Supporting Information

Versatile palladium-catalyzed C–H olefination of (hetero)arenes at room temperature

Zhijie She, Yang Shi, Yumin Huang, Yangyang Cheng, Feijie Song* and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn; fsong@scu.edu.cn

Table of contents

I. General Remarks	3
II. Optimization of the Pd-catalyzed direct C-H bond olefination of arenes at roor	m
temperature	3
III. General procedure for the Pd-catalyzed oxidative C-H/C-H cross-coupling of	of
arenes with alkenes at room temperature	4
IV. Typical procedure for the synthesis of 3a	4
V. General procedure for the Pd-catalyzed direct C-H bond olefination of	of
heteroarenes at room temperature	5
VI. General procedure for the Pd-catalyzed regioselective arylation of coumarins a	at
room temperature	5
VII. General procedure for the Pd-catalyzed oxidative C-H/C-H cross-coupling o	of
arenes with quinones at room temperature	5
VIII. Typical procedure for the synthesis of 7b	6
IX. Characterization of substances 3 , 6 , and 7	6
X. References	9
XI. Copies of ¹ H, ¹³ C NMR and ¹ H- ¹ H NOESY spectra	0

I. General Remarks

NMR spectra were obtained on a Bruker AV II-400 (¹H NMR at 400 MHz and ¹³C NMR at 100 MHz). The ¹H NMR chemical shifts were measured using CDCl₃ as the internal reference (CDCl₃: $\delta = 7.26$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: $\delta = 77.16$ ppm). High resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

All reactions were carried out under an air atmosphere. All reagents were obtained from commercial suppliers and were used without further purification. Arenes, olefins, trifluoroacetic acid, K₂S₂O₈, (NH₄)₂S₂O₈ and Na₂S₂O₈ were purchased from Chengdu Kelong Chemical Engineering Reagent (China) CO., Ltd. Pd(OAc)₂ and PdCl₂ were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd.

II. Optimization of the Pd-catalyzed direct C–H bond olefination of arenes at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with palladium catalyst (0.03 mmol), oxidant (0.6 mmol), TFA, benzene **1a** (2.0 mL, 22.5 mmol) and methyl acrylate **2a** (27.0 μ L, 0.3 mmol) under air. After being stirred at room temperature for 12h or 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and evaporated. The residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1, v/v) on silica gel to provide the desired product **3a**.

Table S1. Optimization of the oxidative cross-coupling of benzene **1a** with methyl acrylate $2a^{a}$

	H .			yst, oxidant, ac	Iditive	CO ₂ Me	
		/	CO ₂ ivie	rt, 24 h			
	1a	:	2a			3a	
Entry	Catalyst		Oxidant		Additive (equiv)	$\text{Yield } (\%)^b$	
1	Pd(OA	$(c)_2$	$(NH_4)_2S_2$	$_{2}O_{8}$	none	trace	

2	Pd(TFA) ₂	$(NH_4)_2S_2O_8$	none	trace
3	Pd(OAc) ₂	$(\mathbf{NH}_4)_2\mathbf{S}_2\mathbf{O}_8$	TFA (5.0)	81
4	$Pd(TFA)_2$	$(NH_4)_2S_2O_8$	TFA (5.0)	72
5	PdCl ₂	$(NH_4)_2S_2O_8$	TFA (5.0)	trace
6	$Pd(OAc)_2$	$K_2S_2O_8$	TFA (5.0)	75
7	$Pd(OAc)_2$	$Na_2S_2O_8$	TFA (5.0)	61
8	$Pd(OAc)_2$	NFSI	TFA (5.0)	57
9	$Pd(OAc)_2$	O ₂ (1.0 atm)	TFA (5.0)	44
10 ^c	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	TFA (5.0)	51
11	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	TFA (2.5)	42
12	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	TFA (10.0)	63
13 ^d	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	TFA (5.0)	57
14^e	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	TFA (5.0)	50
15 ^f	$Pd(OAc)_2$	$(NH_4)_2S_2O_8$	TFA (5.0)	n. r.

