Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

## -- Electronic Supplementary Information--

## Photoinduced charge separation in ordered self-assemblies of perylenediimide-graphene oxide hybrid layers

Mustafa Supur, Kei Ohkubo, and Shunichi Fukuzumi\*

Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan

## **EXPERIMENTAL SECTION**

**Materials.** N,N'-di(2-(trimethylammonium iodide)ethylene)perylenediimide (PDI) was synthesized in accordance with the reported procedures. Graphene oxide (GO; as dispersion in water, 2.0 mg ml<sup>-1</sup>, Sigma-Aldrich), polyethylene glycol (PEG 200; average  $M_w$ : 190-210, Nacalai Tesque) were used as received from commercial sources. Purification of water (18.2 MΩ cm) was performed with a Milli-Q system (Millipore, Direct-Q 3 UV). GO was sonicated at least 20 min. before use. Supramolecular gel of TAIPDI was obtained by adding 2.1 mg PDI to 2 ml of hot GO aqueous dispersion (2.0 mg ml<sup>-1</sup>, ~70°C). Then, the viscous mixture was sonicated at least 15 min. to form gelation. As a second method, 20 μl of 2.7 mg ml<sup>-1</sup> PDI aqueous solution was mixed with 30 ul of GO aqueous dispersion (4.8 mg ml<sup>-1</sup>). Then, mixture was sonicated at least 15 min. to obtain supramolecular gel. Extensive sonication-centrifugation-decantation (SCD) cycles were applied to the samples for further measurements to completely remove the weakly physisorbed and non-adsorbed TAIPDI moieties on GO surface. The samples were again sonicated for good dispersion in water.

**Instruments.** Steady-state absorption measurements were recorded on a Hewlett Packard 8453 diode array spectrophotometer. Fluorescence measurements were carried out on a Shimadzu spectrofluorophotometer (RF-5300PC).

Powder X-ray diffraction (PXRD) patterns were recorded by a Rigaku Ultima IV. Incident X-ray radiation was produced by Cu X-ray tube, operating at 40 kV and 40 mA with Cu  $K_{\alpha}$  radiation of 1.54 Å. A scanning rate was 4°/min from 4 to 50° in 2 $\theta$ . PXRD samples were prepared by drying the GO dispersion and TAIPDI–GO supramolecular gel for overnight.

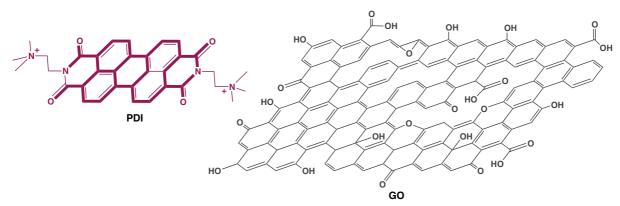
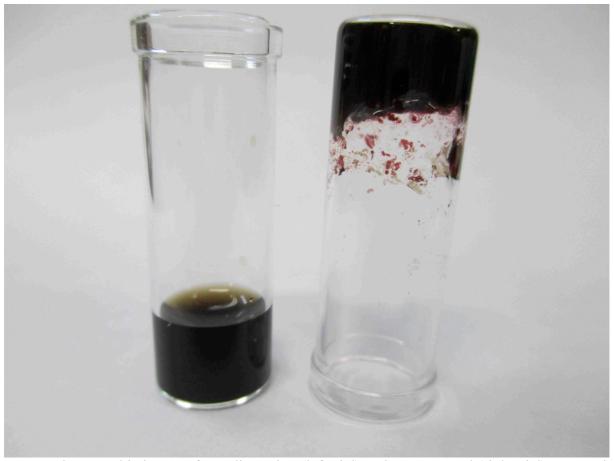
Electrochemical measurements were performed on an ALS630B electrochemical analyzer in water containing 0.10 M Na<sub>2</sub>SO<sub>4</sub> as supporting electrolyte. A conventional three-electrode cell was used with a glassy carbon working electrode and a platinum wire as the counter electrode. The measured potentials were recorded with respect to a saturated calomel electrode (SCE).

