Supporting Information

Electron-spin excitation by implanting hydrogen to metallofullerene: the synthesis and spectroscopic characterizations of $Sc_4C_2H@I_h-C_{80}$

Yongqiang Feng,^a Taishan Wang,^{*a} Jingyi Wu,^b Zhuxia Zhang,^a Li Jiang,^a Hongbin Han,^{*c} and Chunru Wang^{*a}

 ^a Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
^bLaboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
^cDepartment of Radiology, Peking University Third Hospital, Beijing 100191, China.

Contents

Figure S1. Comparative chromatograms of the isolation process of Sc₄C₂H@C₈₀-I_h.

Figure S2. Chromatogram of the isolated $Sc_4C_2H@C_{80}-I_h$ (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S3. Chromatogram of the isolated $Sc_4C_2H@C_{80}-I_h$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

Figure S4. UN-Vis-NIR spectra of $Sc_4C_2H@C_{80}$ (red) and $Sc_4C_2@C_{80}$ (blank). The inset was the enlarged optical absorption region of $Sc_4C_2H@C_{80}$.

Figure S5. ¹³C NMR spectrum (CS₂, 150 MHz) of Sc₄C₂H@C₈₀. D₂O inside of a capillary was used as an internal lock.

Figure S6. Optimized internal cluster structures of $Sc_4C_2H@C_{80}$ and $Sc_4C_2@C_{80}$.

Table S1. Electrochemical potentials (V vs. Fc/Fc⁺) of Sc₄C₂H@C₈₀ and Sc₄C₂@C₈₀.

Table S2. Bonding parameters (Å) of internal cluster of $Sc_4C_2H@C_{80}$ and $Sc_4C_2@C_{80}$. (atom labels are shown as Figure S6)

Experimental Section:

1. The synthesis and purification of Sc₄C₂H@C₈₀

The $Sc_4C_2H@C_{80}$ - I_h was discovered during the isolation process of $Sc_4C_2@C_{80}$ - I_h conformed by MALDI-TOF mass spectrum with a molecular weight 1165. When introducing a certain amount of hydrogen gas in the reaction system, the yield of $Sc_4C_2H@C_{80}$ - I_h increased obviously, see Figure S1.

The Sc₄C₂H@C₈₀- I_h was synthesized by arc-discharging method. Briefly, the mixture of graphite powder and Sc/Ni₂ alloy with a mass ratio of 1:3 was packed into core-drilled graphite rods. Subsequently the rods were burnt in a Krätschmer-Huffman generator under an atmosphere of 6 Torr H₂ and 194 Torr He. The as-prepared soot was Soxlet-extracted with toluene for 24 h. Sc₄C₂H@C₈₀- I_h was isolated and purified by multi-step HPLC. Figure S2 and S3 show HPLC profile of purified Sc₄C₂H@C₈₀- I_h sample.

Figure S1. Comparative chromatograms of the isolation process of $Sc_4C_2H@C_{80}-I_{h.}$ (a), (b) and (c) without H_2 in the arcdischarging process, (d), (e) and (f) after introducing H_2 . Steps (a), (c), (d) and (f) used a Buckyprep column, and step (b) and (e) were executed on a Buckyprep-M column. (Chromatographic column 20×250 mm, toluene as eluent, 12 mL/min). The small amount of $Sc_4C_2H@C_{80}$ observed in Fig. S1b-c was caused by the trace amount of water molecules that provide H element inside the arc-discharging generator. And when we added H_2 into the generator the yield of $Sc_4C_2H@C_{80}$ increased greatly.

Figure S2. Chromatogram of the isolated $Sc_4C_2H@C_{80}$ - I_h (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S3. Chromatogram of the isolated $Sc_4C_2H@C_{80}-I_h$ (20×250 mm Buckyprep-M column; flow rate 12 mL/min; toluene as eluent).

