# Highly Regio- and Stereoselective Nitro-Oxoamination of

## **Mono-Substituted Allenes**

Can Xue, Chunling Fu\* and Shengming Ma\*

Laboratory of Molecular Recognition and Synthesis, Department of Chemistry,

Zhejiang University, Hangzhou 310027, Zhejiang, People's Republic of China

\* Corresponding author. Tel.: 86-21-622-37360; Fax: 86-21-626-09305.

masm@sioc.ac.cn

## **Supporting Information**

## Index

| 1. | General                                                                                         | S2         |
|----|-------------------------------------------------------------------------------------------------|------------|
| 2. | Typical Procedure and Analytical Data for Compounds                                             | <b>S</b> 3 |
| 3. | References                                                                                      | S34        |
| 4. | <sup>1</sup> H NMR, <sup>13</sup> C NMR, <sup>19</sup> F NMR and NOE Spectra of these Compounds | S35        |

General: Mono-substituted allenes were prepared according to the literature procedure.<sup>1</sup> Dioxane was distilled from Na wire/benzophenone. The other commercially available chemicals were purchased and used without additional purification. The reactions were performed under an atmosphere of nitrogen using standard Schlenk tubes unless otherwise stated. Petroleum ether with a boiling point ranging from 30 to 60 °C was used. Flash-column chromatography was carried out with silica gel H (10–40  $\mu).$   $^1H,$   $^{13}C,$  and  $^{19}F$  NMR spectra were recorded with a Bruker AN 300 MHz spectrometer. <sup>1</sup>H NMR spectra (300 MHz) were recorded using TMS ( $\delta$  0 ppm) or CDCl<sub>3</sub> ( $\delta$  7.26 ppm) as the internal standard. <sup>13</sup>C NMR spectra (75 MHz) were recorded using CDCl<sub>3</sub> as the internal standard ( $\delta$  77.00 ppm). <sup>19</sup>F NMR spectra (282 MHz) were recorded using CFCl<sub>3</sub> as the internal standard ( $\delta$  0 ppm). IR spectra were recorded with a Perkin-Elmer 983G instrument. ESI-Mass spectrometry was performed with an Agilent 1100 LC/MSD SL system. ESI-High-resolution mass spectrometry was determined with a Bruker Daltonics APEXIII<sup>TM</sup> ESI-FTICRMS instrument. The configuration of the C=C bond in (E)-2a ~ (E)-2v, (Z)-2f, (Z)-2h, (Z)-2i, (Z)-2j, (Z)-2n, (Z)-2s and (Z)-2v were established by the NOE study.

### Nitro-oxoamination reactions of mono-allenes without degassing operation

1. (*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitro-1-phenylprop-1-ene ((*E*)- and (*Z*)-2a) (xc-9-176-1)



**Typical Procedure** I: То dried Schlenk tube added а were 2,2,6,6-tetramethyl-1-piperidineoxyl (TEMPO, 98%, 0.3193 g, 2.01 mmol), AgNO<sub>2</sub> (99%, 2.01 mmol), NaHCO<sub>3</sub> 0.3121 (0.2528)3.01 g, mmol). g, 1-phenylpropa-1,2-diene 1a (0.1162 g, 1.00 mmol), and 10 mL of anhydrous 1,4-dioxane at room temperature under N<sub>2</sub> atmosphere. The resulting mixture was then placed in a pre-heated oil bath of 60 °C and stirred for 10 h as monitored by TLC. After cooling to room temperature, the crude reaction mixture was filtrated through a short column of silica gel (Et<sub>2</sub>O  $3 \times 15$  mL). After concentration, the ratio of (E)-2a/(Z)-2a was 97/3 as determined by the <sup>1</sup>H NMR analysis. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1 then petroleum ether/ethyl acetate = 100/1) afforded **2a** (0.2702 g, 85%, (E)/(Z) = 98/2) as an oil.

(*E*)-2a: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1 H, =CH), 7.65-7.54 (m, 2 H, ArH), 7.49-7.40 (m, 3 H, ArH), 4.95 (s, 2 H, CH<sub>2</sub>), 1.58-1.38 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.36-1.27 (m, 1 H, one proton of CH<sub>2</sub>), 1.10 (s, 6 H, 2 × CH<sub>3</sub>),

1.08 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 137.8, 131.6, 130.4, 129.9, 128.7, 69.1, 60.0, 39.8, 32.8, 20.0, 16.9; IR (neat) v (cm<sup>-1</sup>) 3062, 2972, 2932, 2870, 1646, 1601, 1527, 1468, 1451, 1376, 1325, 1261, 1243, 1210, 1184, 1133, 1030; MS (ESI):  $m/z = 319 [M+H]^+$ ; HRMS (ESI): calcd. for C<sub>18</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 319.2016; found 319.2014. The following signals are discernible for (*Z*)-2a: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.68 (s, 1 H, =CH), 4.75 (s, 2 H, CH<sub>2</sub>).

The following compounds were prepared following Typical Procedure I.

A 10 mmol scale nitro-oxoamination reaction of 1a.

(*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitro-1-phenylprop-1-ene
 ((*E*)- and (*Z*)-2a) (xc-10-159, 9-133)



The reaction of 1-phenylpropa-1,2-diene **1a** (1.1615 g, 10.01 mmol), TEMPO (98%, 3.1845 g, 20.01 mmol), AgNO<sub>2</sub> (99%, 3.1112 g, 20.00 mmol), and NaHCO<sub>3</sub> (2.5213 g, 30.02 mmol) in dioxane (80 mL) at 60 °C for 3 h afforded a crude product. The ratio of (*E*)-**2a**/(*Z*)-**2a** was 98/2 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 150/1) afforded **2a** (2.8910 g, 91%, (*E*)/(*Z*) > 98/2) as an oil. (*E*)-**2a**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (s, 1 H, =CH), 7.67-7.53 (m, 2 H, ArH), 7.52-7.38 (m, 3 H, ArH), 4.96 (s, 2 H, CH<sub>2</sub>), 1.57-1.23 (m, 6 H, 3 × CH<sub>2</sub>), 1.11

(s, 6 H, 2 × CH<sub>3</sub>), 1.08 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 137.9, 131.6, 130.4, 129.9, 128.7, 69.1, 60.0, 39.8, 32.8, 20.0, 16.9; Elemental analysis calcd for C<sub>18</sub>H<sub>26</sub>N<sub>2</sub>O<sub>3</sub>: N, 8.80; C, 67.90; H, 8.23; Found: N, 8.84; C, 67.96; H, 8.03. The following signals are discernible for (*Z*)-2a: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.68 (s, 1 H, =CH), 4.74 (s, 2 H, CH<sub>2</sub>).

2. (*E*)- and (*Z*)-1-(4-Methylphenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro prop-1-ene ((*E*)- and (*Z*)-**2b**) (xc-10-177-1,2)



The reaction of 1-(4-methylphenyl)propa-1,2-diene **1b** (0.1302 g, 1.00 mmol), TEMPO (98%, 0.3197 g, 2.01 mmol), AgNO<sub>2</sub> (99%, 0.3115 g, 2.00 mmol), and NaHCO<sub>3</sub> (0.2522 g, 3.00 mmol) in dioxane (10 mL) at 60 °C for 7 h afforded a crude product. The ratio of (*E*)-**2b**/(*Z*)-**2b** was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1) afforded **2b** (0.1471 g, (*E*)/(*Z*) = 94/6; purity of **2b**: 96% as determined by using mesitylene as the internal standard, 43% yield) as an oil.

(*E*)-**2b**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.15 (s, 1 H, =CH), 7.55 (d, *J* = 8.1 Hz, 2

H, ArH), 7.26 (d, J = 8.1 Hz, 2 H, ArH), 4.98 (s, 2 H, CH<sub>2</sub>), 2.41 (s, 3 H, CH<sub>3</sub>), 1.54-1.38 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.38-1.27 (m, 1 H, one proton of CH<sub>2</sub>), 1.14 (s, 6 H, 2 × CH<sub>3</sub>), 1.09 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ 147.6, 141.2, 138.2, 130.3, 129.6, 128.8, 69.4, 60.1, 39.9, 33.0, 21.5, 20.1, 17.0; IR (neat) v (cm<sup>-1</sup>) 2974, 2933, 2869, 1644, 1608, 1557, 1526, 1468, 1454, 1376, 1361, 1322, 1243, 1186, 1132, 1036; MS (ESI): m/z = 333 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>19</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 333.2173; found 333.2164. The following signals are discernible for (*Z*)-**2b**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.52 (s, 1 H, =CH), 4.73 (s, 2 H, CH<sub>2</sub>).

