Electronic Supplementary Material (ESI) for ChemComm.

### **Supporting Information**

# A new tetrazolate zeolite-like framework for highly selective CO<sub>2</sub>/CH<sub>4</sub> and CO<sub>2</sub>/N<sub>2</sub> separation

Shunshun Xiong<sup>*a,b,c*</sup>, Youjin Gong<sup>*a*</sup>, Hongxia Wang<sup>*a*</sup>, Hailong Wang<sup>*b*</sup>, Qiang Liu<sup>*a*</sup>, Mei Gu<sup>*a*</sup>, Xiaolin Wang<sup>*a*</sup>\*, Banglin Chen<sup>*bd*</sup>\*, and Zhiyong Wang<sup>*c*</sup>

<sup>a</sup>Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China; E-mail:xlwang@caep.cn.

<sup>b</sup>Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, United States. Fax (1)-210-458-7428; E-mail: Banglin.Chen@utsa.edu.

<sup>c</sup>Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.

| Materials and Method                                                                                 | 2  |
|------------------------------------------------------------------------------------------------------|----|
| Preparation of UTSA-49                                                                               | 2  |
| Gas adsorption measurements                                                                          | 3  |
| Single-Crystal X-ray structure Determination                                                         | 3  |
| Fig S1. PXRD of UTSA-49                                                                              | 4  |
| Fig S2. PXRD of UTSA-49                                                                              | 4  |
| Table S1. Crystal data and structure refinement for UTSA-49                                          | 5  |
| Table S2. Selected bond length for UTSA-49                                                           | 6  |
| Fig S3. The pore aperture contrast for UTSA-49, MAF-66 and ZTF-1                                     | 6  |
| Fig S4. Gas isotherms at 273K                                                                        | 7  |
| Fig S5. The variation of Q <sub>st</sub> with amount adsorbed                                        | 7  |
| Table S3. CO2 uptakes and separation in selected MOFs                                                | 8  |
| Ideal Adsorbed Solution Theory                                                                       | 9  |
| Dual Site Langmuir-Freundlich Model                                                                  | 10 |
| Fig S6, S7. Mixture adsorption isotherms and selectivity predicted by IAST                           | 10 |
| Table S4. IAST selectivities of CO <sub>2</sub> /CH <sub>4</sub> and CO <sub>2</sub> /N <sub>2</sub> | 12 |
| Table S5. Equation parameters for the DSLF isotherm model                                            | 12 |

#### Materials and Methods:

All reagents and solvents were used as received from commercial suppliers without further purification. Thermogravimetric analyses (TGA) were performed on a Shimadzu TGA-50 analyzer under a nitrogen atmosphere with a heating rate of 3 K min<sup>-1</sup> from 30 to 800 °C. Powder X-ray diffraction (PXRD) patterns were recorded by a RigakuUltima IV diffractometer operated at 40 kV and 44 mA with a scan rate of 1.0 deg min<sup>-1</sup>.

#### **Preparation of UTSA-49:**

A mixture of Hmtz-5 (5.00mg, 0.0079mmol) and  $Zn(NO_3)_2 \cdot 6H_2O$  (30.00mg, 0.0587mmol) was dissolved in DMF/EtOH (2.5mL, 4:1, v/v) in a screw-capped vial (20 ml). The vial was capped and placed in an oven at 90 °C for 24 h. The resulting colourless block single crystals were washed with DMF several times to give **UTSA-49**. Elemental analysis: Calcd. for  $[Zn(mtz-5)_2] \cdot (DMF) \cdot H_2O (C_7H_{15}N_9O_2Zn_2)$ : C, 26.06%; H, 4.69%; N, 39.07%; Found: C, 26.32%; H, 4.77%; N: 38.83%.

