Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Reversibly tunable helix inversion in supramolecular gels trigged by Co²⁺

So Hyeon Park,^a Sung Ho Jung,^a Junho Ahn,^a Ji Ha Lee, ^a Ki-Young Kwon, ^a Jiwon Jeon,^b Hyungjun Kim,^b* Justyn Jaworski,^{c,d}* and Jong Hwa Jung ^a*

^a Dept. of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, S. Korea. Fax: 055-758-6027; Tel: 055-772-1488; E-mail: <u>jonghwa@gnu.ac.kr</u>

^b Dept. of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, S. Korea. E-mail: <u>linus16@kaist.ac.kr</u>

^c Dept. of Chemical Engineering, Hanyang University, Seoul, S. Korea. Fax: 02 2220 1935; Tel: 02 2220 2339; E-mail: <u>justynj@hanyang.ac.kr</u>

^d Institute of Nano Science and Technology, 222 Wangsimni-ro, Seoul, S. Korea.

Experimental Section

Characterization. The ¹H and ¹³C NMR spectra were taken on a Bruker DRX 300, and mass spectroscopy samples were analyzed on a JEOL JMS-700 mass spectrometer. The elemental analysis was performed with a Perkin Elmer 2400 series II instrument.

Preparation of Supramolecular Gel. In a typical gelation study experiment, a solution of Co^{2+} [0.1-1.0 equiv.] in THF was added to solution of L₁ or L₂ in THF in a vial. Each mixture was heated for three minutes to get a homogenous solution. This solution was allowed to cool to ambient temperature gradually to afford gel.

Microscopy Studies. The SEM images were taken with a field emission scanning electron microscope (FE-SEM, Philips XL30 S FEG) using an acceleration voltage of 10–15 kV and an emission current of 10 μ A.

Circular Dichroism Studies. The CD spectra were recorded on a Jasco J-815 CD spectrophotometer. CD spectra were determined over the range of 230-700 nm using a quartz cell with 0.1 mm path length. Scans were taken at a rate of 100 nm/min with a sampling interval of 1.0 nm and response time of 1s. The scans were acquired for the gel directly at room temperature in THF. CD spectra of L ([L]=8 mM) were observed in the presence of Co^{2+} (0-1 equiv.).

NMR Studies. The L solution (700 μ L, 3.5 μ mol, 0.005 M in THF-*d*₈) was transferred by a micro pipet to an NMR tube. Approximately the Co(NO₃)₂·6H₂O solution (9 μ L, 0.525 μ mol, 0.0583 M in THF-*d*₈) was added *via* Hamilton syringe to an NMR tube and the sample was sealed. The sample was heated to get a homogenous solution and cooled to room temperature. ¹H NMR spectrum was measured with average 1100 scans at ambient temperature. As the cobalt solution (9 μ L, 6 μ L, 6 μ L, 6 μ L, 12 μ L, and 12 μ L) was added stage by stage, the procedure was repeated.

Reversibility of complexes L₁ by NMR and CD. The L₁ solution (450 μ L, 2.5 μ mol, 1 equiv., 0.0056 M in THF-*d*₈) and the Co(NO₃)₂·6H₂O solution (50 μ L, 2.5 μ mol, 1 equiv, 0.05 M in THF-*d*₈) were transferred by a micro pipet to an NMR tube. The total concentration of L₁ was 0.005 M. The sample was sealed and heated to get a homogenous solution and cooled to room temperature. ¹H NMR spectrum was measured with average 1100 scans at ambient temperature. As the L₁ solution of 0.005 M (88.2 μ L, 245.1 μ L, 166.7 μ L, 428.6 μ L, and 23.1 μ L) was added stage by stage, the procedure was repeated. The equivalent of Co²⁺ was reduced to 0.85, 0.60, 0.50, 0.35, and 0.30 equivalents. The total concentration of L₁ was 0.008 M instead of 0.005 M when the CD spectra were performed.

DFT Calculation. We performed density functional theory (DFT) calculations by employing M06-2X functional [Zhao, Y.; Truhlar, D. *Theor. Chem. Acc.* 2008, *120*, 215.] with LACVP** basis set [Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.] as implemented in Jaguar 8.2 [Jaguar, version 8.2; Schrodinger, LLC, New York, 2013].

