (76.4 mg, 0.2 mmol) was dissolved in ethanol (0.25 mL) and pyrrolidine (0.25 mL) and the mixture heated in a sealed tube for 4 h. The reaction mixture was cooled to room temperature and the solvent removed in vacuo. The residue was purified by flash chromatography on basic alumina to give compound 7 (71.7 mg, 86%) as a pale yellow solid.


¹**H** NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 2.3 Hz, 1H), 6.64 – 6.56 (m, 2H), 4.20 (t, J = 5.8 Hz, 2H), 3.79 (s, 3H), 3.01– 2.98 (m, 2H), 2.95 – 2.87 (m, 2H), 2.80 – 2.72 (m, 4H), 2.58 (m, 2H), 1.91 – 1.84 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 159.92, 158.00, 141.47 (q, *J* = 4.2 Hz), 138.07, 130.15 (q, *J* = 1.8 Hz), 129.79, 129.36, 128.29, 124.57 (q, *J* = 272 Hz), 121.83 (q, *J* = 30.4 Hz), 114.00, 113.29, 111.20, 66.50, 55.30, 54.99, 54.72, 28.22, 23.48, 22.50 (q, *J* = 2.7 Hz).

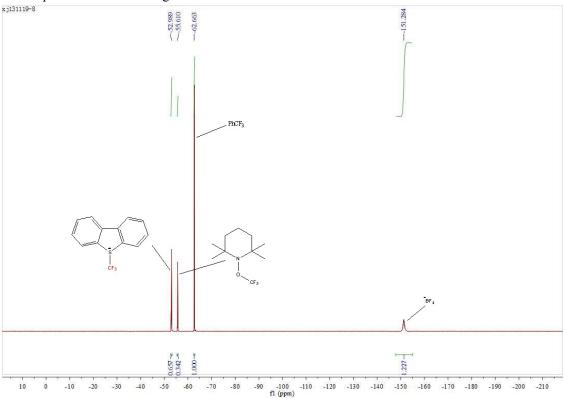
¹⁹F NMR (376 MHz, CDCl₃) δ -58.68.

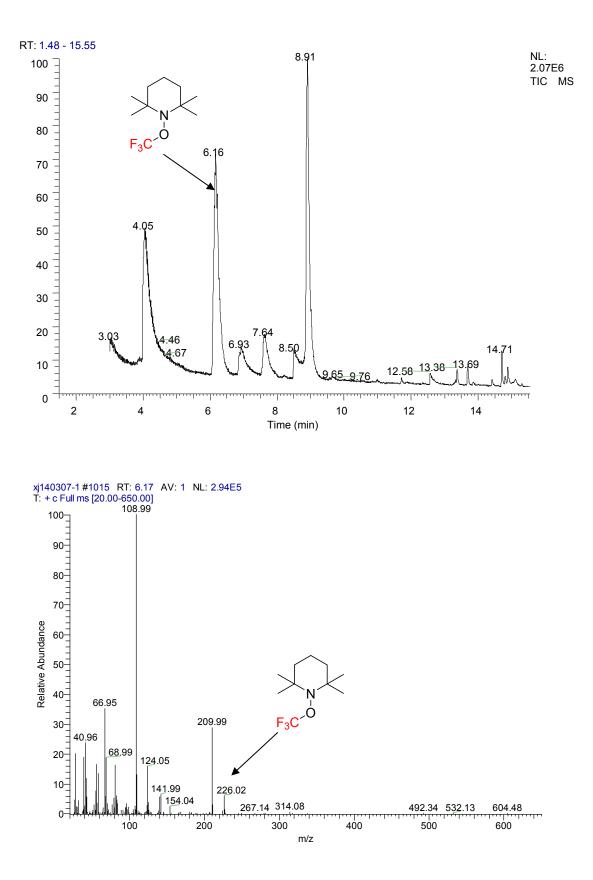

HRMS calcd for C₁₁H₉F₃O ([M]⁺): 417.1916; found: 417.1921.