3. (*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitro-1-(4-propylphenyl) prop-1-ene ((*E*)- and (*Z*)-**2**c) (xc-9-184)



The reaction of 1-(4-propylphenyl)propa-1,2-diene **1c** (0.1585 g, 1.00 mmol), TEMPO (98%, 0.3189 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3121 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2532 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 11 h afforded a crude product. The ratio of (*E*)-**2c**/(*Z*)-**2c** was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether= 100/1) afforded **2c** (0.3175 g, 88%, (*E*)/(*Z*) = 98/2) as an oil.

(*E*)-**2c**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (s, 1 H, =CH), 7.47 (d, *J* = 8.4 Hz, 2 H, ArH), 7.18 (d, *J* = 8.1 Hz, 2 H, ArH), 4.90 (s, 2 H, CH<sub>2</sub>), 2.56 (t, *J* = 7.5 Hz, 2 H, CH<sub>2</sub>), 1.58 (sext, *J* = 7.4 Hz, 2 H, CH<sub>2</sub>), 1.49-1.30 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.29-1.20 (m, 1 H, one proton of CH<sub>2</sub>), 1.05 (s, 6 H, 2 × CH<sub>3</sub>), 1.01 (s, 6 H, 2 × CH<sub>3</sub>), 0.87 (t, *J* = 7.2 Hz, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  147.6, 145.9, 138.2, 130.2, 129.0, 128.9, 69.3, 60.0, 39.9, 37.8, 32.9, 24.2, 20.1, 17.0, 13.7; IR (neat) v (cm<sup>-1</sup>) 2931, 2871, 1644, 1608, 1527, 1467, 1376, 1360, 1323, 1260, 1243, 1186, 1133, 1034; MS (ESI): *m*/*z* = 361 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>21</sub>H<sub>33</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 361.2486; found 361.2476. The following signals are discernible for (*Z*)-**2c**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.55 (s, 1 H, =CH), 4.65 (s, 2 H, CH<sub>2</sub>).

4. (*E*)- and (*Z*)-1-(4-Methyloxyphenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2nitroprop-1-ene ((*E*)- and (*Z*)-2d) (xc-9-178,185)



The reaction of 1-(4-methyloxyphenyl)propa-1,2-diene **1d** (0.1458 g, 1.00 mmol), TEMPO (98%, 0.3188 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3123 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2533 g, 3.02 mmol) in dioxane (10 mL) at 60 °C for 11 h afforded a crude product. The ratio of (*E*)-**2d**/(*Z*)-**2d** was 97/3 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel

(eluent: petroleum ether/ethyl acetate = 150/1, then petroleum ether/ethyl acetate = 100/1) afforded **2d** (0.2192 g, (E)/(Z)-**2d** = 96/4; purity of **2d**: 94% as determined by using mesitylene as the internal standard, 60% yield) as an oil.

(*E*)-2d: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (s, 1 H, =CH), 7.68 (d, *J* = 8.7 Hz, 2 H, ArH), 6.99 (d, *J* = 8.7 Hz, 2 H, ArH), 5.03 (s, 2 H, CH<sub>2</sub>), 3.89 (s, 3 H, CH<sub>3</sub>), 1.57-1.45 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.40-1.31 (m, 1 H, one proton of CH<sub>2</sub>), 1.18 (s, 6 H, 2 × CH<sub>3</sub>), 1.13 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ 161.4, 146.0, 137.7, 132.0, 123.6, 113.9, 69.2, 59.6, 55.0, 39.5, 32.6, 19.7, 16.6; IR (neat) v (cm<sup>-1</sup>) 2972, 2933, 2843, 1641, 1604, 1520, 1466, 1376, 1306, 1260, 1180, 1132, 1030; MS (ESI): *m*/*z* = 349 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>19</sub>H<sub>29</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup> 349.2122; found 349.2109. The following signals are discernible for (*Z*)-2d: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.62 (s, 1 H, =CH), 4.74 (s, 2 H, CH<sub>2</sub>), 3.84 (s, 3 H, CH<sub>3</sub>).

5. (*E*)- and (*Z*)-1-(4-Fluorophenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro prop-1-ene ((*E*)- and (*Z*)-2e) (xc-9-183)



The reaction of 1-(4-fluorophenyl)propa-1,2-diene **1e** (0.1351 g, 1.01 mmol), TEMPO (98%, 0.3188 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3121 g, 2.01 mmol), and <sub>S8</sub>

NaHCO<sub>3</sub> (0.2529 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 6 h afforded a crude product. The ratio of (E)-**2e**/(Z)-**2e** was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1) afforded (*E*)-**2e** (0.1932 g, purity = 98% as determined by using mesitylene as the internal standard, 56% yield) as a liquid and (*Z*)-**2e** (0.0162 g, purity = 27% as determined by using mesitylene as the internal standard, 1% yield) as a solid.

(*E*)-**2e** (less polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (s, 1 H, =CH), 7.72-7.53 (m, 2 H, ArH), 7.19-7.06 (m, 2 H, ArH), 4.95 (s, 2 H, CH<sub>2</sub>), 1.60-1.38 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.37-1.26 (m, 1 H, one proton of CH<sub>2</sub>), 1.11 (s, 6 H, 2 × CH<sub>3</sub>), 1.08 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  164.0 (d, *J* = 251.3 Hz), 148.1, 136.8, 132.2 (d, *J* = 9.0 Hz), 127.8 (d, *J* = 3.6 Hz), 116.1 (d, *J* = 22.1 Hz), 69.2, 60.1, 39.9, 32.9, 20.1, 17.0; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -108.9 ~ -109.4 (m, 1 F); IR (neat) v (cm<sup>-1</sup>) 2970, 2933, 1649, 1602, 1529, 1468, 1377, 1324, 1239, 1163, 1133, 1084, 1016; MS (ESI): *m*/*z* = 337 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>18</sub>H<sub>26</sub>FN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 337.1922; found 337.1919.

The following signals are discernible for (*Z*)-2e (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.57 (s, 1 H, =CH), 4.66 (s, 2 H, CH<sub>2</sub>); <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -108.7 ~ -109.0 (m, 1 F).

6. (*E*)- and (*Z*)-1-(4-Chlorophenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro prop-1-ene ((*E*)- and (*Z*)-**2f**) (xc-10-162-1,2)



The reaction of 1-(4-chlorophenyl)propa-1,2-diene **1f** (0.1503 g, 1.00 mmol), TEMPO (98%, 0.3188 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3117 g, 2.00 mmol), and NaHCO<sub>3</sub> (0.2533 g, 3.02 mmol) in dioxane (10 mL) at 60 °C for 8 h afforded a crude product. The ratio of (*E*)-**2f**/(*Z*)-**2f** was 95/5 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1 then petroleum ether/ethyl acetate = 100/1) afforded (*E*)-**2f** (0.2997 g, 85%) as a solid and (*Z*)-**2f** (0.0112 g, purity = 47% as determined by using mesitylene as the internal standard, 1% yield) as an oil.