Scheme S1 Synthesis of L1 and L2

Synthesis of compound 1 : To a stirred suspension of powdered KOH(1.05 g, 18.7 mmol) in dry DMSO(20 mL) at 60 °C, the (*S*)-(+)-2-amino-1-propanol(0.28 g, 3.7 mmol) was added. After 30min, 4'-chloro-2,2':6',2"-terpyridine(1.00 g, 3.7 mmol) was added and the mixture was stirred for 4 h at 70 °C and then poured into 600 mL of distilled water. The aqueous phase was extracted with CH_2Cl_2 (3×200 mL). The combined organic phases were dried over Na₂SO₄ and evaporated in vacuo, and the residue was recrystallized from ethyl acetate to give 0.72 g (72 %) of **1**. Mp = 118.3 °C, ¹H-NMR(300 MHz, CDCl₃) 8.7(d, 2H, ArH, *J*=4.7 Hz), 8.6(d, 2H, ArH, J=7.4 Hz), 8.0(m, 4H, ArH), 7.5(m, 2H, ArH), 4.0(m, 2H, -O-CH₂-CH-), 3.2(dd, 1H, -CH-, J=6.3 Hz and J=12.5

Hz), 1.7(s, 2H, -NH₂), 1.1(d, 3H, -CH₃, J=6.4 Hz). ¹³C-NMR(125MHz, CDCl₃) 160.2, 156.5, 154.2, 148.9, 123.7, 120.8, 105.2, 70.1, 48.1, 21.4. ESI-MS (m/z) calcd. for $C_{18}H_{18}N_4O$: 306.2; 307.4 [M+H]⁺. Element analysis: calculated for $C_{18}H_{18}N_4O$: C 70.6, H 5.9, N 18.3 Found: C 70.1, H 5.5, N 17.8.

Synthesis of compound 2 : The synthesis of **2** was performed as described in the synthesis of **1**. The (*R*)-(-)-2amino-1-propanol was used in place of the (*S*)-(+)-2-amino-1-propanol. Mp = 117.6 °C. ¹H-NMR(300 MHz, CDCl₃) 8.7(d, 2H, ArH, *J*=4.6 Hz), 8.6(d, 2H, ArH, J=7.4 Hz), 8.0(m, 4H, ArH), 7.5(m, 2H, ArH), 4.0(m, 2H, -O-CH₂-CH-), 3.2(dd, 1H, -CH-, J=6.3 Hz and J=12.8 Hz), 1.7(s, 2H, -NH₂), 1.1(d, 3H, -CH₃, J=6.2 Hz). ¹³C-NMR(125MHz, CDCl₃) 160.7, 156.5, 155.7, 149.0, 123.7, 121.0, 105.3, 70.1, 48.1, 20.5. ESI-MS (m/z) calcd. for C₁₈H₁₈N₄O: 306.2; 307.1 [M+H]⁺. Element analysis: calculated for C₁₈H₁₈N₄O: C 70.6, H 5.9, N 18.3 Found C 70.2, H 5.5, N 17.9.