^{*a*} Reaction conditions: methyl acrylate (0.30 mmol), arene (22.5 mmol, 75.0 equiv), Pd catalyst (0.03 mmol, 10 mol%), oxidant (2.0 equiv) and TFA at room temperature for 24 h under air. ^{*b*} Isolated yield. ^{*c*} The reaction time was 12 h. ^{*d*} Pd(OAc)₂ (0.015 mmol, 5 mol%) was used. ^{*e*} Arene (15 mmol, 50.0 equiv) was used. ^{*f*} Arene (0.9 mmol, 3.0 equiv) and CH₂Cl₂ (2.0 mL) were used. n.r. = no reaction.

III. General procedure for the Pd-catalyzed oxidative C–H/C–H cross-coupling of arenes with alkenes at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), olefin (0.3 mmol) and arene (22.5 mmol) under air. After being stirred at room temperature for 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

IV. Typical procedure for the synthesis of 3a

A sealed Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), methyl acrylate (27.0 µL, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature

under air. After being stirred at room temperature for 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to provide **3a** as colorless liquid (39.3 mg, 81% yield).

V. General procedure for the Pd-catalyzed direct C–H bond olefination of heteroarenes at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), $(NH_4)_2S_2O_8$ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), olefin (0.6 mmol), heteroarene (0.3 mmol) and CH_2Cl_2 (2.0 mL) under air. After being stirred at room temperature for 48 h, the mixture was diluted with 10 mL of CH_2Cl_2 , filtered through a celite pad, and washed with 10 mL of CH_2Cl_2 . The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

VI. General procedure for the Pd-catalyzed regioselective arylation of coumarins at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), $(NH_4)_2S_2O_8$ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), coumarin (0.3 mmol), and arene (22.5 mmol) under air. After being stirred at room temperature for 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

VII. General procedure for the Pd-catalyzed oxidative C-H/C-H cross-coupling

of arenes with quinones at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), $(NH_4)_2S_2O_8$ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), quinone (0.3 mmol), and arene (22.5 mmol) under air. After being stirred at room temperature for 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

VIII. Typical procedure for the synthesis of 7b

A sealed Schlenk tube with a magnetic stir bar was charged with $Pd(OAc)_2$ (6.7 mg, 0.03 mmol), $(NH_4)_2S_2O_8$ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), 1,4-naphthoquinone **5b** (47.4 mg, 0.3 mmol), and benzene (2.0 mL, 22.5 mmol) under air. After being stirred at room temperature for 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 2/1, v/v) to provide **7b** as a yellow solid (66.1 mg, 94% yield).

IX. Characterization of substances 3, 6, and 7

trans-Methyl cinnamate (3a)¹

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μ L, 1.5 mmol), methyl acrylate (27.0 μ L, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3a** as colorless liquid (39.3 mg,

81% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.81 (s, 3H), 6.45 (d, *J* = 16.0 Hz, 1H), 7.39 (t, *J* = 3.2 Hz, 3H), 7.52-7.54 (m, 2H), 7.70 (d, *J* = 16.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.8, 118.0, 128.2, 129.0, 130.4, 134.6, 145.0, 167.6 ppm.

trans-Butyl cinnamate (3b)¹

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), *n*-butyl acrylate (43.0 μL, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3b** as colorless liquid (50.1 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.2 Hz, 3H), 1.40-1.49 (m, 2H), 1.66-1.73 (m, 2H), 4.22 (t, *J* = 6.8 Hz, 2H), 6.44 (d, *J* = 16.0 Hz, 1H), 7.38-7.39 (m, 3H), 7.52-7.54 (m, 2H), 7.68 (d, *J* = 16.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.9, 19.4, 31.0, 64.6, 118.5, 128.2, 129.0, 130.4, 134.7, 144.7, 167.3 ppm.

trans-Benzyl cinnamate $(3c)^2$

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), benzyl acrylate (45.0 μL, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3c** as colorless liquid (60.3 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ = 5.26 (s, 2H), 6.49 (d, *J* = 16.0 Hz, 1H), 7.34-7.43 (m, 8H), 7.51-7.54 (m, 2H), 7.74 (d, *J* = 16.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 66.5, 118.0, 128.3, 128.40, 128.42, 128.7, 129.0, 130.5, 134.5, 136.2, 145.3, 167.0 ppm.