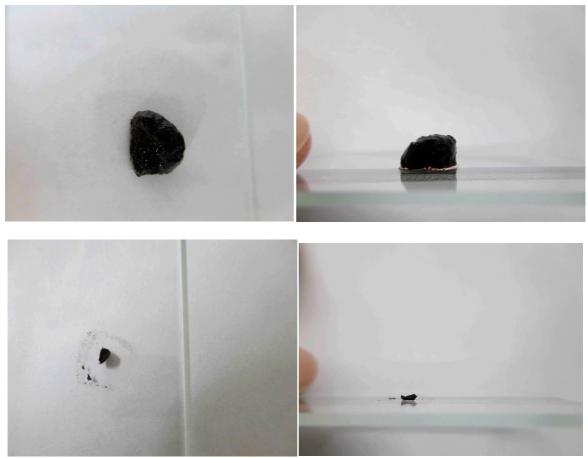
Femtosecond laser-induced transient absorption spectroscopy experiments were conducted using an ultrafast source: Integra-C (Quantronix Corp.), an optical parametric amplifier: TOPAS (Light Conversion Ltd.) and a commercially available optical detection system: Helios provided by Ultrafast Systems LLC. The source for the pump and probe pulses was derived from the fundamental output of Integra-C (780 nm, 2 mJ per pulse and fwhm =

130 fs) at a repetition rate of 1 kHz. 75% of the fundamental output of the laser was introduced into TOPAS, which has optical frequency mixers resulting in a tuneable range from 285 nm to 1660 nm, while the rest of the output was used for white light generation. Typically, 2500 excitation pulses were averaged for 5 seconds to obtain the transient spectrum at a set delay time. Kinetic traces at appropriate wavelengths were assembled from the time-resolved spectral data. Time profiles obtained from femtosecond transient absorption spectra were analyzed by using a computer program, Igor Pro version 6.2. The formation and decay curves were fitted to a mono and double exponential function of the form:  $y = y_0 + A_1 \exp(-\text{invTau}_1 x) + A_2 \exp(-\text{invTau}_2 x)$ , respectively.

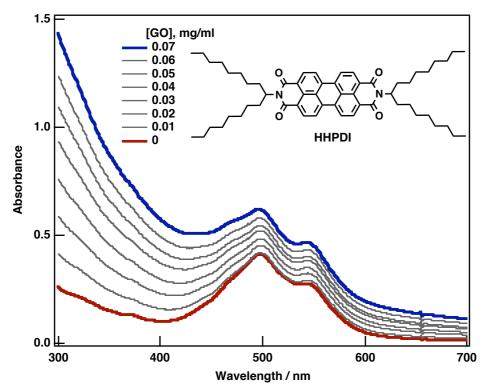
The EPR spectra were taken on a JEOL X-band spectrometer (JES-RE1XE) under photoirradiation with a high-pressure mercury lamp (USH-1005D) through a water filter focusing the sample cell in the EPR cavity at 4 K.

## **SUPPLEMENTARY FIGURES**

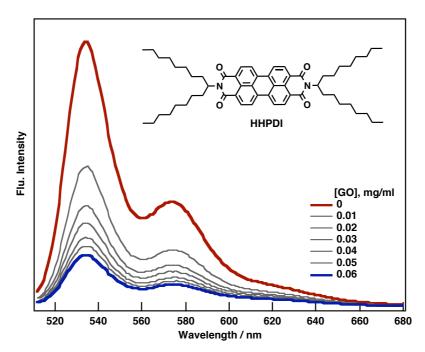





Fig. S1 Molecular structure PDI and proposed structural model of a single layer GO.

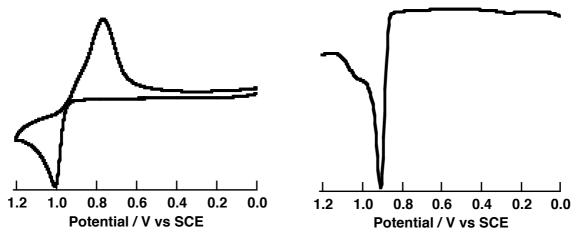



**Fig. S2** Photographic image of GO dispersion (left vial) and TAI–GO gel (right vial) prepared by adding 2.1 mg PDI to 2 ml of hot GO aqueous dispersion (2.0 mg ml<sup>-1</sup>, ~70°C). ~15 min. of sonification resulted in gelation.

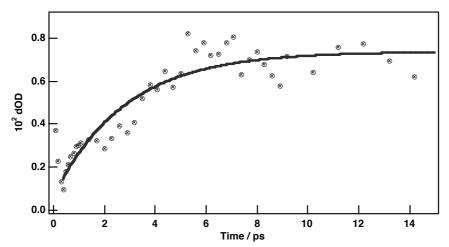



**Fig. S3** Photographic image of GO dispersion (left vial) and TAI–GO gel (right vial) prepared by mixing 20  $\mu$ l of 2.7 mg ml<sup>-1</sup> PDI aqueous solution with 30 ul of GO aqueous dispersion. ~15 min. of sonification resulted in gelation.

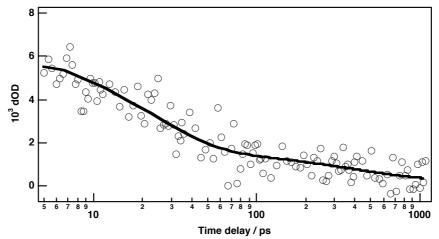



**Fig. S4** Photographic image of TAIPDI–GO supramolecular gel before (upper panel) and after (lower panel) drying for overnight.