(*E*)-**2f** (less polar): m.p. 65.3-66.0 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (s, 1 H, =CH), 7.59 (d, *J* = 8.4 Hz, 2 H, ArH), 7.43 (d, *J* = 8.4 Hz, 2 H, ArH), 4.94 (s, 2 H, CH<sub>2</sub>), 1.63-1.39 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.37-1.26 (m, 1 H, one proton of CH<sub>2</sub>), 1.11 (s, 6 H, 2 × CH<sub>3</sub>), 1.08 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.6, 136.8, 136.6, 131.3, 130.1, 129.1, 69.2, 60.1, 39.9, 32.9, 20.1, 17.0; IR (KBr) v (cm<sup>-1</sup>) 2974, 2935, 2869, 1593, 1557, 1527, 1492, 1467, 1380, 1361, 1244, 1180, 1132, 1092, 1015; MS (ESI): *m*/*z* = 353 [M(<sup>35</sup>Cl)+H]<sup>+</sup>, 355 [M(<sup>37</sup>Cl)+H]<sup>+</sup>; Elemental analysis calcd for C<sub>18</sub>H<sub>25</sub>CIN<sub>2</sub>O<sub>3</sub>: N, 7.94; C, 61.27; H, 7.14; Found: N, 7.66; C, 61.06; H, 7.05.

The following signals are discernible for (*Z*)-2f (more polar):  ${}^{1}$ H NMR (300 MHz, S10

CDCl<sub>3</sub>)  $\delta$  7.34 (d, J = 8.7 Hz, 2 H, ArH), 7.25 (d, J = 7.5 Hz, 2 H, ArH), 6.64 (s, 1 H, =CH), 4.73 (s, 2 H, CH<sub>2</sub>), 1.20 (s, 6 H, 2 × CH<sub>3</sub>), 1.11 (s, 6 H, 2 × CH<sub>3</sub>); IR (neat) v (cm<sup>-1</sup>) 2974, 2932, 2869, 1646, 1593, 1527, 1491, 1468, 1376, 1339, 1092, 1015; MS (ESI):  $m/z = 355 [M(^{37}Cl)+H]^+$ , 353  $[M(^{35}Cl)+H]^+$ ; HRMS (ESI): calcd. for  $C_{18}H_{26}CIN_2O_3 [M(^{35}Cl)+H]^+$  353.1626; found 353.1621.

7. (*E*)- and (*Z*)-1-(4-Bromophenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro prop-1-ene ((*E*)- and (*Z*)-2g) (xc-10-005-2,3)



The reaction of 1-(4-bromophenyl)propa-1,2-diene **1g** (0.1959 g, 1.00 mmol), TEMPO (98%, 0.3192 g, 2.01 mmol), AgNO<sub>2</sub> (99%, 0.3125 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2515 g, 2.99 mmol) in dioxane (10 mL) at 60 °C for 12 h afforded a crude product. The ratio of (*E*)-**2g**/(*Z*)-**2g** was 97/3 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1 then petroleum ether/ethyl acetate = 100/1) afforded (*E*)-**2g** (0.3295 g, 83%) as a solid and (*Z*)-**2g** (0.0390 g, purity = 10% as determined by using mesitylene as the internal standard, 1% yield) as an oil.

(*E*)-2g (less polar): m.p. 95.4-96.1 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (s, 1 H, =CH), 7.59 (d, *J* = 8.4 Hz, 2 H, ArH), 7.51 (d, *J* = 8.4 Hz, S11

2 H, ArH), 4.93 (s, 2 H, CH<sub>2</sub>), 1.55-1.39 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.38-1.27 (m, 1 H, one proton of CH<sub>2</sub>), 1.10 (s, 12 H, 4 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.8, 136.6, 132.1, 131.5, 130.6, 125.2, 69.3, 60.2, 39.9, 33.0, 20.1, 17.0; IR (KBr) v (cm<sup>-1</sup>) 2973, 2932, 1646, 1588, 1531, 1488, 1468, 1451, 1375, 1361, 1325, 1261, 1243, 1209, 1183, 1133, 1075, 1012; MS (ESI): *m*/*z* = 397 [M(<sup>79</sup>Br)+H]<sup>+</sup>, 399 [M(<sup>81</sup>Br)+H]<sup>+</sup>; Elemental analysis calcd for C<sub>18</sub>H<sub>25</sub>BrN<sub>2</sub>O<sub>3</sub>: N, 7.05; C, 54.41; H, 6.34; Found: N, 6.94; C, 54.55; H, 6.41.

The following signals are discernible for (*Z*)-2g (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.18 (d, *J* = 8.4 Hz, 2 H, ArH), 6.62 (s, 1 H, =CH), 4.73 (s, 2 H, CH<sub>2</sub>).

8. (*E*)- and (*Z*)-1-(4-Trifluoromethylphenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)
-2-nitroprop-1-ene ((*E*)- and (*Z*)-2h) (xc-10-166-1,2; xc-12-060-1,2)



The reaction of 1-(4-trifluoromethylphenyl)propa-1,2-diene **1h** (0.1841 g, 1.00 mmol), TEMPO (98%, 0.3187 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3120 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2532 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 8 h afforded a crude product. The ratio of (*E*)-**2h**/(*Z*)-**2h** was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1; then 100/1; and then 10/1)  $_{S12}^{S12}$ 

afforded (*E*)-**2h** (0.2211 g, purity = 97%, 56%) as an oil and (*Z*)-**2h** (0.0325 g, purity = 15%, 1%) as an oil.

(*E*)-**2h** (less polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (s, 1 H, =CH), 7.78-7.68 (m, 4 H, ArH), 4.93 (s, 2 H, CH<sub>2</sub>), 1.56-1.40 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.35-1.27 (m, 1 H, one proton of CH<sub>2</sub>), 1.07 (s, 12 H, 4 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  149.8, 135.9, 135.2, 132.0 (q, *J* = 32.9 Hz), 130.1, 125.7 (q, *J* = 3.7 Hz), 123.6 (q, *J* = 270.6 Hz), 69.0, 60.1, 39.8, 32.8, 20.1, 16.9; <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -63.5 (s, 3 F); IR (neat) v (cm<sup>-1</sup>) 2975, 2935, 2869, 1618, 1533, 1469, 1376, 1361, 1324, 1262, 1170, 1131, 1069, 1019; MS (ESI): *m*/*z* = 387 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>19</sub>H<sub>26</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 387.1890; found 387.1874.

The following signals are discernible for (*Z*)-2h (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.99 (s, 1 H, =CH), 4.92 (s, 2 H, CH<sub>2</sub>).

9. (*E*)- and (*Z*)-1-(4-Acetylphenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro prop-1-ene ((*E*)- and (*Z*)-**2i**) (xc-11-039-1,2)



The reaction of 1-(4-acetylphenyl)propa-1,2-diene **1i** (0.1587 g, 1.00 mmol), TEMPO (98%, 0.3188 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3115 g, 2.00 mmol), and

NaHCO<sub>3</sub> (0.2527 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 12 h afforded a crude product. The ratio of (*E*)-**2i**/(*Z*)-**2i** was 97/3 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1 then petroleum ethyl/ethyl acetate = 15/1) afforded (*E*)-**2i** (0.2101 g, 58%) as a solid and (*Z*)-**2i** (0.0163 g, purity = 13% as determined by using mesitylene as the internal standard, 1% yield) as an oil.

(*E*)-**2i** (less polar): m.p. 71.3-71.8 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1 H, =CH), 8.03 (d, *J* = 8.1 Hz, 2 H, ArH), 7.71 (d, *J* = 8.4 Hz, 2 H, ArH), 4.94 (s, 2 H, CH<sub>2</sub>), 2.65 (s, 3 H, CH<sub>3</sub>), 1.54-1.39 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.37-1.25 (m, 1 H, one proton of CH<sub>2</sub>), 1.09 (s, 6 H, 2 × CH<sub>3</sub>), 1.07 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  197.2, 149.6, 138.0, 136.22, 136.17, 130.1, 128.6, 69.1, 60.2, 39.9, 32.9, 26.7, 20.1, 17.0; IR (KBr) v (cm<sup>-1</sup>) 2973, 2932, 1687, 1605, 1529, 1468, 1360, 1326, 1265, 1133, 1016; MS (ESI): *m*/*z* = 361 [M+H]<sup>+</sup>; Elemental analysis calcd for C<sub>20</sub>H<sub>28</sub>N<sub>2</sub>O<sub>4</sub>: N, 7.50; C, 66.64; H, 7.90; Found: N, 7.50; C, 66.57; H, 7.90.