2. UV-Vis-NIR spectrum of Sc₄C₂H@C₈₀

Figure S4. UN-Vis-NIR spectra of $Sc_4C_2H@C_{80}$ (red) and $Sc_4C_2@C_{80}$ (blank). The inset was the enlarged optical absorption region of $Sc_4C_2H@C_{80}$.

3. NMR measurement of Sc₄C₂H@C₈₀

NMR experiment was performed on a Bruker NMR spectrometer (600 MHz). The purified $Sc_4C_2H@C_{80}$ sample was dissolved in CS_2 and then sealed in a NMR tube with D_2O inside of a capillary as the internal lock. After 48 h, no any evident NMR signal was observed as shown in Figure S5.

held was all the added and the second of the

158 156 154 152 150 148 146 144 142 140 138 136 134

Figure S5. 13 C NMR spectrum (CS₂, 150 MHz) of Sc₄C₂H@C₈₀. D₂O inside of a capillary was used as an internal lock.

4. CV measurement of Sc₄C₂H@C₈₀

Cyclic voltammetry was performed on a CHI660 electrochemical workstation. The experiment was carried out in *o*-DCB solution with 0.05 M (n-Bu)₄NPF₆ using three electrode system, glassy carbon as the working electrode, Pt wire and saturated calomel as the counter and reference electrodes, respectively. All the potentials were referred to the $E_{1/2}$ of Fc/Fc⁺.

	$E_{\rm ox1}$	$E_{\rm red1}$
$Sc_4C_2H@C_{80}$	0.13 ^a [0.20] ^b	-0.81 [-0.87]
$Sc_4C_2@C_{80}$	-0.05 [0.01]	[-1.53]

Table S1. Electrochemical potentials (V vs. Fc/Fc^+)^a of $Sc_4C_2H@C_{80}$ and $Sc_4C_2@C_{80}$.

^{*a*} the values of half-wave potentials for reversible redox processes.

^b the peak potentials[].

Calculation Section:

All the density functional theory (DFT) computations were performed by using the Dmol3 code¹ with the generalized gradient approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE).² The IR and Raman spectra were simulated at the B3LYP level with the *Gaussian 03* program.^{3,4} The standard 6-31G(d) basis set⁵ for C and the small-core RECP (relativistic effective core potential) plus valence double- ζ basis set (LanL2DZ)⁶ for Sc were employed, and such a combination of basis sets is denoted as DZP. The geometry of Sc₄C₂H@C₈₀ used in the Raman simulation was re-optimized at the B3LYP/DZP level.

Figure S6. Optimized internal cluster structures of Sc₄C₂H@C₈₀ and Sc₄C₂@C₈₀

	Table S2. Bonding parameters (A) of internal cluster of $Sc_4C_2H@C_{80}$ and $Sc_4C_2@C_{80}$.	(atom labels are shown as Figure S6)
--	--------------------------------	--	--------------------------------------

	$Sc_4C_2H@C_{80}$	Sc ₄ C ₂ @C ₈₀
Sc1-Sc2	3.477	3.262
Sc1-Sc3	3.207	3.544
Sc1-Sc4	3.579	3.423
Sc2-Sc3	3.377	3.312
Sc2-Sc4	3.353	3.413
Sc3-Sc4	3.747	3.482
Sc1-C1	1.973	1.965
Sc2-C1	2.266	2.141

Sc3-C1	2.140	2.131
Sc4-C1	2.141	2.130
Sc2-C2	2.045	2.069
Sc3-C2	2.173	2.069
Sc4-C4	2.171	2.067
C1-C2	1.479	1.478
Sc3-H	2.365	
Sc4-H	2.287	
С2-Н	1.086	

References

- 1 (a) A. D. Becke, J. Chem. Phys., 1993, **98**, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, **37**, 785.
- 2 (a) B. Delley, J. Chem. Phys. 1990, **92**, 508-517; (b) B. Delley, J. Chem. Phys. 2000, **113**, 7756. DMol3 is available as part of Material Studio.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865-3868.
- 4 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, A. Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople.
- 5 W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257.
- 6 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.