V. Mechanistic Study

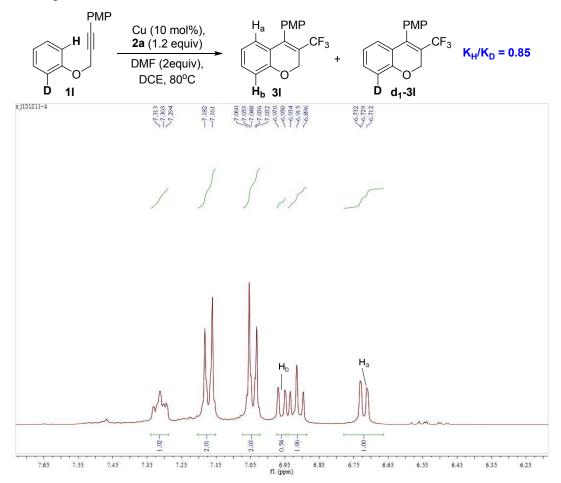
1. capture of the CF₃ radical.



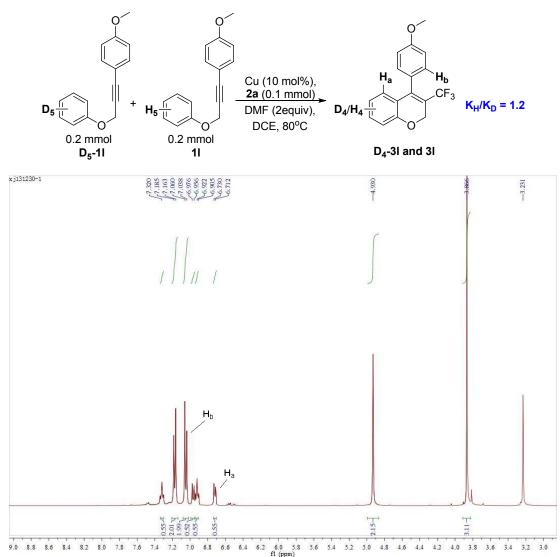

An oven-dried reaction tube was charged with a magnetic stir-bar, **2a** (0.1 mmol, 34 mg), TEMPO (0.1 mmol, 15.6 mg). The vessel was sealed before being evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 μ L), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 1 h at the 80°C. Then, the stirring was stopped, and PhCF₃ (0.1 mmol, 12.5 μ L) was added to the reaction mixture. ¹⁹F NMR analysis of this reaction mixture showed that TEMPO-CF₃ was formed [¹⁹FNMR (376 MHz, CDCl3) δ -55.61] in 23% ¹⁹F NMR yield. ¹⁹F NMR spectrum was matching with literature data.

An oven-dried reaction tube was charged with a magnetic stir-bar, **2a** (0.1 mmol, 34 mg), TEMPO (0.1 mmol, 15.6 mg), and Cu powder (0.01 mmol, 0.64 mg). The vessel was sealed before being

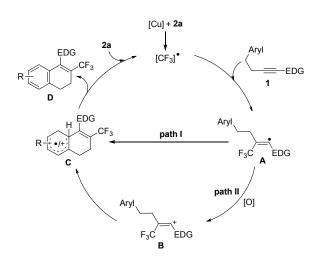
evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 μ L), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 1 h at the 80°C. Then, the stirring was stopped, and PhCF₃ (0.1 mmol, 12.5 μ L) was added to the reaction mixture. ¹⁹F NMR analysis of this reaction mixture showed that TEMPO-CF₃ was formed [¹⁹FNMR (376 MHz, CDCl3) δ -55.61] in 34% ¹⁹F NMR yield. ¹⁹F NMR spectrum was matching with literature data.



2. isotope labeling experiments

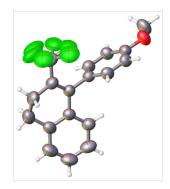

a. intramolecular isotope labeling experiments.