The following signals are discernible for (*Z*)-2i (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, *J* = 8.1 Hz, 2 H, ArH), 7.40 (d, *J* = 7.8 Hz, 2 H, ArH), 6.75 (s, 1 H, =CH), 4.77 (s, 2 H, CH<sub>2</sub>), 2.61 (s, 3 H, CH<sub>3</sub>), 1.35 (s, 6 H, 2 × CH<sub>3</sub>), 1.26 (s, 6 H, 2 × CH<sub>3</sub>).

10. (*E*)- and (*Z*)-1-(4-Methoxycarbonylphenyl)-3-(2,2,6,6-tetramethylpiperidinyl-1oxy)-2-nitroprop-1-ene ((*E*)- and (*Z*)-**2j**) (xc-11-038-1,2)



The reaction of 1-(4-methoxycarbonylphenyl)propa-1,2-diene **1j** (0.1745 g, 1.00 mmol), TEMPO (98%, 0.3192 g, 2.01 mmol), AgNO<sub>2</sub> (99%, 0.3118 g, 2.00 mmol), and NaHCO<sub>3</sub> (0.2527 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 10 h afforded a crude product. The ratio of (*E*)-**2j**/(*Z*)-**2j** was 98/2 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 20/1) afforded (*E*)-**2j** (0.3306 g, purity = 98% as determined by using mesitylene as the internal standard, 86% yield) as a solid and (*Z*)-**2j** (0.0102 g, purity = 41% as determined by using mesitylene as the internal standard, 1% yield) as an oil.

(*E*)-**2j** (less polar): m.p. 99.7-101.0 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 1 H, =CH), 8.11 (d, *J* = 8.4 Hz, 2 H, ArH), 7.68 (d, *J* = 8.1 Hz, 2 H, ArH), 4.94 (s, 2 H, CH<sub>2</sub>), 3.96 (s, 3 H, CH<sub>3</sub>), 1.57-1.23 (m, 6 H, 3 × CH<sub>2</sub>), 1.09 (s, 6 H, 2 × CH<sub>3</sub>), 1.07 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.1, 149.3, 136.3, 135.9, 131.4, 129.72, 129.66, 68.9, 60.0, 52.3, 39.7, 32.7, 19.9, 16.8; IR (KBr) v (cm<sup>-1</sup>) 2977, 2933, 2869, 2843, 1727, 1648, 1608, 1531, 1436, 1361, 1326, 1280, 1185, 1133, 1110, 1020; MS (ESI): *m*/*z* = 377 [M+H]<sup>+</sup>; Elemental analysis calcd for C<sub>20</sub>H<sub>28</sub>N<sub>2</sub>O<sub>5</sub>: N, 7.44; C, 63.81; H, 7.50; Found: N, 7.27; C, 63.92; H, 7.55.

The following signals are discernible for (*Z*)-2j (more polar):  ${}^{1}$ H NMR (300 MHz, S15 CDCl<sub>3</sub>)  $\delta$  8.03 (d, J = 8.4 Hz, 2 H, ArH), 7.37 (d, J = 8.4 Hz, 2 H, ArH), 6.75 (s, 1 H, =CH), 4.76 (s, 2 H, CH<sub>2</sub>), 3.93 (s, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  129.9, 128.3, 125.9, 60.3, 39.7; IR (neat) v (cm<sup>-1</sup>) 3012, 2927, 2852, 1728, 1608, 1532, 1436, 1376, 1279, 1109, 1016; MS (ESI): m/z = 377 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for  $C_{20}H_{29}N_2O_5$  [M+H]<sup>+</sup> 377.2071; found 377.2058.

11. (*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitro-1-((1,1'-biphenyl)
-4-yl)prop-1-ene ((*E*)- and (*Z*)-2k) (xc-10-172-1,2)



The reaction of 1-((1,1'-diphenyl)-4-yl)propa-1,2-diene **1k** (0.1922 g, 1.00 mmol), TEMPO (98%, 0.3188 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3113 g, 2.00 mmol), and NaHCO<sub>3</sub> (0.2527 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 7 h afforded a crude product. The ratio of (*E*)-**2k**/(*Z*)-**2k** was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1) afforded pure (*E*)-**2k** (0.3337 g, 85%) as a solid and **2k** (0.0063 g, 1.6%, *E*/*Z* = 77/23) as an oil.

(*E*)-2k (less polar): m.p. 105.4-106.7 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.21 (s, 1 H, =CH), 7.78-7.58 (m, 6 H, ArH), 7.53-7.37 (m, 3 H, ArH), 5.02

(s, 2 H, CH<sub>2</sub>), 1.54-1.27 (m, 6 H, 3 × CH<sub>2</sub>), 1.15 (s, 6 H, 2 × CH<sub>3</sub>), 1.10 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.1, 143.4, 139.8, 137.8, 130.8, 130.5, 128.9, 128.1, 127.4, 127.1, 69.4, 60.1, 39.9, 33.0, 20.1, 17.0; IR (KBr) v (cm<sup>-1</sup>) 2973, 2932, 1644, 1605, 1526, 1488, 1450, 1375, 1361, 1323, 1262, 1133, 1008; MS (ESI): m/z = 395 [M+H]<sup>+</sup>; Elemental analysis calcd for C<sub>24</sub>H<sub>30</sub>N<sub>2</sub>O<sub>3</sub>: N, 7.10; C, 73.07; H, 7.66; Found: N, 6.82; C, 72.85; H, 7.74.

The following signals are discernible for (*Z*)-2k (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.71 (s, 1 H, =CH), 4.76 (s, 2 H, CH<sub>2</sub>).

12. (*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-1-(1-naphthyl)-2-nitroprop -1-ene ((*E*)- and (*Z*)-**2**l) (xc-10-078-2)



The reaction of 1-(1-naphthyl)propa-1,2-diene **11** (0.1665 g, 1.00 mmol), TEMPO (98%, 0.3193 g, 2.01 mmol), AgNO<sub>2</sub> (99%, 0.3122 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2533 g, 3.02 mmol) in dioxane (10 mL) at 60 °C for 11 h afforded a crude product. The ratio of (*E*)-**21**/(*Z*)-**21** was 99/1 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1 then petroleum ether/ethyl acetate = 100/1) afforded (*E*)-**21** (0.3138 g, 85%) as a liquid: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.69 (s, 1)

H, =CH), 7.98-7.81 (m, 3 H, ArH), 7.72-7.63 (m, 1 H, ArH), 7.63-7.46 (m, 3 H, ArH), 4.82 (s, 2 H, CH<sub>2</sub>), 1.54-1.33 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.30-1.19 (m, 1 H, one proton of CH<sub>2</sub>), 1.01 (s, 6 H, 2 × CH<sub>3</sub>), 0.97 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  149.2, 136.4, 133.1, 131.1, 130.4, 128.8, 128.5, 127.5, 127.0, 126.4, 124.9, 124.0, 69.0, 59.8, 39.7, 32.4, 19.7, 16.7; IR (neat) v (cm<sup>-1</sup>) 3059, 2973, 2932, 2869, 1651, 1531, 1470, 1450, 1375, 1360, 1334, 1244, 1133, 1038; MS (ESI): *m*/*z* = 369 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>22</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 369.2173; found 369.2168.

13. (*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-1-(2-naphthyl)-2-nitroprop1-ene ((*E*)- and (*Z*)-2m) (xc-10-161-1,2)



The reaction of 1-(2-naphthyl)propa-1,2-diene **1m** (0.1665 g, 1.00 mmol), TEMPO (98%, 0.3188 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3115 g, 2.00 mmol), and NaHCO<sub>3</sub> (0.2533 g, 3.02 mmol) in dioxane (10 mL) at 60 °C for 10 h afforded a crude product. The ratio of (*E*)-**2m**/(*Z*)-**2m** was 97/3 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1) afforded **2m** (0.3285 g, (*E*)/(*Z*) = 98/2, 89% yield) as a solid.