Methyl 3,3-diphenylacrylate (3d)¹

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), methyl cinnamate (48.7 mg, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3d** as colorless liquid (47.6 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.53 (s, 3H), 6.29 (s, 1H), 7.13-7.17 (m, 2H), 7.21-7.28 (m, 5H), 7.31-7.32 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.4, 116.9, 128.0, 128.3, 128.4, 128.5, 129.2, 129.6, 138.9, 140.9, 157.2, 166.5 ppm.

(*E*)-Methyl 3-(4-methoxyphenyl)-3-phenylacrylate (3e)³

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), (*E*)-methyl 3-(4-methoxyphenyl)acrylate (57.6 mg, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3e** as a white solid (36.2 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.60 (s, 3H), 3.82 (s, 3H), 6.32 (s, 1H), 6.84 (d, *J* = 8.8 Hz, 2H), 7.19-7.26 (m, 4H), 7.38-7.40 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.3, 55.5, 113.9, 114.8, 128.0, 128.2, 129.2, 129.9, 133.3, 139.2, 157.0, 161.0, 166.7 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆NaO₃ [M+Na]⁺ 291.0997, found 291.1001.

(E)-Dimethyl styrylphosphonate (3f)⁴

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), dimethyl vinylphosphonate (36.0 μL, 0.3 mmol) and benzene (2 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **3f** as pale yellow liquid (46.2 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.77 (s, 3H), 3.79 (s, 3H), 6.22 (t, *J* = 18.0 Hz, 1H), 7.38-7.40 (m, 3H), 7.49-7.59 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.7 (d, *J* = 6.0 Hz), 112.4 (d, *J* = 192.0 Hz), 127.9, 129.0, 130.6, 134.8 (d, *J* = 23.0 Hz), 150.0 (d, *J* = 7.0 Hz) ppm.

(E)-Methyl 3-(4-methoxyphenyl)acrylate (3g)⁵

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), methyl acrylate (27.0 μL, 0.3 mmol) and anisole (2.4 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3g** as a pale yellow solid (36.5 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 3H), 3.84 (s, 3H), 6.31 (d, *J* = 16.0 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 16.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.7, 55.5, 114.5, 115.4, 127.3, 129.9, 144.7, 161.5, 167.9 ppm.

Methyl (E)-3-(x-tolyl)acrylate $(3h)^{6a,6b}$

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), methyl acrylate (27.0 μL, 0.3 mmol) and methylbenzene (2.4 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3h** as pale yellow liquid (41.4 mg, 78% yield). The ratio of *o/m/p* was 1.3/1.0/2.9 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of three isomers): δ = 2.37 (s, ArC<u>H</u>₃), 2.44 (s, ArC<u>H</u>₃), 3.799 (s, OC<u>H</u>₃), 3.804 (s, OC<u>H</u>₃), 3.81 (s, OC<u>H</u>₃), 6.37 (d, *J* = 16.0 Hz, =C<u>H</u>), 6.40 (d, *J* = 16.0 Hz, =C<u>H</u>), 6.43 d, *J* = 16.0 Hz, =C<u>H</u>), 7.18-7.33 (m, Ar<u>H</u>), 7.42 (d, *J* = 8.0 Hz, Ar<u>H</u>), 7.55 (d, *J* = 7.6 Hz, Ar<u>H</u>), 7.67 (d, *J* = 16.0 Hz, =C<u>H</u>), 7.99 (d, *J* = 16.0 Hz, =C<u>H</u>) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.9, 21.4, 21.5, 51.70, 51.74, 51.8, 116.8, 117.7, 119.0, 125.4, 126.4, 126.5, 128.2, 128.8, 128.9, 129.7, 130.1, 130.9, 131.2, 131.8, 133.5, 134.5, 137.7, 138.6, 140.8, 142.6, 145.0, 145.1, 167.55, 167.57, 167.7 ppm.