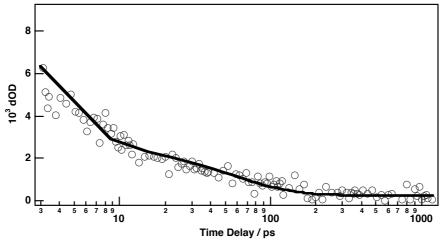



**Fig. S5** Absorption spectral changes during the addition of GO to the aqueous solution of 0.022 mM HHPDI in water/ACN (1:1 v/v).

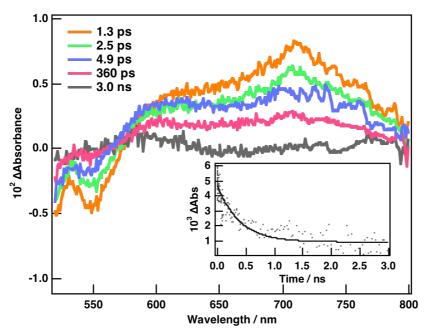



**Fig. S6** Fluorescence emission spectral changes during the addition of GO to the solution of 0.022 mM HHPDI in water/ACN (1:1 v/v),  $\lambda_{\text{exc}}$ =510 nm.

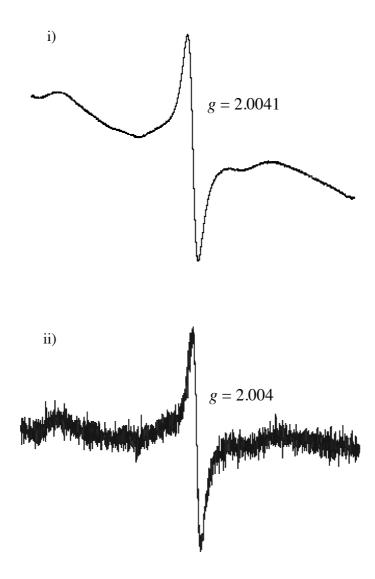



**Fig. S7** Cyclic (left) differential pulse (right) voltammograms of GO in water containing 0.10 M Na<sub>2</sub>SO<sub>4</sub> (sweep rate: 0.1 mV/s).

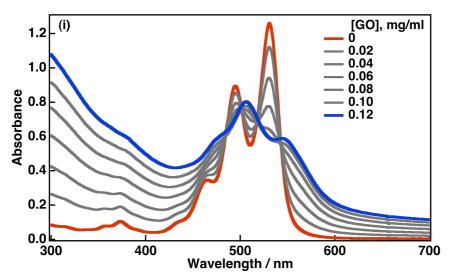



**Fig. S8** Time profile of transient absorbance of 0.25 mM TAIPDI and 0.6 mg ml<sup>-1</sup> GO in water at 720 nm,  $\lambda_{\rm exc} = 510$  nm.

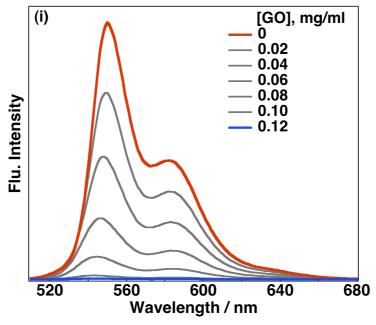



**Fig. S9** Decay time profile of transient absorbance of 0.25 mM TAIPDI and 0.9 mg ml<sup>-1</sup> GO in water at 720 nm,  $\lambda_{\text{exc}} = 510$  nm.




**Fig. S10** Decay time profile of transient absorbance of 0.25 mM TAIPDI and 0.3 mg ml<sup>-1</sup> GO in water at 720 nm,  $\lambda_{\rm exc} = 510$  nm.




**Fig. S11** Femtosecond laser-induced transient absorption spectra of GO–PDI in PEG 200 at indicated time delays,  $\lambda_{exc}$ =510 nm. Inset: Time profile at 710 nm.



**Fig. S12** EPR spectra of PDI–GO in water (i) and in aqueous PEG 20000 solution (ii) showing radical anion signal of PDI with corresponding g values measured at 4 K observed after photoirradiation.



**Fig. S13** Absorption spectral changes during the addition of GO to the aqueous solution of 0.021 mM PDI containing PEG 200 (v/v 1:1).



**Fig. S14** Fluorescence emission spectral changes during the addition of GO to the aqueous solution of 0.021 mM PDI containing PEG 200 (v/v 1:1),  $\lambda_{\rm exc}$ =510 nm.