A reaction tube was charged with Cu (1.28 mg, 10 mmol%), d_I -11 (0.2 mmol, 47.8 mg) and 2a (0.24 mmol, 81.7 mg), the vessel was sealed before being evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 µL), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 24 h at 80°C. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products **31** and d_I -**31**. The K_H/K_D was determined by the analysis followed by Yu et al. The ratio **31** and d_I -**31**. Was analyzed by ¹H NMR. The yield of **31**, **X**, was determined by integration of the H_b signal of **31**, which appeared as a doublets approximately at 6.96 ppm. The total yield of **31** and d_I -**31**, Y was determined by integration of H_a of **31** and d_I -**31**, which appeared as d at 6.72 ppm. The yield of d_I -**31**, Z, could then be determined from the following formula: Z = Y–X. Then K_H/K_D = Z/X = 0.46/0.54 = 0.85



b. intermolecular isotope labeling experiments.

A reaction tube was charged with Cu (1.28 mg, 10 mmol%), d_{5} -11 (0.2 mmol, 47.8 mg) and 2a (0.24 mmol, 81.7 mg), the vessel was sealed before being evacuated and filled with argon (three times). DMF (0.4 mmol, 30.8 µL), and DCE (1 mL) were added in turn by syringe under an argon atmosphere. After addition of all substrates, the reaction mixture was kept for 24 h at 80°C. At the conclusion of the reaction, water was added to the mixture at room temperature. The resulting mixture was extracted by ethyl acetate three times, and the combined organic phase was washed with brine for once and then dried over magnesium sulfate. After filtration and evaporation of the solvent, the crude mixture was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to yield the products **31** and d_{4} -**31**. The K_H/K_D was determined by the analysis followed by Yu et al.⁵ The ratio **31** and d_{4} -**31**. Was analyzed by ¹H NMR. The yield of **31**, **X**, was determined by integration of the H_a signal of **31**, which appeared as a doublets approximately at 6.72 ppm. The total yield of **31** and d_{4} -**31**, Y was determined by integration of H_b of **31** and d_{4} -**31**, W was determined by integration of H_b of **31** and d_{4} -**31**, X was determined by integration of the K_H/K_D = X/Z = 0.55/0.45 = 1.2.



According to above mechanism investigations, a catalytic cycle for coppercatalyzed oxidative trifluoromethylation of alkylboronic acids was given in *Scheme*

Scheme S1

VI. X-ray Crystal data for product 3a

ORTEP diagrams and tables of crystallographic data for Complex **3a**. **Table 1 Crystal data and structure refinement for 3a**

Identification code	xj131024-1
Empirical formula	$C_{18}H_{15}F_{3}O$
Formula weight	304.30
Temperature/K	290(2)
Crystal system	orthorhombic
Space group	Fdd2
a/Å	38.6451(16)
b/Å	18.5006(7)
c/Å	8.3788(3)
α/°	90.00
β/°	90.00

$\gamma/^{\circ}$	90.00			
Volume/Å ³	5990.5(4)			
Ζ	16			
$\rho_{calc}mg/mm^3$	1.350			
m/mm ⁻¹	0.915			
F(000)	2528.0			
Crystal size/mm ³	$0.37 \times 0.31 \times 0.3$			
2Θ range for data collection	9.16 to 138.76°			
Index ranges	$-42 \le h \le 45, -18 \le k \le 22, -9 \le l \le 7$			
Reflections collected	3225			
Independent reflections	1929[R(int) = 0.0146]			
Data/restraints/parameters	1929/37/211			
Goodness-of-fit on F ²	1.055			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0523, wR_2 = 0.1488$			
Final R indexes [all data]	$R_1 = 0.0555, wR_2 = 0.1535$			
Largest diff. peak/hole / e Å ⁻³ 0.27/-0.25				
Flack parameter	?			