Synthesis of compound L₁: In a two neck flask, **1** (0.40 g, 1.3 mmol) and TEA (0.40 g, 3.9 mmol) were poured into dry CH₂Cl₂(10 mL). The solution was cooled in an ice bath and magnetically stirred after which oleoyl chloride (0.59 g, 2.0 mmol) was added dropwise. The reaction mixture was stirred for 12 h at room temperature. The solvent was evaporated under reduced pressure. The crude product thus obtained was purified by column chromatography on Al₂O₃ (eluent: ethyl acetate/*n*-hexane 1/4) to yield 0.43 g (58 %) of L₁. Mp = 100.4 °C. ¹H-NMR(300 MHz, DMSO-d₆) 8.7(d, 2H, ArH, J=4.6 Hz), 8.6(d, 2H, ArH, J=7.9 Hz), 8.0(td, 4H, ArH, J=2.4 Hz, J=2.4 Hz, and J=7.6 Hz), 7.9(d, 1H,-NH, J=7.5 Hz), 7.5(dd, 2H, ArH, J=4.9 Hz and J=6.9 Hz), 5.3(m, 2H, -CH=CH-), 4.2(td, 3H, -O-CH₂-CH-, J=5.9 Hz, J=5.9 Hz, and J=18.3 Hz), 2.1(t, 2H, -CO-CH₂-, J=7.0 Hz and J=7.0 Hz), 1.9(dd, 4H, -CH₂-CH=CH-, J=5.6 Hz and J=9.3 Hz), 1.5(d, 2H,-CO-CH₂-CH₂-, J=4.9 Hz), 1.2(d, 23H, -O-CH₂-CH-CH₃ and -(CH₂)₄-CH=CH-(CH₂)₆-, J=7.1 Hz), 0.8(t, 3H, -CH₃, J=6.6 Hz and J=6.6 Hz). ¹³C-NMR (125MHz, DMSO-d₆) 171.8, 166.6, 156.6, 154.8, 149.1, 137.2, 129.5, 129.4, 124.4, 120.7, 106.7, 70.4, 43.6, 35.4, 31.2, 29.0, 28.5, 28.4, 26.4, 25.2, 22.0, 17.0, 13.8. ESI-MS (m/z) calcd. for C₃₆H₅₀N₄O₂: 570.4; 571.2 [M+H]⁺. Element analysis: calculated for C₃₆H₅₀N₄O₂: C 75.8, H 8.8, N 9.8 Found : C 76.2, H 8.5, N 9.5.

Synthesis of compound L₂ : The synthesis of L₂ was performed as described in the synthesis of L₁. The **2** was used in place of **1**. Mp = 100.5 °C. ¹H-NMR(300 MHz, DMSO-d₆) 8.7(d, 2H, ArH, J=4.2 Hz), 8.6(d, 2H, ArH, J=7.9 Hz), 8.0(m, 4H, ArH), 7.9(d, 1H, -NH, J=7.5 Hz), 7.5(dd, 2H, ArH, J=5.2 Hz and J=6.9 Hz), 5.2(t, 2H, -CH=CH-, J=5.8 Hz and 5.8 Hz), 4.2(td, 3H, -O-CH₂-CH-, J=5.7 Hz, J=5.7 Hz, and J=12.3 Hz), 2.1(t, 2H, -CO-CH₂-, J=7.0 Hz and J=7.0 Hz), 1.9(m, 4H, -CH₂-CH=CH-), 1.5(s, 2H, -CO-CH₂-CH₂-), 1.2(d, 23H, -O-CH₂-CH-CH₃ and $-(CH_2)_4$ -CH=CH-(CH₂)₆-, J=10.0 Hz), 0.8(t, 3H, -CH₃, J=6.5 Hz and J=6.5 Hz). ¹³C-NMR (125MHz, DMSO-d₆) 171.8, 167.3, 156.6, 155.1, 149.3, 137.0, 129.5, 129.5, 124.3, 121.1, 106.4, 71.1, 43.6, 35.3, 31.0, 28.9, 28.3, 28.2, 26.7, 25.9, 22.1, 17.1, 13.7. ESI-MS (m/z) calcd. For C₃₆H₅₀N₄O₂: 570.4; 571.1 [M+H]⁺. Element analysis: calculated for C₃₆H₅₀N₄O₂: C75.8, H 8.8, N 9.8 Found C 76.1, H 8.4, N 9.9.

Fig. S1 FE-SEM images of the organogel L_1 (A) and L_2 (B) with (a) 0.5, (b) 0.6 and (c) 1.0 equivalents of Co²⁺.

Fig. S2 TEM images of organogels L_1 (A) and L_2 (B) with 1.0 equivalents of Co²⁺.

Fig. S3 AFM images of the organogel L_1 (A) and L_2 (B) with (a) 0.5 and (b) 1.0 equivalents of Co²⁺.

Fig. S4 (A) ¹H NMR spectra of the organogel L_1 with a) 0, b) 0.15, c) 0.3, d) 0.4, e) 0.5, f) 0.6, g) 0.8, and 1.0 equiv. of Co²⁺ in THF-d₈. [L_1]=5x10⁻³ M. (B) Abundance ratio of each species in several equivalents of Co²⁺ in THF-d₈ at room temperature. Red and blue colors indicate 1:2 and 1:1 complexes, respectively.