(*E*)-**2m**: m.p. 57.7-58.9 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.32 (s, 1 H, =CH), 8.21 (s, 1 H, ArH), 7.96-7.84 (m, 3 H, ArH), 7.71-7.63 (m, 1 H, ArH), 7.62-7.51 (m, 2 H, ArH), 5.06 (s, 2 H, CH<sub>2</sub>), 1.55-1.40 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.39-1.28 (m, 1 H, one proton of CH<sub>2</sub>), 1.15 (s, 12 H, 4 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 138.2, 133.9, 132.9, 130.6, 129.1, 128.6, 127.8, 127.7, 126.9, 126.6, 69.6, 60.2, 39.9, 33.0, 20.2, 17.0; IR (KBr) v (cm<sup>-1</sup>) 3057, 2973, 2932, 1645, 1625, 1598, 1525, 1467, 1375, 1361, 1319, 1272, 1242, 1181, 1132, 1018; MS (ESI): *m/z* = 369 [M+H]<sup>+</sup>; Elemental analysis calcd for C<sub>22</sub>H<sub>28</sub>N<sub>2</sub>O<sub>3</sub>: N, 7.60; C, 71.71; H, 7.66; Found: N, 7.32; C, 71.68; H, 7.72. The following signals are discernible for (*Z*)-**2m**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.86 (s, 1 H, =CH), 4.80 (s, 2 H, CH<sub>2</sub>).

14. (*E*)- and (*Z*)-3-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitro-1-(3-thienyl)prop-1ene ((*E*)- and (*Z*)-2n) (xc-11-026-1,2)



The reaction of 1-(3-thienyl)propa-1,2-diene **1n** (0.1225 g, 1.00 mmol), TEMPO (98%, 0.3191 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3118 g, 2.00 mmol), and NaHCO<sub>3</sub> (0.2527 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 3 h afforded a crude product. The ratio of (*E*)-**2n**/(*Z*)-**2n** was 97/3 as determined by the <sup>1</sup>H NMR analysis of the

crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1) afforded (*E*)-**2n** (0.2887 g, (*E*)/(*Z*) = 99/1, 89% yield) as a solid and (*Z*)-**2n** (0.0103 g, purity = 16% as determined by using mesitylene as the internal standard, 0.5% yield) as an oil.

(*E*)-**2n** (less polar): m.p. 63.7-64.8 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (s, 1 H, =CH), 7.92 (s, 1 H, ArH), 7.44 (s, 2 H, ArH), 5.07 (s, 2 H, CH<sub>2</sub>), 1.59-1.26 (m, 6 H, 3 × CH<sub>2</sub>), 1.16 (s, 6 H, 2 × CH<sub>3</sub>), 1.08 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  147.1, 132.9, 131.5, 130.9, 128.5, 126.9, 69.6, 60.0, 39.7, 33.0, 20.1, 17.0; IR (KBr) v (cm<sup>-1</sup>) 3103, 2973, 2932, 1640, 1525, 1468, 1450, 1375, 1361, 1317, 1258, 1133, 1012; MS (ESI): *m*/*z* = 325 [M+H]<sup>+</sup>; Elemental analysis calcd for C<sub>16</sub>H<sub>24</sub>N<sub>2</sub>O<sub>3</sub>S: N, 8.63; C, 59.23; H, 7.46; Found: N, 8.50; C, 59.38; H, 7.46.

The following signals are discernible for (*Z*)-**2n** (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.69-7.62 (m, 1 H, ArH), 7.36-7.29 (m, 1 H, ArH), 7.20-7.14 (m, 1 H, ArH), 6.70 (s, 1 H, =CH), 4.72 (s, 2 H, CH<sub>2</sub>); MS (ESI): *m*/*z* = 325 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>16</sub>H<sub>25</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup> 325.1580; found 325.1569.

15. (*E*)- and (*Z*)-1-(Benzofuran-2-yl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro prop-1-ene ((*E*)- and (*Z*)-20) (xc-11-071-2)



The reaction of 1-(benzofuran-2-yl)propa-1,2-diene 10 (0.1565 g, 1.00 mmol), TEMPO (98%, 0.3187 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3121 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2528 g, 3.01 mmol) in dioxane (10 mL) at 60 °C for 6 h afforded a crude product. The ratio of (E)-20/(Z)-20 was 97/3 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1 then petroleum ether/ethyl acetate = 100/1) afforded (E)-20 (0.2324 g, 65%) as a solid: m.p. 100.9-102.3 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (s, 1 H, =CH), 7.66 (d, J = 7.2 Hz, 1 H, ArH), 7.51-7.39 (m, 2 H, ArH), 7.36-7.23 (m, 2 H, ArH), 5.38 (s, 2 H, CH<sub>2</sub>), 1.65-1.43 (m, 6 H,  $3 \times$  CH<sub>2</sub>), 1.37 (s, 6 H,  $2 \times$  CH<sub>3</sub>), 1.06 (s, 6 H,  $2 \times$  CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) & 156.3, 148.2, 145.7, 127.8, 127.5, 123.8, 123.5, 122.2, 117.5, 111.5, 68.8, 60.1, 40.0, 32.9, 20.0, 17.0; IR (KBr) v (cm<sup>-1</sup>) 2971, 2931, 2869, 1651, 1612, 1547, 1518, 1469, 1449, 1360, 1315, 1293, 1259, 1134, 1084, 1032; MS (ESI):  $m/z = 359 [M+H]^+$ ; Elemental analysis calcd for C<sub>20</sub>H<sub>26</sub>N<sub>2</sub>O<sub>4</sub>: N, 7.82; C, 67.02; H, 7.31; Found: N, 7.17; C, 67.26; H, 7.46.

16. (*E*)- and (*Z*)-1-(1-Indolyl)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitroprop-1ene ((*E*)- and (*Z*)-2**p**) (xc-11-057-1, 059-1)



The reaction of 1-(1-indolyl)propa-1,2-diene 1p (0.1547 g, 1.00 mmol), TEMPO (98%, 0.3189 g, 2.00 mmol), AgNO<sub>2</sub> (99%, 0.3121 g, 2.01 mmol), and NaHCO<sub>3</sub> (0.2533 g, 3.02 mmol) in dioxane (10 mL) at 60 °C for 1.5 h afforded a crude product. The ratio of (E)-2p/(Z)-2p was 99/1 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1 then petroleum ether/ethyl acetate = 100/1) afforded (E)-2p (0.1963 g, 55%) as a solid: m.p. 127.5-128.6 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.02 (s, 1 H, =CH), 8.13 (d, J = 3.3 Hz, 1 H, ArH), 7.70-7.52 (m, 2 H, ArH), 7.43-7.27 (m, 2 H, ArH), 6.84 (d, J = 3.3 Hz, 1 H, ArH), 5.20 (s, 2 H, CH<sub>2</sub>), 1.60-1.42 (m, 5 H,  $2 \times CH_2$  and one proton of CH<sub>2</sub>), 1.39-1.31 (m, 1 H, one proton of  $CH_2$ ), 1.23 (s, 6 H, 2 ×  $CH_3$ ), 1.13 (s, 6 H, 2 ×  $CH_3$ ); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 137.1, 134.9, 134.0, 129.7, 126.8, 124.3, 123.5, 121.5, 110.6, 110.1, 69.3, 60.0, 39.8, 33.1, 20.2, 16.9; IR (KBr) v (cm<sup>-1</sup>) 2973, 2932, 2869, 1644, 1588, 1533, 1514, 1463, 1405, 1376, 1362, 1336, 1286, 1250, 1197, 1126, 1098, 1012; MS (ESI):  $m/z = 358 [M+H]^+$ ; Elemental analysis calcd for  $C_{20}H_{27}N_3O_3$ : N, 11.76; C, 67.20; H, 7.61; Found: N, 11.50; C, 67.58; H, 7.77.

17. 1,4-Bis((E)- and (Z)-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-2-nitroprop-1-

en-1-yl)benzene ((*E*,*E*)- and (*Z*,*Z*)-2q) (xc-11-033-2)



The reaction of 1,4-di(propa-1,2-dien-1-yl)benzene **1q** (0.1542 g, 1.00 mmol), TEMPO (98%, 0.6372 g, 4.00 mmol), AgNO<sub>2</sub> (99%, 0.6233 g, 4.01 mmol), and NaHCO<sub>3</sub> (0.5051 g, 6.01 mmol) in dioxane (20 mL) at 60 °C for 10 h afforded a crude product. The ratio of (*E*,*E*)-**2q**/(*Z*,*Z*)-**2q** was 98/2 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 150/1) afforded **2q** (0.3624 g, (*E*,*E*)/(*Z*,*Z*) = 98/2, 65% yield) as a solid.