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for xj131024-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Aton	1 <i>x</i>	У	Z	U(eq)
C16	9174.1(9)	920.9(18)	3007(6)	64.1(10)
C5	8358.5(8)	1593.3(17)	3570(5)	55.0(9)
C12	9135.7(8)	2190.0(18)	2531(5)	58.7(9)
01	9865.0(7)	1408.5(15)	303(4)	78.9(9)
C15	9458.3(9)	881.0(18)	1994(5)	63.8(10)
C3	7735(1)	1699(2)	3722(7)	81.5(13)
C14	9581.0(8)	1502(2)	1260(5)	59.2(9)
C9	8717.9(10)	1678.5(19)	5956(5)	63.5(10)
C11	9010.4(8)	1574.2(17)	3297(4)	53.8(8)
C10	8700.8(8)	1619.8(18)	4350(4)	53.4(8)
C1	8001.0(11)	1347(2)	1274(6)	79.2(12)
C4	8059.1(9)	1758.4(19)	4450(6)	64.8(10)
C13	9419.0(8)	2152.6(18)	1526(5)	60.1(9)
C2	7710.8(11)	1500(3)	2152(7)	84.5(14)
C17	9048.4(13)	1706(3)	6851(6)	83.5(13)
C18	10001.4(12)	2043(2)	-463(7)	90.2(14)
C6	8325.6(10)	1388(2)	1974(5)	64.8(9)

C8	8397.1(11)	1695(3)	6979(5)	76.6(12)
C7	8096.4(11)	2037(3)	6105(6)	81.1(12)
F3	9033.9(14)	1305(4)	8185(7)	118.5(17)
F1	9333.7(13)	1534(5)	6154(8)	122.6(18)
F2	9094.4(18)	2362(4)	7480(11)	147(2)
F1'	9273(2)	2192(8)	6244(14)	122.6(18)
F3'	9247(3)	1093(7)	6546(14)	118.5(17)
F2'	9019(3)	1815(8)	8320(20)	147(2)

						31024-1. The
	otropic di 1²a*²U ₁₁ ++2	splacement	factor	exponent	takes the	form: -
		U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C16	62.5(19)	0 ₂₂ 53.0(17)	0 ₃₃ 77(3)	0_{23} 2.0(18)	0 ₁₃ 2.3(19)	-4.5(14)
C10 C5	54.7(18)	50.7(16)	60(2)	5.2(16)	0.1(16)	-4.2(12)
C12	57.4(17)	51.2(17)	67(2)	1.1(17)	-0.1(16)	-4.2(12)
01	67.2(14)	79.6(17)	90(2)	2.2(16)	23.2(15)	6.3(12)
C15	60.8(19)	54.5(18)	76(3)	-5.7(18)	2.6(18)	3.8(14)
C3	57(2)	77(2)	110(4)	7(3)	-1(2)	6.1(17)
C14	48.1(15)	68(2)	62(2)	-6.6(18)	-0.5(16)	-0.5(14)
C9	67(2)	67(2)	57(3)	-4.0(18)	-1.1(17)	-8.5(16)
C11	51.1(16)	54.9(17)	55(2)	-0.6(15)	-1.3(15)	-3.9(13)
C10	54.5(18)	54.2(18)	51(2)	1.0(15)	3.8(15)	-5.2(13)
C1	81(3)	84(3)	72(3)	10(2)	-26(2)	-8(2)
C4	54.4(17)	57.0(18)	83(3)	0.1(19)	3.7(17)	-0.6(15)
C13	57.7(17)	56.8(17)	66(2)	5.1(17)	6.2(17)	-4.4(14)
C2	61(2)	93(3)	99(4)	14(3)	-22(2)	3(2)
C17	87(3)	109(4)	55(2)	-6(2)	-13(2)	-6(3)
C18	73(2)	98(3)	99(3)	7(3)	33(2)	1(2)
C6	61.2(19)	73(2)	60(2)	5.2(19)	-2.8(17)	-3.7(16)
C8	85(3)	90(3)	54(2)	-10(2)	12(2)	-11(2)
C7	76(2)	78(3)	88(3)	-13(2)	21(2)	-4(2)
F3	123(3)	139(4)	93(3)	27(3)	-35(3)	6(3)
F1	76(2)	190(5)	102(3)	-11(4)	-21(2)	-3(3)
F2	147(4)	125(4)	169(5)	-46(4)	-65(4)	-15(3)
F1'	76(2)	190(5)	102(3)	-11(4)	-21(2)	-3(3)
F3'	123(3)	139(4)	93(3)	27(3)	-35(3)	6(3)
F2'	147(4)	125(4)	169(5)	-46(4)	-65(4)	-15(3)

Table 4 Bond Lengths for xj131024-1.