Fig. S5 ESI-mass spectra of organogel L_1 in several equivalents of Co²⁺. (A) 0.2, 0.4 and 0.5 (a~c) equivalents of Co²⁺.

Fig. S5 ESI-mass spectra of organogel L_1 in several equivalents of Co²⁺. (B) 0.6, 0.8 (a~b), and (C) 1.0 equivalents of Co²⁺.

Fig. S6 (A) ¹H NMR spectra of the organogel L_2 with (a)0, (b) 0.15, (c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6, (g) 0.8, and (h) 1.0 equivalents of Co²⁺ in THF- d_8 at room temperature. [L_2] = 5x10⁻³ M. (B) Abundance ratio of each species in several equivalents of Co²⁺ in THF- d_8 at room temperature.

Fig. S7 (A) ¹H NMR spectra of the organogel L_1 with (a) 1.0, (b) 0.85, (c) 0.6, (d) 0.5, (e) 0.35, and (f) 0.3 equivalents of Co²⁺ in THF-*d*₈ at room temperature. [L_1] = 5x10⁻³ M. (B) Abundance ratio of each species in the presence of 1.0 equivalent of Co²⁺ upon addition of L_1 in THF-*d*₈ at room temperature. [L_1] = 5x10⁻³ M.

Fig. S8 (A) Left-handed helical fiber and (B) right-handed helical fiber induced by non-coplanar terpyridine ligands. When $\phi < 0$, left-handed helicity is induced, and when $\phi > 0$, right-handed one is. To more clearly illustrate how the assembly of Co complexes with non-zero ϕ induces the overall helical structure, we showed $\phi = \pm 20^{\circ}$ cases, which is more exaggerated than the optimized structure from density functional theory (DFT) calculation ($\phi = \pm 0.5^{\circ}$).

Fig. S9 Co²⁺ coordinated by terpyridines is known as a low-spin d^7 complex. Due to the unevenly occupied e_g orbitals, strong Jahn-Teller effect occurs, yielding two short bonds (1.95 Å) along the axial directions with four long bonds (2.15 Å) along the equatorial directions. Such a local distortion around the Co center causes the twisted terpyridine ligands.

Fig. S10 Powder XRD patterns of xerogels L_1 with a) 0.5 and b) 1.0 equivalent of Co^{2+} .

Fig. S11 UV-Vis spectra of L_1 with (a) 0 (black line), (b) 0.5 (blue line) and (c) 1.0 (red line) equivalent of Co^{2+} .

Fig. S12 CD spectral changes of organogel L_2 in several equivalents of Co²⁺ at room temperature. $L_2=8\times10^{-3}$ M, 1.0 mm cuvette.

Fig. S13 Time-independent CD spectral changes of organogel (a) L_1 and (b) L_2 with 0.5 equivalents of Co²⁺ in THF at room temperature. Inset: plot of the CD amplitude at 305 nm versus time. $[L_1] = [L_2] = 8 \times 10^{-3}$ M, 1.0 mm cuvette.

Fig. S14 CD spectral changes of organogel (a) L_1 and (b) L_2 with 0.5, and 1.0 equivalents of (A) Zn^{2+} and (B) Ni^{2+} at room temperature. $[L_1] = [L_2] = 8x10^{-3}$ M, 1.0 mm cuvette.

Fig. S15 CD spectra changes of organogel L_1 in the presence of 1.0 equivalents of Co²⁺ upon addition of L_1 in THF at room temperature. $[L_1] = 8 \times 10^{-3} M$.

Fig. S16 CD spectra of organogel L_1 with (A) 0.5 and (B) 1.0 equivalents of Co²⁺ at room temperature. (a and b, c and d) CD spectra obtained from curve-fitting of spectrum (A, B). $[L_1] = 1 \times 10^{-1}$ M, 1.0 mm cuvette.

Fig. S17 UV-vis absorption spectra of organogel L_1 with (A) 0.5 and (B) 1.0 equivalents of Co^{2+} at room temperature. (b and c) UV-vis absorption spectra obtained from curve-fitting of spectrum (a). $[L_1] = 1x10^{-1}$ M, 1.0 mm cuvette.