Supporting Information

Versatile palladium-catalyzed C-H olefination of (hetero)arenes at room temperature

Zhijie She, Yang Shi, Yumin Huang, Yangyang Cheng, Feijie Song* and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu

610064, PR China Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn;
fsong@scu.edu.cn

Table of contents

I. General Remarks S3
II. Optimization of the Pd-catalyzed direct $\mathrm{C}-\mathrm{H}$ bond olefination of arenes at room temperature S3
III. General procedure for the Pd-catalyzed oxidative $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ cross-coupling of arenes with alkenes at room temperature S4
IV. Typical procedure for the synthesis of $\mathbf{3 a}$ S4
V. General procedure for the Pd-catalyzed direct $\mathrm{C}-\mathrm{H}$ bond olefination of heteroarenes at room temperature S5
VI. General procedure for the Pd-catalyzed regioselective arylation of coumarins at room temperature S5
VII. General procedure for the Pd-catalyzed oxidative $\mathrm{C}-\mathrm{H} / \mathrm{C}-\mathrm{H}$ cross-coupling of arenes with quinones at room temperature S5
VIII. Typical procedure for the synthesis of 7b S6
IX. Characterization of substances 3, 6, and 7 S6
X. References S19
XI. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra S20

I. General Remarks

NMR spectra were obtained on a Bruker AV II-400 (${ }^{1} \mathrm{H}$ NMR at 400 MHz and ${ }^{13} \mathrm{C}$ NMR at 100 MHz). The ${ }^{1} \mathrm{H}$ NMR chemical shifts were measured using CDCl_{3} as the internal reference $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right)$. The ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ chemical shifts were given using CDCl_{3} as the internal standard $\left(\mathrm{CDCl}_{3}: \delta=77.16 \mathrm{ppm}\right)$. High resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). Melting points were determined with XRC-1 and are uncorrected.

All reactions were carried out under an air atmosphere. All reagents were obtained from commercial suppliers and were used without further purification. Arenes, olefins, trifluoroacetic acid, $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ were purchased from Chengdu Kelong Chemical Engineering Reagent (China) CO., Ltd. $\mathrm{Pd}(\mathrm{OAc})_{2}$ and PdCl_{2} were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd.

II. Optimization of the Pd-catalyzed direct C-H bond olefination of arenes at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with palladium catalyst $(0.03 \mathrm{mmol})$, oxidant (0.6 mmol), TFA, benzene 1a ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) and methyl acrylate $\mathbf{2 a}(27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ under air. After being stirred at room temperature for 12h or 24 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography (petroleum ether/ethyl acetate $=$ $20 / 1, \mathrm{v} / \mathrm{v}$) on silica gel to provide the desired product $3 \mathbf{3}$.

Table S1. Optimization of the oxidative cross-coupling of benzene 1a with methyl acrylate $\mathbf{2 a}{ }^{a}$

Entry	Catalyst	Oxidant	Additive (equiv)	Yield $(\%)^{b}$
1	$\operatorname{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	none	trace

2	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	none	trace
3	$\boldsymbol{P d}(\mathbf{O A c})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	81
4	$\mathrm{Pd}(\mathrm{TFA})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	72
5	PdCl_{2}	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	trace
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	75
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	61
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	NFSI	TFA (5.0)	57
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{O}_{2}(1.0 \mathrm{~atm})$	TFA (5.0)	44
10^{c}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	51
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (2.5)	42
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (10.0)	63
13^{d}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	57
14^{e}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	50
15^{f}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	TFA (5.0)	n. r.

${ }^{a}$ Reaction conditions: methyl acrylate (0.30 mmol), arene ($22.5 \mathrm{mmol}, 75.0$ equiv), Pd catalyst ($0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$), oxidant (2.0 equiv) and TFA at room temperature for 24 h under air. ${ }^{b}$ Isolated yield. ${ }^{c}$ The reaction time was $12 \mathrm{~h} .{ }^{d} \mathrm{Pd}(\mathrm{OAc})_{2}(0.015 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was used. ${ }^{e}$ Arene (15 mmol , 50.0 equiv) was used. ${ }^{f}$ Arene ($0.9 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were used. n.r. $=$ no reaction.

III. General procedure for the Pd-catalyzed oxidative C-H/C-H cross-coupling of arenes with alkenes at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}$, $0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, olefin (0.3 mmol) and arene (22.5 mmol) under air. After being stirred at room temperature for 24 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

IV. Typical procedure for the synthesis of 3a

A sealed Schlenk tube with a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}$, $0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA ($111.4 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and benzene $(2.0 \mathrm{~mL}, 22.5 \mathrm{mmol})$ at room temperature
under air. After being stirred at room temperature for 24 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) to provide $3 \mathbf{a}$ as colorless liquid ($39.3 \mathrm{mg}, 81 \%$ yield).

V. General procedure for the Pd-catalyzed direct C-H bond olefination of heteroarenes at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}$, $0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, olefin (0.6 mmol), heteroarene $(0.3 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ under air. After being stirred at room temperature for 48 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

VI. General procedure for the Pd-catalyzed regioselective arylation of coumarins at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}$, $0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA ($111.4 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), coumarin (0.3 mmol) , and arene (22.5 mmol) under air. After being stirred at room temperature for 24 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.
VII. General procedure for the Pd-catalyzed oxidative C-H/C-H cross-coupling

of arenes with quinones at room temperature

A sealed Schlenk tube with a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}$, $0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, quinone (0.3 mmol), and arene (22.5 mmol) under air. After being stirred at room temperature for 24 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel to provide the desired product.