(*E*)-Methyl 3-(2,3-dimethylphenyl)acrylate (3i-1) and (*E*)-methyl 3-(3,4-dimethylphenyl)acrylate $(3i-2)^7$

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μ L, 1.5 mmol), methyl acrylate (27.0 μ L, 0.3 mmol) and 1,2-dimethylbenzene (2.7 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded the desired product as colorless liquid (42.2 mg, 74% yield). The ratio of **3i-1/3i-2** was 1.0/5.0 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of two isomers): δ = 2.28 (s, CH₃, major isomer), 2.31 (s, CH₃, minor isomer), 2.33 (s, CH₃, minor isomer), 3.80 (s, OCH₃, major isomer), 3.82 (s, OCH₃, minor isomer), 6.40 (d, *J* = 16.0 Hz, =CH, major isomer), 7.09-7.19 (m, ArH, major+minor isomer), 7.28 (d, *J* = 1.6 Hz, ArH, major isomer), 7.30 (s, ArH, major isomer),

7.39 (d, J = 7.6 Hz, Ar<u>H</u>, minor isomer), 7.66 (d, J = 16.0 Hz, =C<u>H</u>, major isomer), 8.09 (d, J = 15.6 Hz, =C<u>H</u>, minor isomer) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 19.4, 19.85, 19.91, 20.7, 51.7, 116.6, 119.4, 124.6, 124.8, 125.8, 125.9, 129.1, 129.4, 129.9, 130.3, 131.7, 132.2, 133.8, 134.7, 136.2, 136.7, 137.2, 137.5, 139.6, 141.4, 143.8, 145.2, 167.6, 167.8 ppm.

(*E*)-Methyl 3-(2,5-dimethylphenyl)acrylate (3j)⁸

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), methyl acrylate (27.0 μL, 0.3 mmol) and 1,4-dimethylbenzene (2.8 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3j** as colorless liquid (37.7 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.33 (s, 3H), 2.39 (s, 3H), 3.81 (s, 3H), 6.35 (d, *J* = 16.0 Hz, 1H), 7.090 (s, 1H), 7.093 (s, 1H), 7.36 (s, 1H), 7.96 (d, *J* = 16.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 19.4, 21.1, 51.8, 118.7, 127.1, 130.9, 131.1, 133.3, 134.8, 135.9, 142.9, 167.7 ppm.

(E)-Methyl 3-mesitylacrylate (3k)⁹

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μ L, 1.5 mmol), methyl acrylate (27.0 μ L, 0.3 mmol) and mesitylene (3.1 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3k** as a pale yellow solid (38.1 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.29 (s, 3H), 2.33 (s, 6H), 3.82 (s, 3H),

6.06 (d, J = 16.4 Hz, 1H), 6.90 (s, 2H), 7.85 (d, J = 16.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.18, 21.20, 51.8, 123.0, 129.3, 131.1, 137.0, 138.5, 143.6, 167.6 ppm.$

(E)-Methyl 3-(benzofuran-2-yl)acrylate (31)¹⁰

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), methyl acrylate (54.0 μL, 0.6 mmol), 2,3-benzofuran (33.1 μL, 0.3 mmol) and CH₂Cl₂ (2.0 mL) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3I** as a pale yellow solid (40.5 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.82 (s, 3H), 6.58 (d, *J* = 15.6 Hz, 1H), 6.94 (s, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 15.6 Hz, 1H), 7.59 (d, *J* = 7.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 52.0, 111.3, 111.6, 118.7, 121.9, 123.5, 126.6, 128.5, 131.6, 152.5, 155.7, 167.3 ppm.

(*E*)-Methyl 3-(benzo[*b*]thiophen-2-yl)acrylate (3m)¹⁰

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), methyl acrylate (54.0 µL, 0.6 mmol), benzo[*b*]thiophene (40.3 mg, 0.3 mmol) and CH₂Cl₂ (2.0 mL) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3m** as a white solid (41.7 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.82 (s, 3H), 6.30 (d, *J* = 15.6 Hz, 1H), 7.33-7.39 (m, 2H), 7.46 (s, 1H), 7.75-7.80 (m, 2H), 7.88 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.0, 119.2, 122.6, 124.6, 125.0, 126.4, 128.8, 138.0, 139.6, 139.7, 140.4, 167.1 ppm.