#### **Gas Adsorption Measurements**

A QUDRASORB SI-M surface area analyzer was used to measure gas adsorption isotherms. To have a guest-free framework, the fresh sample was guest-exchange with dry methanol 3 times per day for 3 days, filtered and vacuumed at 23  $^{\circ}$ C for 10 hours to measurements. A sample of 111.0 mg was used for the sorption measurements and was maintained at 77 K with liquid nitrogen and at 273 K with an ice–water bath. As the center-controlled air conditioner was set up at 23  $^{\circ}$ C, a water bath was used for adsorption isotherms at 298 K.

Single-Crystal X-ray Structure Determination. Single crystal X-ray diffraction was performed with an Oxford Diffraction Gemini S Ultra CCD diffractometer equipped with graphite-monochromated Mo–K $\alpha$  ( $\lambda$  =0.71073 Å) using "multiscan" technique at 293K. The structure was solved by WinGX and refined by a matrix least-squares method using SHELXL-97 programs. The non-hydrogen atoms were refined anisotropically. Disordered, independent solvent molecules inside the frameworks were eliminated in the refinement by PLATON/SQUEEZE.



**Figure S1.** PXRD patterns of as-synthesized **UTSA-49** (b) and activated **UTSA-49a** (c) along with the simulated pattern from its single crystal X-ray structure (a).



Figure S2. TGA curves of as-synthesized UTSA-49

|                                              | UTSA-49                 |
|----------------------------------------------|-------------------------|
| chemical formula                             | $C_{16}H_{24}N_{32}Zn4$ |
| formula weight                               | 926.15                  |
| temperature (K)                              | 293(2)                  |
| wavelength (Å)                               | 0.71073                 |
| crystal system                               | monoclinic              |
| space group                                  | Pc                      |
| <i>a</i> (Å)                                 | 19.2148(14)             |
| <i>b</i> (Å)                                 | 13.3436(8)              |
| <i>c</i> (Å)                                 | 10.6713(5)              |
| α (°)                                        | 90.00                   |
| β (°)                                        | 95.038(6)               |
| γ (°)                                        | 90.00                   |
| $V(Å^3)$                                     | 2725.5(3)               |
| Ζ                                            | 2                       |
| density (calculated g/cm <sup>-3</sup> )     | 1.129                   |
| absorbance coefficient (mm <sup>-1</sup> )   | 1.781                   |
| <i>F</i> (000)                               | 928                     |
| crystal size (mm <sup>3</sup> )              | 0.36×0.33×0.32          |
| goodness of fit on $F_2$                     | 1.007                   |
| $R_{ m int}$                                 | 0.0407                  |
| R1, wR2 $(I \ge 2\sigma(I)^a)$               | 0.0486, 0.1270          |
| R1, wR2 (all data) <sup><math>a</math></sup> | 0.0780, 0.1374          |

Table S1. Crystal data and structure refinement for UTSA-49

 ${}^{a}\mathrm{R1} = \Sigma(|F_{o}| - |F_{c}|) / \Sigma|F_{o}|; \mathrm{wR2} = |\Sigma w(|F_{o}| - |F_{c}|^{2}) / \Sigma w F_{o}^{2}]^{1/2}$ 

| Bond    | Bond length (Å) | Bond    | Bond length (Å) |
|---------|-----------------|---------|-----------------|
| Zn1-N20 | 1.990(6)        | Zn3-N8  | 2.048(9)        |
| Zn1-N11 | 2.018(7)        | Zn3-N35 | 1.975(7)        |
| Zn1-N19 | 1.987(6)        | Zn3-N34 | 2.008(7)        |
| Zn1-N7  | 1.962(8)        | Zn3-N3  | 2.012(8)        |
|         |                 |         |                 |
| Zn2-N25 | 1.947(7)        | Zn4-N4  | 2.014(7)        |
| Zn2-N26 | 1.974(7)        | Zn4-N27 | 1.995(7)        |
| Zn2-N14 | 2.018(8)        | Zn4-N16 | 2.004(8)        |
| Zn2-N12 | 1.992(8)        | Zn4-N30 | 1.975(7)        |
|         |                 |         |                 |

Table S2. Selected bond length (Å) for UTSA-49



**Figure S3.** The 6-membered ring windows diagram and the pore aperture contrast for UTSA-49, MAF-66 and ZTF-1. The pore sizes were calculated using the Diamond 3.0d software (considering the Van der Waals radii of constituting atoms).