Atom Atom Length/Å	Atom Atom Length/Å

C16	C15	1.390(5)	C9	C17	1.482(6)
C16	C11	1.386(5)	C9	C8	1.508(5)
C5	C10	1.476(5)	C11	C10	1.489(5)
C5	C4	1.406(5)	C1	C2	1.371(7)
C5	C6	1.396(6)	C1	C6	1.387(5)
C12	C11	1.395(5)	C4	C7	1.486(7)
C12	C13	1.383(5)	C17	F3	1.343(7)
01	C14	1.370(4)	C17	F1	1.288(8)
01	C18	1.438(5)	C17	F2	1.335(8)
C15	C14	1.387(5)	C17	F1'	1.351(13)
C3	C4	1.397(6)	C17	F3'	1.393(13)
C3	C2	1.369(7)	C17	F2'	1.252(16)
C14	C13	1.374(5)	C8	C7	1.512(7)
C9	C10	1.351(5)			

Table 5 Bond Angles for xj131024-1.

Aton	n Aton	n Aton	n Angle/°	Aton	n Aton	1 Aton	n Angle/°
C11	C16	C15	121.0(3)	C3	C2	C1	121.0(4)
C4	C5	C10	119.9(4)	F3	C17	C9	111.5(5)
C6	C5	C10	121.0(3)	F3	C17	F1'	135.1(6)
C6	C5	C4	119.1(3)	F3	C17	F3'	74.1(6)
C13	C12	C11	121.0(3)	F1	C17	C9	120.0(5)
C14	01	C18	116.8(3)	F1	C17	F3	106.1(6)
C14	C15	C16	119.8(3)	F1	C17	F2	106.9(6)
C2	C3	C4	120.1(4)	F1	C17	F1'	56.1(6)
01	C14	C15	115.4(3)	F1	C17	F3'	40.8(5)
01	C14	C13	124.8(3)	F2	C17	C9	110.2(5)
C13	C14	C15	119.8(3)	F2	C17	F3	100.3(6)
C10	C9	C17	123.3(4)	F2	C17	F1'	57.1(6)
C10	C9	C8	121.8(4)	F2	C17	F3'	137.6(7)
C17	C9	C8	114.8(4)	F1'	C17	C9	112.8(6)
C16	C11	C12	118.2(3)	F1'	C17	F3'	96.7(8)
C16	C11	C10	121.4(3)	F3'	C17	C9	110.8(6)
C12	C11	C10	120.4(3)	F2'	C17	C9	115.2(8)
C5	C10	C11	117.1(3)	F2'	C17	F3	42.9(7)
C9	C10	C5	119.2(3)	F2'	C17	F1	124.3(8)
C9	C10	C11	123.7(3)	F2'	C17	F2	58.5(8)
C2	C1	C6	120.1(5)	F2'	C17	F1'	108.7(9)
C5	C4	C7	119.0(3)	F2'	C17	F3'	111.2(9)
C3	C4	C5	119.4(4)	C1	C6	C5	120.2(4)

C3	C4	C7	121.4(4)	C9	C8	C7	111.4(4)
C14	C13	C12	120.2(3)	C4	C7	C8	112.4(3)

Table 6 Torsion Angles for xj131024-1.