(E)-Methyl 3-(thiophen-2-yl)acrylate (3n-1)¹¹

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), methyl acrylate (54.0 μL, 0.6 mmol), thiophene (23.8 μL, 0.3 mmol) and CH₂Cl₂ (2.0 mL) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3n-1** (13.4 mg, 27% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ = 3.79 (s, 3H), 6.24 (d, *J* = 16.0 Hz, 1H), 7.05 (dd, *J* = 5.2 Hz, 3.6 Hz, 1H), 7.25 (d, *J* = 4.8 Hz, 1H), 7.37 (d, *J* = 5.2 Hz, 1H), 7.79 (d, *J* = 15.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.8, 116.7, 128.2, 128.6, 131.1, 137.4, 139.7, 167.4 ppm. Product **3n-2** was also obtained as a yellow solid (45.4 mg, 60% yield).

(2E,2'E)-Dimethyl 3,3'-(thiophene-2,5-diyl)diacrylate (3n-2)¹¹

¹H NMR (400 MHz, CDCl₃): δ = 3.80 (s, 6H), 6.26 (d, *J* = 16.0 Hz, 2H), 7.17 (s, 2H), 7.71 (d, *J* = 16.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 52.0, 118.5, 131.8, 136.7, 141.9, 167.0 ppm.

(E)-N,N-Dimethyl-3-(5-methylthiophen-2-yl)acrylamide (30)¹²

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), *N*,*N*-dimethylacrylamide (61.8 µL, 0.6 mmol), 2-methylthiophene (26.7 µL, 0.3 mmol) and CH₂Cl₂ (2.0 mL) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v) afforded **30** as a yellow solid (31.7 mg, 54% yield). M.p.: 62-64 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.48 (s, 3H), 3.05 (s, 3H), 3.13 (s, 3H), 6.54 (d, *J* = 14.8 Hz, 1H), 6.67-6.68 (m, 1H), 7.00 (d, *J* = 3.6 Hz, 1H), 7.70 (d, *J* = 15.2 Hz, 1H) ppm. ¹³C NMR

(100 MHz, CDCl₃): δ = 15.9, 36.1, 37.5, 114.8, 126.5, 131.0, 135.8, 138.6, 142.6, 166.8 ppm. HRMS (ESI⁺): calcd for C₁₀H₁₄NOS [M+H]⁺ 196.0796, found 196.0794.

3-(5-Methylthiophen-2-yl)acrylonitrile (3p)¹³

Pd(OAc)₂ (6.7 mg, 0.03 mmol), selectfluor (212.6 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), acrylonitrile (98.7 µL, 1.5 mmol), 2-methylthiophene (26.7 µL, 0.3 mmol) and CH₂Cl₂ (2.0 mL) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3p** as yellow liquid (a mixture of (*E*)- and (*Z*)-isomers, 23.4 mg, 59% yield). The ratio of (*E*)-**3p**/(*Z*)-**3p** was 1.8:1.0 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of two isomers): δ = 2.50 (s, CH₃, major isomer), 2.54 (s, CH₃, minor isomer), 5.14 (d, *J* = 12.0 Hz, =CH, minor isomer), 5.48 (d, *J* = 16.4 Hz, =CH, major isomer), 6.72-6.73 (m, major isomer), 6.76-6.77 (m, minor isomer), 7.03 (d, *J* = 3.6 Hz, major isomer), 7.37 (d, *J* = 16.4 Hz, major isomer) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.9, 16.0, 90.0, 92.8, 118.1, 118.5, 126.1, 126.9, 132.1, 133.4, 136.0, 136.6, 141.3, 143.1, 145.2, 146.2 ppm. HRMS (ESI⁺): calcd for C₈H₈NS [M+H]⁺ 150.0377, found 150.0377.

(E)-Ethyl 3-(5-((E)-3-methoxy-3-oxoprop-1-en-1-yl)thiophen-2-yl)acrylate (3q)¹⁴

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μ L, 1.5 mmol), methyl acrylate (54.0 μ L, 0.6 mmol), (*E*)-ethyl 3-(thiophen-2-yl)acrylate (54.6 mg, 0.3 mmol) and CH₂Cl₂ (2.0 mL) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v)

afforded **3q** as a yellow solid (40.5 mg, 51% yield). M.p.: 56-58 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.33 (t, *J* = 7.2 Hz, 3H), 3.80 (s, 3H), 4.25 (q, *J* = 7.2 Hz, 2H), 6.25 (d, *J* = 15.6 Hz, 2H), 7.17 (s, 2H), 7.69 (d, *J* = 4.0 Hz, 1H), 7.73 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.4, 52.0, 60.9, 118.4, 119.0, 131.7, 131.8, 136.4, 136.7, 141.8, 142.0, 166.6, 167.0 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₄NaO₄S [M+H]⁺ 289.0510, found 289.0514.