**Figure S4**. Adsorption (solid) and desorption (open) isotherms of carbon dioxide ((red circles), methane (blue squares), and nitrogen (green triangles) on UTSA-49a at 273 K.



**Figure S5**. The variation of  $Q_{st}$  with amount adsorbed for  $CO_2$  (red circles) and  $CH_4$  (black squares).

| Sample                                                               | CO <sub>2</sub> /CH <sub>4</sub> | CO <sub>2</sub> /N <sub>2</sub> | CO <sub>2</sub> uptake | Temperature | Ref       |
|----------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------|-------------|-----------|
| -                                                                    | selectivity                      | selectivity                     | (wt%)                  | (k)         |           |
| ZIF-68                                                               | 5                                | 18.7                            | 7.39                   | 298         | 1         |
| ZIF-69                                                               | 5.1                              | 19.9                            | 7.98                   | 298         | 1         |
| ZIF-70                                                               | 5.2                              | 17.3                            | 10.8                   | 298         | 1         |
| ZIF-78                                                               | 10.6                             | 50.1                            | 10.1                   | 298         | 1         |
| ZIF-79                                                               | 5.4                              | 23.2                            | 6.58                   | 298         | 1         |
| ZIF-81                                                               | 5.7                              | 23.8                            | 7.50                   | 298         | 1         |
| ZIF-82                                                               | 9.6                              | 35.3                            | 10.4                   | 298         | 1         |
| ZIF-95                                                               | 4.3±0.4                          | 18±1.7                          | 3.87                   | 298         | 1         |
| ZIF-100                                                              | 5.9±0.4                          | 25±2.4                          | 6.40                   | 298         | 1         |
| MAF-66                                                               | $5.8^{a}$                        | $225^{a}$                       | 19.4                   | 298         | 2         |
|                                                                      | $7.5^{a}$                        | 403 <sup><i>a</i></sup>         | 27.6                   | 273         |           |
| ZTF-1                                                                | NA                               | NA                              | 16.6                   | 298         | 3         |
|                                                                      | NA                               | NA                              | 23.5                   | 273         |           |
| UTSA-49                                                              | 33.7 <sup>b</sup>                | 95.8 <sup>b</sup>               | 13.6                   | 298         | This work |
|                                                                      | 34.8 <sup>b</sup>                | 197.7 <sup>b</sup>              | 21.3                   | 273         |           |
| IFMC-1                                                               | NA                               | 26.9                            | 11.8                   | 298         | 4         |
|                                                                      | NA                               | 50.3                            | 18.0                   | 273         |           |
| [Zn(btz)]                                                            | 15.3 <sup><i>a</i></sup>         | NA                              | 22.4                   | 298         | 5         |
|                                                                      | $21.1^{a}$                       | NA                              | 35.6                   | 273         |           |
| Mg <sub>2</sub> (dobdc)                                              | $137^{b}$                        | NA                              | 35.2                   | 298         | 6         |
| MAF-25                                                               | NA                               | NA                              | 5.3                    | 273         | 7         |
| MAF-26                                                               | NA                               | NA                              | 4.1                    | 273         | 7         |
| MAF-7                                                                | NA                               | NA                              | 5.3                    | 298         | 8         |
| MAF-4                                                                | NA                               | NA                              | 3.1                    | 298         | 8         |
| MAF-2                                                                | NA                               | NA                              | 3.6                    | 298         | 9         |
| <sup>a</sup> Henry's law selectivity. <sup>b</sup> IAST selectivity. |                                  |                                 |                        |             |           |

**Table S3.** CO<sub>2</sub> uptakes and separation in selected MOFs.

[1] A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe and O. M. Yaghi, *Acc. Chem. Res.*, 2010, **43**, 58–67.