(E,E)-**2q**: m.p. 124.7-126.8 °C (*n*-hexane/ethyl acetate); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (s, 2 H, 2 × =CH), 7.71 (s, 4 H, ArH), 4.97 (s, 4 H, 2 × CH<sub>2</sub>), 1.63-1.40 (m, 10 H, 4 × CH<sub>2</sub> and two protons of 2 × CH<sub>2</sub>), 1.37-1.26 (m, 2 H, two protons of 2 × CH<sub>2</sub>), 1.11 (s, 12 H, 4 × CH<sub>3</sub>), 1.08 (s, 12 H, 4 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  149.2, 136.4, 133.6, 130.3, 69.2, 60.1, 39.8, 32.9, 20.1, 16.9; IR (KBr) v (cm<sup>-1</sup>) 3006, 2977, 2931, 2869, 1651, 1607, 1537, 1532, 1470, 1376, 1361, 1325, 1261, 1243, 1133, 1036; MS (ESI): m/z = 559 [M+H]<sup>+</sup>; Elemental analysis calcd for C<sub>30</sub>H<sub>46</sub>N<sub>4</sub>O<sub>6</sub>: N, 10.03; C, 64.49; H, 8.30; Found: N, 9.82; C, 64.60; H, 8.39. The following signals are

discernible for (*Z*,*Z*)-2q: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.73 (s, 2 H, 2 × =CH), 4.77 (s, 4 H, 2 × CH<sub>2</sub>).

#### Nitro-oxoamination reactions of mono-allenes that need the degassing operation

1. (E)- and (Z)-1-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitrotridec-2-ene ((E)- and

$$(Z)$$
-2r) (xc-11-099-1,2; 11-151-1,2)



**Typical Procedure II:** To a dried flask were added AgNO<sub>2</sub> (99%, 0.0935 g, 0.60 mmol), NaHCO<sub>3</sub> (0.0507 g, 0.60 mmol), TEMPO (98%, 0.0321 g, 0.20 mmol), trideca-1,2-diene **1r** (0.0437 g, 0.24 mmol), and 2 mL of anhydrous 1,4-dioxane at room temperature under N<sub>2</sub> atmosphere. The resulting mixture was then degassed for three times before the reaction flask was placed in a pre-heated oil bath of 70 °C. The reaction was finished in 11 h as monitored by TLC. After cooling to room temperature, the crude reaction mixture was filtrated through a short column of silica gel (ethyl acetate 3 × 15 mL). After concentration, the ratio of (*E*)-**2**r/(*Z*)-**2**r was 98/2 as determined by the <sup>1</sup>H NMR analysis. Column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1) afforded **2**r (0.0225 g, (*E*)/(*Z*) = 97/3, 29% yield) as an oil.

(*E*)-2r (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (t, *J* = 8.1 Hz, 1 H, =CH),

4.75 (s, 2 H, CH<sub>2</sub>), 2.36 (q, J = 7.7 Hz, 2 H, CH<sub>2</sub>), 1.59-1.42 (m, 7 H, 3 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.38-1.20 (m, 21 H, one proton of CH<sub>2</sub>, 7 × CH<sub>2</sub> and 2 × CH<sub>3</sub>), 1.06 (s, 6 H, 2 × CH<sub>3</sub>), 0.88 (t, J = 6.6 Hz, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ 147.9, 141.4, 68.2, 60.0, 39.8, 32.9, 31.8, 29.5, 29.4, 29.30, 29.28, 29.2 28.6, 28.3, 22.6, 19.9, 17.0, 14.1; IR (neat) v (cm<sup>-1</sup>) 2926, 2855, 1669, 1639, 1558, 1530, 1468, 1375, 1360, 1337, 1261, 1246, 1209, 1183, 1132, 1039; MS (ESI): m/z = 538[M+TEMPO]<sup>+</sup>, 326 [M+H-Bu]<sup>+</sup>; Elemental analysis calcd for C<sub>22</sub>H<sub>42</sub>N<sub>2</sub>O<sub>3</sub>: N, 7.32; C, 69.07; H, 11.07; Found: N, 7.29; C, 69.04; H, 11.12.

The following signals are discernible for (*Z*)-2r (less polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.09 (t, *J* = 7.5 Hz, 1 H, =CH), 4.61 (d, *J* = 0.9 Hz, 2 H, CH<sub>2</sub>), 2.49 (d, *J* = 7.5 Hz, 2 H, CH<sub>2</sub>).

2. (*E*)- and (*Z*)-1-(2,2,6,6-Tetramethylpiperidinyl-1-oxy)-2-nitro-6-phenylhex-2-ene ((*E*)- and (*Z*)-2s) (xc-11-152-1,2)



Following Typical Procedure II: The reaction of 6-phenylhexa-1,2-diene 1s (0.0381 g, 0.24 mmol), AgNO<sub>2</sub> (99%, 0.0935 g, 0.60 mmol), NaHCO<sub>3</sub> (0.0512 g, 0.61 mmol), and TEMPO (98%, 0.0318 g, 0.20 mmol) in dioxane (2 mL) at 70 °C for 11 h afforded a crude product. The ratio of (E)-2s/(Z)-2s was 95/5 as determined by the <sup>1</sup>H

NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 80/1 then 50/1) afforded (*E*)-**2s** (0.0277 g, 39% yield) as an oil and (*Z*)-**2s** (0.0039 g, purity of (*Z*)-**2s**: 55% as determined by using mesitylene as the internal standard, 3% yield) as an oil.

(*E*)-**2s** (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.10 (m, 6 H, ArH and =CH), 4.71 (s, 2 H, CH<sub>2</sub>), 2.69 (t, *J* = 7.5 Hz, 2 H, CH<sub>2</sub>), 2.38 (q, *J* = 7.7 Hz, 2 H, CH<sub>2</sub>), 1.87 (quint, *J* = 7.5 Hz, 2 H, CH<sub>2</sub>), 1.60-1.39 (m, 5 H, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.37-1.27 (m, 1 H, one proton of CH<sub>2</sub>), 1.21 (s, 6 H, 2 × CH<sub>3</sub>), 1.04 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.1, 140.9, 140.7, 128.5, 128.3, 126.1, 68.3, 60.0, 39.8, 35.4, 32.9, 30.1, 27.8, 20.0, 17.0; IR (neat) v (cm<sup>-1</sup>) 2972, 2932, 2867, 1667, 1637, 1526, 1497, 1470, 1453, 1375, 1360, 1335, 1261, 1246, 1132, 1038; MS (ESI): *m/z* = 361 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>21</sub>H<sub>33</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 361.2486; found 361.2492.

The following signals are discernible for (*Z*)-2s (less polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.08 (t, *J* = 7.5 Hz, 1 H, =CH), 4.60 (d, *J* = 0.9 Hz, 2 H, CH<sub>2</sub>), 2.67 (t, *J* = 7.7 Hz, 2 H, CH<sub>2</sub>), 2.54 (q, *J* = 7.3 Hz, 2 H, CH<sub>2</sub>), 1.84 (quint, *J* = 7.7 Hz, 2 H, CH<sub>2</sub>), 1.16 (s, 6 H, 2 × CH<sub>3</sub>), 1.08 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  147.1, 141.4, 135.7, 128.42, 128.38, 126.0, 74.3, 60.1, 39.7, 35.5, 32.8, 30.5, 27.9, 20.1, 17.0; IR (neat) v (cm<sup>-1</sup>) 2971, 2930, 2867, 1640, 1578, 1526, 1453, 1332, 1242, 1132; MS (ESI): *m*/*z* = 361 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>21</sub>H<sub>33</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 361.2486; found 361.2496. 3. (E)- and (Z)-4-Ethoxy-1-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitroundec-2-ene

((*E*)- and (*Z*)-2t) (xc-12-025)



Following Typical Procedure II: The reaction of 4-ethoxyundeca-1,2-diene 1t (0.0482 g, 0.25 mmol), AgNO<sub>2</sub> (99%, 0.0935 g, 0.60 mmol), NaHCO<sub>3</sub> (0.0507 g, 0.60 mmol), and TEMPO (98%, 0.0320 g, 0.20 mmol) in dioxane (2 mL) at 70 °C for 11.5 h afforded a crude product. The ratio of (E)-2t/(Z)-2t was 83/17 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 80/1 then 50/1) afforded (*E*)-2t (0.0333 g, 42% yield) as an oil and (*Z*)-2t (0.0086 g, purity of (*Z*)-2t: 83% as determined by using mesitylene as the internal standard, 9% yield) as an oil.