3-Phenylcoumarin (6a)¹⁵

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), coumarin (43.8 mg, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **6a** as a white solid (49.2 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.30 (td, *J* = 7.6 Hz, 0.8 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.41-7.48 (m, 3H), 7.52-7.56 (m, 2H), 7.70-7.72 (m, 2H), 7.82 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 116.6, 119.8, 124.6, 128.0, 128.5, 128.6, 128.7, 129.0, 131.5, 134.9, 140.0, 153.7, 160.7 ppm.

3-(4-Methoxyphenyl)-2*H*-chromen-2-one (6b)¹⁵

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μ L, 1.5 mmol), coumarin (43.8 mg, 0.3 mmol) and anisole (2.4 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **6b** as a white solid (60.1 mg, 79%)

yield). ¹H NMR (400 MHz, CDCl₃): δ = 3.86 (s, 3H), 6.98 (d, *J* = 8.8 Hz, 2H), 7.29 (t, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 1H), 7.49-7.54 (m, 2H), 7.68 (d, *J* = 8.8 Hz, 2H), 7.76 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.5, 114.1, 116.5, 120.0, 124.6, 127.2, 127.8, 128.0, 130.0, 131.2, 138.6, 153.5, 160.3, 160.9 ppm.

6-Methyl-3-phenyl-2*H*-chromen-2-one (6c)¹⁵

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 µL, 1.5 mmol), 6-methylcoumarin (48.1 mg, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **6c** as a white solid (52.3 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H), 7.25-7.27 (m, 1H), 7.33 (s, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.40-7.47 (m, 3H), 7.70 (d, *J* = 6.8 Hz, 2H), 7.76 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 116.3, 119.6, 127.8, 128.4, 128.6, 128.7, 128.9, 132.6, 134.3, 135.0, 140.0, 151.8, 160.9 ppm.

2-Phenyl-1,4-benzoquinone (7a)¹⁶

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), 1,4-benzoquinone (32.4 mg, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **7a** as a yellow solid (34.8 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃): δ = 6.82-6.89 (m, 3H), 7.42-7.49 (m, 5H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 128.6, 129.3, 130.2, 132.8, 136.3, 137.1, 146.0,

186.7, 187.7 ppm.

2-Phenyl-1,4-naphthoquinone (7b)¹⁶

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), 1,4-naphthoquinone (47.4 mg, 0.3 mmol) and benzene (2.0 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 2/1, v/v) afforded **7b** as a yellow solid (66.1 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.09 (s, 1H), 7.48-7.49 (m, 3H), 7.57-7.58 (m, 2H), 7.79 (t, *J*= 4.4 Hz, 2H), 8.11-8.14 (m, 1H), 8.18-8.20 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 126.1, 127.2, 128.6, 129.6, 130.2, 132.2, 132.6, 133.5, 133.95, 134.02, 135.3, 148.2, 184.5, 185.3 ppm.

2-(2-Methoxy-5-methylphenyl)naphthalene-1,4-dione (7c)¹⁶

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), 1,4-naphthoquinone (47.4 mg, 0.3 mmol) and 4-methylanisole (2.8 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 2/1-1/1, v/v) afforded **7c** as a yellow solid (78.2 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.33 (s, 3H), 3.76 (s, 3H), 6.89 (d, *J* = 8.4 Hz, 1H), 7.01 (s, 1H), 7.05 (d, *J* = 2.0 Hz, 1H), 7.22 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.73-7.77 (m, 2H), 8.10-8.16 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 20.5, 56.0, 111.4, 123.2, 126.1, 127.0, 130.0, 131.1, 131.5, 132.3, 132.7, 133.6, 133.8,

136.7, 148.4, 155.3, 183.7, 185.4 ppm.