[2] R-B. Lin, D. Chen, Y-Y. Lin, J-P. Zhang and X-M. Chen, Inorg. Chem. 2012, 51, 9950-9955.

[3] T. Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, *Chem. Commun.* 2012, 47, 2011-2013.

[4] J-S. Qin, D-Y. Du, W-L. Li, J-P. Zhang, S-L. Li, Z-M. Su, X-L. Wang, Q. Xu, K-Z. Shao and Y-Q. Lan, *Chem. Sci.*, 2012, **3**, 2114-2118

[5] P. Cui, Y-G. Ma, H-H. Li, B. Zhao, J-R. Li, P. Cheng, P. B. Ballbuena and H-C. Zhou, *J. Am. Chem. Soc.* 2012, **134**, 18892-18895.

[6] S. P. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870-10871.

[7] J.-B. Lin, J.-P. Zhang and X.-M. Chen, J. Am. Chem. Soc. 2010, 132, 6654-6656.

[8] J.-P. Zhang, A.-X. Zhu, R.-B. Lin, X.-L. Qi and X.-M. Chen, Adv. Mater., 2011, 23, 1268-1271.

[9] J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2009, 131, 5516.

#### **Ideal Adsorbed Solution Theory:**

The ideal adsorbed solution theory  $(IAST)^{10}$  was used to predict the equimolar binary mixture adsorption of CO<sub>2</sub> and CH<sub>4</sub> from the experiment pure-gas isotherm. The single-component isotherms were fit to a dual-site Langmuir-Freundlich equation:

$$q = q_{m1} \cdot \frac{b_1 \cdot P^{1/n_1}}{1 + b_1 \cdot P^{1/n_1}} + q_{m2} \cdot \frac{b_2 \cdot P^{1/n_2}}{1 + b_2 \cdot P^{1/n_2}}$$
(1)

Here, *P* is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa), q is the adsorbed amount per mass of adsorbent (mol/kg),  $q_{m1}$  and  $q_{m2}$  are the saturation capacities of sites 1 and 2 (mol/kg).  $b_1$  and  $b_2$  are affinity coefficient of sites 1 and 2 (1/kPa), and  $n_1$  and  $n_2$  represent the deviations from an ideal homogeneous surface. Although this is not the only model that can be used to fit the data, IAST requires a precise fit of the experimental data to the model in order to accurately perform the necessary integrations.<sup>11-13</sup>

- [10] Myers, A. L.; Prausnitz, J. M. AIChE J. 1965, 11, 121.
- [11] Babarao, R.; Hu, Z. Q.; Jiang J. W.; Chempath, S.; Sandler, S. I. Langmuir, 2007, 23, 659.
- [12] Goetz, V.; Pupier, O.; Guillot, A. Adsorption, 2006, 12, 55.
- [13] Bae, Y. S.; Mulfort K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. *Langmuir*,2008, 24, 8592.

## Dual Site Langmuir-Freundlich Model for CO<sub>2</sub>/CH<sub>4</sub>, and CO<sub>2</sub>/N<sub>2</sub> Adsorption Isotherms

On the basis of the Dual site Langmuir-Freundlich (DSLF) model: (II)

$$N = N_1^{\max} \times \frac{b_1 p^{1/n1}}{1 + b_1 p^{1/n1}} + N_2^{\max} \times \frac{b_2 p^{1/n2}}{1 + b_2 p^{1/n2}} \quad (\mathbf{II})$$