(*E*)-**2t** (less polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.06 (d, *J* = 9.3 Hz, 1 H, =CH), 4.80 (AB, *J* = 12.0 Hz, 1 H, one proton of NOCH<sub>2</sub>), 4.74 (AB, *J* = 11.70 Hz, 1 H, one proton of NOCH<sub>2</sub>), 4.22-4.11 (m, 1 H, CH), 3.58-3.31 (m, 2 H, OCH<sub>2</sub>), 1.82-1.68 (m, 1 H, one proton of CH<sub>2</sub>), 1.61-1.40 (m, 7 H, 3 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.38-1.18 (m, 19 H, 5 × CH<sub>2</sub> and 3 × CH<sub>3</sub>), 1.06 (s, 6 H, 2 × CH<sub>3</sub>), 0.88 (t, *J* = 6.9 Hz, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 141.3, 75.4, 68.6, 65.1, 60.2, 60.1, 39.8, 35.4, 33.0, 32.9, 31.7, 29.5, 29.1, 25.2, 22.6, 20.05, 20.00, 17.0, 15.3, 14.1; IR (neat) v (cm<sup>-1</sup>) 2929, 2871, 1537, 1469, 1453, 1375, 1361, 1335, 1261, 1244, 1209, 827 1184, 1132, 1114, 1093, 1045; MS (ESI):  $m/z = 399 [M+H]^+$ ; HRMS (ESI): calcd. for  $C_{22}H_{43}N_2O_4 [M+H]^+ 399.3217$ ; found 399.3222.

The following signals are discernible for (*Z*)-2t (more polar): <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.07 (d, *J* = 8.4 Hz, 1 H, =CH), 4.68 (AB, *J* = 12.9 Hz, 1 H, one proton of NOCH<sub>2</sub>), 4.59 (AB, *J* = 13.2 Hz, 1 H, one proton of NOCH<sub>2</sub>), 4.53-4.43 (m, 1 H, CH), 3.57-3.33 (m, 2 H, OCH<sub>2</sub>); IR (neat) v (cm<sup>-1</sup>) 2928, 2852, 1531, 1467, 1450, 1376, 1361, 1262, 1132, 1089; MS (ESI): *m*/*z* = 399 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>22</sub>H<sub>43</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup> 399.3217; found 399.3224.

4. (*E*)- and (*Z*)-4-Ethoxy-1-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro-4-propyl hept-2-ene ((*E*)- and (*Z*)-2**u**) (xc-12-030-1)



Following Typical Procedure II: The reaction of 4-ethoxy-4-propylhepta-1,2-diene 1u (0.0439 g, 0.24 mmol), AgNO<sub>2</sub> (99%, 0.0938 g, 0.60 mmol), NaHCO<sub>3</sub> (0.0512 g, 0.61 mmol), and TEMPO (98%, 0.0322 g, 0.20 mmol) in dioxane (2 mL) at 70 °C for 11 h afforded a crude product. The ratio of (E)-2u/(Z)-2u was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum ether/ethyl ether = 100/1 then 50/1) afforded 2u (0.0273 g, (E)/(Z) = 97/3, 35% yield) as an oil.

(*E*)-**2u**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.69 (s, 1 H, =CH), 5.08 (s, 2 H, NOCH<sub>2</sub>), S28 3.31 (q, J = 6.9 Hz, 2 H, OCH<sub>2</sub>), 1.87-1.72 (m, 2 H, CH<sub>2</sub>), 1.56-1.41 (m, 7 H, 3 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.37-1.18 (m, 11 H, 2 × CH<sub>3</sub>, 2 × CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.17 (t, J = 6.9 Hz, 3 H, CH<sub>3</sub>), 1.04 (s, 6 H, 2 × CH<sub>3</sub>), 0.90 (t, J = 7.2 Hz, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  149.9, 141.1, 79.7, 68.2, 60.0, 56.6, 40.1, 39.2, 33.1, 19.9, 17.0, 16.8, 15.5, 14.3; IR (neat) v (cm<sup>-1</sup>) 2959, 2933, 2874, 1532, 1469, 1455, 1376, 1361, 1347, 1326, 1262, 1245, 1166, 1133, 1116, 1074, 1033; MS (ESI): m/z = 385 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>21</sub>H<sub>41</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup> 385.3061; found 385.3063.

The following signals are discernible for (*Z*)-2u: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.34 (s, 1 H, =CH), 4.51 (s, 2 H, NOCH<sub>2</sub>), 3.24 (q, *J* = 7.1 Hz, 2 H, OCH<sub>2</sub>).

5. (*E*)- and (*Z*)-3-(1-Methoxycyclohexyl)-1-(2,2,6,6-tetramethylpiperidinyl-1-oxy)
-2-nitroprop-2-ene ((*E*)- and (*Z*)-2v) (xc-12-022-1)



II:

The

of

reaction

**Procedure** 

Following

Typical

1-(1-methoxycyclohexyl)propa-1,2-diene **1v** (0.0367 g, 0.24 mmol), AgNO<sub>2</sub> (99%, 0.0935 g, 0.60 mmol), NaHCO<sub>3</sub> (0.0508 g, 0.60 mmol), and TEMPO (98%, 0.0319 g, 0.20 mmol) in dioxane (2 mL) at 70 °C for 12 h afforded a crude product. The ratio of (E)-**2v**/(Z)-**2v** was 96/4 as determined by the <sup>1</sup>H NMR analysis of the crude product. Further purification via column chromatography on silica gel (eluent: petroleum S29

ether/ethyl ether = 80/1 then 50/1) afforded **2v** (0.0306 g, (*E*)/(*Z*) = 97/3, 43% yield) as an oil.

(*E*)-**2v**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.88 (s, 1 H, =CH), 4.99 (s, 2 H, NOCH<sub>2</sub>), 3.14 (s, 3 H, OCH<sub>3</sub>), 1.98-1.88 (m, 2 H, CH<sub>2</sub>), 1.68-1.42 (m, 14 H, 7 × CH<sub>2</sub>), 1.26 (s, 6 H, 2 × CH<sub>3</sub>), 1.05 (s, 6 H, 2 × CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  149.4, 141.3, 75.6, 67.9, 60.2, 50.2, 40.2, 35.5, 32.8, 25.0, 21.3, 20.0, 17.0; IR (neat) v (cm<sup>-1</sup>) 2934, 2860, 1532, 1470, 1450, 1376, 1361, 1348, 1326, 1262, 1244, 1183, 1147, 1133, 1074, 1046; MS (ESI): *m*/*z* = 355 [M+H]<sup>+</sup>; HRMS (ESI): calcd. for C<sub>19</sub>H<sub>35</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup> 355.2591; found 355.2600.

The following signals are discernible for (*Z*)-2v: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.46 (s, 1 H, =CH), 4.54 (d, *J* = 1.2 Hz, 2 H, CH<sub>2</sub>), 3.10 (s, 3 H, CH<sub>3</sub>).