2-(3-Bromo-4-methoxyphenyl)naphthalene-1,4-dione (7d)

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (111.4 μL, 1.5 mmol), 1,4-naphthoquinone (47.4 mg, 0.3 mmol) and 2-bromoanisole (2.8 mL, 22.5 mmol) at room temperature for 24 h. Purification via column chromatography on silica gel (*n*-hexane/ethyl acetate = 20/1, v/v) afforded **7d** as a yellow solid (42.4 mg, 41% yield). M.p.: 202-204 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.97 (s, 3H), 7.00 (d, J = 8.8 Hz, 1H), 7.05 (s, 1H), 7.57 (dd, J = 8.8 Hz, 2.4 Hz, 1H), 7.77-7.79 (m, 2H), 7.85 (d, J = 2.4 Hz, 1H), 8.11-8.13 (m, 1H), 8.17-8.19 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 56.6, 111.7, 112.0, 126.1, 127.0, 127.2, 130.2, 132.2, 132.5, 134.05, 134.07, 134.5, 146.2, 157.6, 184.5, 185.1 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₁BrNaO₃ [M+Na]⁺ 364.9789, found 364.9788.

2-(3,4-Dichlorophenyl)naphthalene-1,4-dione (7e)¹⁶

Pd(OAc)₂ (6.7 mg, 0.03 mmol), (NH₄)₂S₂O₈ (137.0 mg, 0.6 mmol), TFA (222.8 μ L, 3.0 mmol), 1,4-naphthoquinone (47.4 mg, 0.3 mmol) and 1,2-dichlorobenzene (2.5 mL, 22.5 mmol) at room temperature for 48 h. Purification via column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **7e** as a yellow solid (48.3 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.07 (s, 1H),

7.42 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.80 (t, J = 4.4 Hz, 2H), 8.11-8.14 (m, 1H), 8.17-8.19 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 126.3$, 127.3, 128.7, 130.7, 131.4, 132.1, 132.3, 133.0, 133.3, 134.3, 134.7, 135.8, 145.9, 183.9, 184.8 ppm.

X. References

- (1) A. Kubota, M. H. Emmert and M. S. Sanford, Org. Lett., 2012, 14, 1760.
- (2) J. Tummatorn, P. A. Albiniak and G. B. Dudley, J. Org. Chem., 2007, 72, 8962.
- (3) K. Itoh, A. Tsuruta, J.-i. Ito, Y. Yamamoto and H. Nishiyama, J. Org. Chem., 2012,

77, 10914.

- (4) S. Thielges, P. Bisseret and J. Eustache, Org. Lett., 2005, 7, 681.
- (5) B. R. Ambler and R. A. Altman, Org. Lett., 2013, 15, 5578.
- (6) (a) Z. Zhang and Z. Wang, J. Org. Chem., 2006, 71, 7485; (b) G. Xie, P. Chellan, J.

Mao, K. Chibale and G. S. Smith, Adv. Synth. Catal., 2010, 352, 1641.

(7) H. K. Neudeck, Monatsh. Chem., 1996, 127, 185.

(8) A. El-Batta, C. Jiang, W. Zhao, R. Anness, A. L. Cooksy and M. Bergdahl, *J. Org. Chem.*, 2007, **72**, 5244.

- (9) T. Matsuda, S. Shiose and Y. Suda, Adv. Synth. Catal., 2011, 353, 1923.
- (10) B. Zhang, Q. Yang, X. He, J. Chao, J. Chang and Q. Wu, *Chem. J. Chinese. U.*, 2012, 33, 1471.
- (11) Y. Fujiwara, O. Maruyama, M. Yoshidomi and H. Taniguchi, *J. Org. Chem.*, 1981, **46**, 851.
- (12) M. Oberholzer and C. M. Frech, Green Chem., 2013, 15, 1678.
- (13) C. Qin and N. Jiao, J. Am. Chem. Soc., 2010, 132, 15893.
- (14) T. Thiemann, M. Watanabe and J. Iniesta, *Engineering Sciences Reports*, 2007, 28, 379.
- (15) F. Jafarpour, H. Hazrati, N. Mohasselyazdi, M. Khoobi and A. Shafiee, *Chem. Commun.*, 2013, **49**, 10935.
- (16) S. Zhang, F. Song, D. Zhao and J. You, Chem. Commun., 2013, 49, 4558.

XI. Copies of ¹H, ¹³C NMR and ¹H-¹H NOESY spectra

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)