Where p (unit: Kpa) is the pressure of the bulk gas at equilibrium with the adsorbed phase, N (unit: mol/Kg) is the adsorbed amount per mass of adsorbent,  $N_1^{max}$  and  $N_2^{max}$  (unit: mol/Kg) are the saturation capacities of sites 1 and 2, b<sub>1</sub> and b<sub>2</sub> (unit: 1/kPa) are the affinity coefficients of sites 1 and 2, and n<sub>1</sub> and n<sub>2</sub> represent the deviations from an ideal homogeneous surface. Here, the single-component CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub> adsorption isotherms have been fit to enable the application of IAST in simulating the performance of UTSA-49a under a mixed component gas. The fitting parameters of DSLF equation are listed in Table S5. Adsorption isotherms and gas selectivities calculated by IAST for mixed CO<sub>2</sub>/CH<sub>4</sub> (CO<sub>2</sub>/CH<sub>4</sub> = 50:50), CO<sub>2</sub>/N<sub>2</sub> (CO<sub>2</sub>/N<sub>2</sub> = 10:90, 15:85, and 20:80) in the UTSA-49a.



**Figure S6**. Mixture adsorption isotherms and adsorption selectivity predicted by IAST of UTSA-49a for  $CO_2$  (50%) and  $CH_4$  (50%) at 273 K.



Figure S7. Mixture adsorption isotherms (a) and adsorption selectivity (b) predicted by IAST of UTSA-49a for  $CO_2$  and  $N_2$  (10:90, 15:85, and 20:80) at 273 K.

| mixture                          | Temperature (K) | component proportion | IAST        |
|----------------------------------|-----------------|----------------------|-------------|
|                                  |                 |                      | selectivity |
| CO <sub>2</sub> /CH <sub>4</sub> | 273             | 50:50                | 34.8        |
| $CO_2/N_2$                       | 273             | 10:90                | 188.8       |
| $CO_2/N_2$                       | 273             | 15:85                | 193.7       |
| $CO_2/N_2$                       | 273             | 20:80                | 197.7       |
|                                  |                 |                      |             |
| CO <sub>2</sub> /CH <sub>4</sub> | 298             | 50:50                | 33.7        |
| $CO_2/N_2$                       | 298             | 10:90                | 90.5        |
| $CO_2/N_2$                       | 298             | 15:85                | 93.5        |
| $CO_2/N_2$                       | 298             | 20:80                | 95.8        |

**Table S4.** IAST selectivities of  $CO_2/CH_4$  ( $CO_2/CH_4 = 50:50$ ) and  $CO_2/N_2$  ( $CO_2/N_2 = 10:90, 15:85, 20:80$ ).

**Table S5.** Equation parameters for the DSLF isotherm model.

| Adsorbates              | N <sub>1</sub> <sup>max</sup><br>(mmol/g) | b <sub>1</sub><br>(kPa-1) | n <sub>1</sub> | N2 <sup>max</sup><br>(mmol/g) | b <sub>2</sub><br>(kPa-1) | n <sub>2</sub> |
|-------------------------|-------------------------------------------|---------------------------|----------------|-------------------------------|---------------------------|----------------|
|                         |                                           |                           |                |                               |                           |                |
| CO <sub>2</sub> (273 K) | 3.5525                                    | 0.01784                   | 1.0041         | 3.2596                        | 0.01324                   | 0.8131         |
| CH <sub>4</sub> (273 K) | 1.0911                                    | 0.00216                   | 0.8970         | 0.9980                        | 0.00200                   | 0.8834         |
| N <sub>2</sub> (273 K)  | 0.6561                                    | 0.00152                   | 0.8524         | 0.1501                        | 0.00013                   | 0.7831         |
|                         |                                           |                           |                |                               |                           |                |
| CO <sub>2</sub> (298 K) | 4.0375                                    | 0.00508                   | 0.9684         | 3.7415                        | 0.00434                   | 0.9051         |
| CH <sub>4</sub> (298 K) | 0.7278                                    | 0.00124                   | 0.8606         | 0.8230                        | 0.00090                   | 0.7830         |
| N <sub>2</sub> (298K)   | 0.2496                                    | 0.00189                   | 0.8986         | 0.1793                        | 0.00064                   | 0.7043         |