### Synthetic applications of nitro-oxoamination product (*E*)-2a.

dried

То

а

1. 2,2,6,6-Tetramethyl-1-(2-nitro-3-phenylpropoxy)piperidine  $(5a)^2$  (xc-12-056)



Schlenk

tube

were

added

(*E*)-3-(2,2,6,6-tetramethylpiperidinyl-1-oxy)-2-nitro-1-phenylprop-1-ene (*E*)-**2a** (0.0957 g, 0.30 mmol), silica gel (100 ~ 200 mesh, 1.0012 g), CHCl<sub>3</sub> (1.5 mL), and <sup>*i*</sup>PrOH (7.5 mL) at room temperature under N<sub>2</sub> atmosphere. After stirring for 5 min, NaBH<sub>4</sub> (98%, 0.0351 g, 0.91 mmol) was added. The resulting mixture was stirred at

25 °C for 10 h as monitored by TLC. The crude reaction mixture was filtrated through a short column of silica gel (eluted with ethyl acetate  $3 \times 10$  mL). After evaporation, the crude product was purified through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 100/1 then 80/1) to afford **5a** (0.0663 g, 69%) as an oil: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.35-7.23 (m, 3 H, ArH), 7.21-7.13 (m, 2 H, ArH), 4.96-4.83 (m, 1 H, CH), 4.31 (dd,  $J_1 = 10.4$  Hz,  $J_2 = 8.9$  Hz, 1 H, one proton of OCH<sub>2</sub>), 3.96 (dd,  $J_1 = 10.2$  Hz,  $J_2 = 3.3$  Hz, 1 H, one proton of OCH<sub>2</sub>), 3.26 (dd,  $J_1 =$ 14.3 Hz,  $J_2 = 8.6$  Hz, 1 H, one proton of CH<sub>2</sub>), 3.02 (dd,  $J_1 = 14.1$  Hz,  $J_2 = 6.3$  Hz, 1 H, one proton of CH<sub>2</sub>), 1.54-1.36 (m, 5 H,  $2 \times CH_2$  and one proton of CH<sub>2</sub>), 1.35-1.26 (m, 1 H, one proton of CH<sub>2</sub>), 1.12 (s, 3 H, CH<sub>3</sub>), 1.06 (s, 3 H, CH<sub>3</sub>), 1.03 (s, 6 H,  $2 \times$ CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 135.0, 128.8, 128.7, 127.5, 87.7, 75.7, 60.3, 60.1, 39.6, 39.5, 36.5, 32.7, 20.1, 19.9, 16.9; IR (neat) v (cm<sup>-1</sup>) 3065, 3030, 2974, 2932, 1605, 1557, 1497, 1470, 1455, 1376, 1361, 1310, 1262, 1245, 1209, 1184, 1133, 1071, 1047; MS (ESI):  $m/z = 321 [M+H]^+$ ; HRMS (ESI): calcd. For  $C_{18}H_{29}N_2O_3 [M+H]^+$ 321.2173; found 321.2164.

2. 1-Phenyl-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)prop-2-yl amine (**6a**)<sup>3</sup> (xc-12-038)



To a dried Schlenk tube were added LiAlH<sub>4</sub> (98%, 0.1165 g, 3.0 mmol) and THF

(6 mL) at room temperature under  $N_2$  atmosphere. After stirring for 5 min, (E)-2a (0.3175 g, 1.0 mmol) and THF (4 mL) were added. Then the Schlenk tube was placed in a pre-heated oil bath of 90 °C, the resulting mixture was stirred and refluxed for 2.5 h as monitored by TLC. After cooling to room temperature H<sub>2</sub>O (20 mL) and NaOH (1 M, 3 mL) were added to quench the reaction in an ice-water bath. The resulting mixture was extracted with ethyl acetate (20 mL  $\times$  3), washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration, the crude product was purified through column chromatography (6 cm high) on silica gel (eluent: petroleum ether/ethyl acetate = 10/1 then 5/1) to afford **6a** (0.2697 g, 93%) as an oil: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) & 7.34-7.25 (m, 2 H, ArH), 7.24-7.16 (m, 3 H, ArH), 3.82-3.65 (m, 2 H, OCH<sub>2</sub>), 3.32-3.20 (m, 1 H, CH), 2.80 (dd,  $J_1 = 13.4$  Hz,  $J_2 = 4.7$  Hz, 1 H, one proton of CH<sub>2</sub>), 2.53 (dd,  $J_1 = 13.5$  Hz,  $J_2 = 9.0$  Hz, 1 H, one proton of CH<sub>2</sub>), 1.61-1.38 (m, 7 H, NH<sub>2</sub>,  $2 \times CH_2$  and one proton of CH<sub>2</sub>), 1.37-1.27 (m, 1 H, one proton of CH<sub>2</sub>), 1.19 (s, 3 H, CH<sub>3</sub>), 1.13 (s, 6 H,  $2 \times$  CH<sub>3</sub>), 1.11 (s, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 139.0, 129.2, 128.4, 126.2, 81.3, 59.8, 52.2, 40.9, 39.6, 33.2, 33.0, 20.14, 20.06, 17.0; IR (neat) v (cm<sup>-1</sup>) 3378, 3062, 3026, 2973, 2931, 2871, 1727, 1603, 1495, 1470, 1454, 1374, 1359, 1262, 1245, 1208, 1184, 1133, 1049; MS (ESI):  $m/z = 291 \text{ [M+H]}^+$ ; HRMS (ESI): calcd. For C<sub>18</sub>H<sub>31</sub>N<sub>2</sub>O: [M+H]<sup>+</sup> 291.2431; found 291.2439.

3. *N*-(2-Bromo-2-nitro-1-phenyl-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl) acetamide (**7a**)<sup>4</sup> (xc-12-037)



To a dried Schlenk tube were added (E)-2a (0.3178 g, 1.0 mmol), *N*-bromoacetamide (NBA, 97%, 0.1711 g, 1.2 mmol), K<sub>3</sub>PO<sub>4</sub> (0.1065 g, 0.5 mmol) and DCM (10 mL). The resulting mixture was stirred at 25 °C for 24 h as monitored by TLC. The resulting mixture was transfer to a separation funnel with ethyl acetate (20 mL), washed with 10 mL each of water and brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. After filtration and concentration, the crude product was purified through column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 50/1then 5/1) to afford **7a** (0.4121 g, 90%) as a viscous oil: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 7.38-7.28 (m, 5 H, ArH), 6.33 (d, J = 9.9 Hz, 1 H, NH), 5.97 (d, J = 9.9 Hz, 1 H, CH), 4.77 (d, J = 10.8 Hz, 1 H, one proton of CH<sub>2</sub>), 4.20 (d, J = 10.8 Hz, 1 H, one proton of CH<sub>2</sub>), 2.06 (s, 3 H, CH<sub>3</sub>), 1.54-1.35 (m, 5 H, 2 ×CH<sub>2</sub> and one proton of CH<sub>2</sub>), 1.33-1.24 (m, 1 H, one proton of  $CH_2$ ), 1.18 (s, 3 H,  $CH_3$ ), 1.12 (s, 6 H, 2 ×  $CH_3$ ), 1.00 (s, 3 H, CH<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 169.0, 133.9, 129.3, 128.6, 128.3, 105.8, 79.7, 60.9, 60.7, 56.9, 39.9, 32.4, 23.3, 20.3, 20.2, 16.8; IR (neat) v (cm<sup>-1</sup>) 3296, 2974, 2933, 2872, 1738, 1660, 1568, 1532, 1471, 1453, 1374, 1328, 1245, 1207, 1131, 1101, 1083, 1046; MS (ESI):  $m/z = 458 [M+H]^+$ ; HRMS (ESI): calcd. For  $C_{20}H_{31}BrN_{3}O_{4}$ :  $[M+H]^{+}$  456.1492; found 456.1500.

Reference:

- 1. Kuang, J.-Q.; Ma, S.-M. J. Org. Chem., 2009, 74, 1763.
- 2. S. P. Waters, M. W. Fennie, M. C. Kozlowski, Org. Lett., 2006, 8, 3243.
- 3. N. Kise, S. Isemoto, T. Sakurai, J. Org. Chem. 2011, 76, 9856.
- 4. Z.-G. Chen, Y. Wang, J.-F. Wei, P.-F. Zhao, X.-Y. Shi, J. Org. Chem., 2010, 75, 2085.











































































































S87







































S106




























































S136












































S157
















































S181



S182