A B C D	Angle/°			С	D	Angle/°
C16C15C14O1	179.1(4)	C4	C5	C10)C11	-169.0(3)
C16C15C14C13	-0.6(6)	C4	C5	C6	C1	-0.1(5)
C16C11C10C5	-94.9(4)	C4	C3	C2	C1	0.9(7)
C16C11C10C9	84.7(5)	C13	8 C12	2C11	C16	5-0.9(5)
C5 C4 C7 C8	-35.9(5)	C13	8 C12	2C11	C10)-178.7(3)
C12C11C10C5	82.8(4)	C2	C3	C4	C5	-1.8(6)
C12C11C10C9	-97.6(5)	C2	C3	C4	C7	174.4(4)
O1 C14C13C12	-179.2(4)	C2	C1	C6	C5	-0.8(6)
C15C16C11C12	0.8(6)	C17	7 C9	C10)C5	179.7(4)
C15C16C11C10	178.6(4)	C17	7 C9	C10)C11	0.1(6)
C15C14C13C12	0.5(6)	C17	7 C9	C8	C7	151.1(4)
C3 C4 C7 C8	147.9(4)	C18	801	C14	4C15	5-179.3(4)
C9 C8 C7 C4	46.0(5)	C18	801	C14	4C13	80.3(6)
C11C16C15C14	0.0(6)	C6	C5	C10)C9	-166.9(4)
C11C12C13C14	0.3(6)	C6	C5	C10)C11	12.7(5)
C10C5 C4 C3	-177.0(3)	C6	C5	C4	C3	1.4(5)
C10C5 C4 C7	6.8(5)	C6	C5	C4	C7	-174.9(4)
C10C5 C6 C1	178.2(3)	C6	C1	C2	C3	0.4(7)
C10C9 C17F3	-138.3(5)	C8	C9	C10)C5	1.9(6)
C10C9 C17F1	-13.5(9)	C8	C9	C10)C11	-177.7(3)
C10C9 C17F2	111.1(6)	C8	C9	C17	7 F3	39.6(7)
C10C9 C17F1'	49.3(9)	C8	C9	C17	7F1	164.4(6)
C10C9 C17F3'	-57.8(8)	C8	C9	C17	7 F2	-70.9(7)
C10C9 C17F2'	174.9(9)	C8	C9	C17	7F1'	-132.7(8)
C10C9 C8 C7	-30.9(6)	C8	C9	C17	7 F3'	120.1(7)
C4 C5 C10C9	11.4(5)	C8	C9	C17	7 F2'	-7.2(11)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for xj131024-1.

Aton	1 <i>x</i>	У	Z	U(eq)
H16	9093	503	3496	77
H12	9027	2632	2698	70
H15	9566	439	1810	77
H3	7535	1794	4305	98
H1	7980	1216	207	95
H13	9500	2569	1028	72

H2	7494	1469	1674	101
H18A	9838	2216	-1237	135
H18C	10215	1925	-986	135
H18B	10042	2411	322	135
H6	8522	1278	1378	78
H8B	8444	1967	7945	92
H8A	8336	1206	7285	92
H7A	7885	1942	6691	97
H7B	8130	2556	6070	97

Reference:

- [1] A. J. Walkinshaw, W. Xu, M. G. Suero, M. J. Gaunt, J. Am. Chem. Soc. 2013, 135, 12532.
- [2] Itami, K. Pure Appl. Chem. 2012, 84, 907.
- [3] Mitchell J. M., Finney N. S. J. Am. Chem. Soc. 2001, 123, 862.
- [4] D. L. J. Clive, J. Wang, Angew. Chem. Int. Ed. 2003, 42, 3406.
- [5] a) M. Ye, G.-L. Gao, A. J. F. Edmunds, P. A. Worthington, J. A. Morris, J.–Q. Yu, J. Am. Chem. Soc. 2011, 133, 19090. b) B. Xiao, T.-J. Gong, Z.-J. Liu, J.-H. Liu, D.-F. Luo, J. Xu, L. Liu, J. Am. Chem. Soc. 2011, 133, 9250; b) B. Xiao, Z.-J. Liu, L. Liu, Y. Fu, J. Am. Chem. Soc., 2013, 135, 616.