VIII. Typical procedure for the synthesis of 7b

A sealed Schlenk tube with a magnetic stir bar was charged with $\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}$, $0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA ($111.4 \mu \mathrm{~L}$, 1.5 mmol), 1,4-naphthoquinone $5 \mathbf{b}$ ($47.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) under air. After being stirred at room temperature for 24 h , the mixture was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a celite pad, and washed with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was collected and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1, \mathrm{v} / \mathrm{v}$) to provide $7 \mathbf{b}$ as a yellow solid ($66.1 \mathrm{mg}, 94 \%$ yield).

IX. Characterization of substances 3, 6, and 7

trans-Methyl cinnamate (3a) ${ }^{1}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3 a}$ as colorless liquid (39.3 mg ,
81% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.81(\mathrm{~s}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=51.8,118.0,128.2,129.0,130.4,134.6,145.0,167.6 \mathrm{ppm}$.

trans-Butyl cinnamate (3b) ${ }^{1}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, n-butyl acrylate ($43.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3 b}$ as colorless liquid $(50.1 \mathrm{mg}$, 82% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.73(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.39$ $(\mathrm{m}, 3 \mathrm{H}), 7.52-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=13.9,19.4,31.0,64.6,118.5,128.2,129.0,130.4,134.7,144.7,167.3$ ppm.

trans-Benzyl cinnamate (3c) ${ }^{2}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, benzyl acrylate ($45.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded 3 c as colorless liquid $(60.3 \mathrm{mg}$, 84% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.26(\mathrm{~s}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.34-7.43 (m, 8H), 7.51-7.54 (m, 2H), $7.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=66.5,118.0,128.3,128.40,128.42,128.7,129.0,130.5,134.5$, 136.2, 145.3, 167.0 ppm.

Methyl 3,3-diphenylacrylate (3d) ${ }^{\mathbf{1}}$

$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, methyl cinnamate ($48.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded 3d as colorless liquid (47.6 mg , 67% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.53(\mathrm{~s}, 3 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.17(\mathrm{~m}$, 2 H), 7.21-7.28 (m, 5H), 7.31-7.32 (m, 3H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 51.4, 116.9, 128.0, 128.3, 128.4, 128.5, 129.2, 129.6, 138.9, 140.9, 157.2, 166.5 ppm.

(E)-Methyl 3-(4-methoxyphenyl)-3-phenylacrylate (3e) ${ }^{3}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), (E)-methyl 3-(4-methoxyphenyl)acrylate ($57.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$, v/v) afforded $\mathbf{3 e}$ as a white solid ($36.2 \mathrm{mg}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.60(\mathrm{~s}, 3 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.40(\mathrm{~m}$, $3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.3,55.5,113.9,114.8,128.0,128.2$, 129.2, 129.9, 133.3, 139.2, 157.0, 161.0, $166.7 \mathrm{ppm} . \mathrm{HRMS}^{(E S I}{ }^{\dagger}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$291.0997, found 291.1001.

(E)-Dimethyl styrylphosphonate (3f) ${ }^{4}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), dimethyl vinylphosphonate ($36.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and benzene ($2 \mathrm{~mL}, 22.5$ mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3 f}$ as pale yellow liquid ($46.2 \mathrm{mg}, 73 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.77(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $6.22(\mathrm{t}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.59(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=52.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 112.4(\mathrm{~d}, J=192.0 \mathrm{~Hz}), 127.9,129.0,130.6$, $134.8(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 150.0(\mathrm{~d}, J=7.0 \mathrm{~Hz}) \mathrm{ppm}$.

(E)-Methyl 3-(4-methoxyphenyl)acrylate (3g) ${ }^{5}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and anisole ($2.4 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded 3 g as a pale yellow solid $(36.5 \mathrm{mg}$, 63% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.79(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.31(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.65$ (d, $J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.7,55.5,114.5,115.4,127.3,129.9$, 144.7, 161.5, 167.9 ppm.

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and methylbenzene ($2.4 \mathrm{~mL}, 22.5$ mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3 h}$ as pale yellow liquid ($41.4 \mathrm{mg}, 78 \%$ yield). The ratio of $o / m / p$ was $1.3 / 1.0 / 2.9$ as determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of three isomers): $\delta=2.37$ ($\mathrm{s}, \mathrm{ArCH}_{3}$), 2.44 (s, $\left.\mathrm{ArCH}_{3}\right), 3.799\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.804\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 6.37(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $=\mathrm{C} \underline{H}), 6.40(\mathrm{~d}, J=16.0 \mathrm{~Hz},=\mathrm{CH}), 6.43 \mathrm{~d}, J=16.0 \mathrm{~Hz},=\mathrm{CH}), 7.18-7.33(\mathrm{~m}, \mathrm{ArH})$, $7.42(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}}), 7.67(\mathrm{~d}, J=16.0 \mathrm{~Hz},=\mathrm{CH}), 7.99$ $(\mathrm{d}, J=16.0 \mathrm{~Hz},=\mathrm{CH}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=19.9,21.4,21.5,51.70$, $51.74,51.8,116.8,117.7,119.0,125.4,126.4,126.5,128.2,128.8,128.9,129.7$, $130.1,130.9,131.2,131.8,133.5,134.5,137.7,138.6,140.8,142.6,145.0,145.1$, 167.55, 167.57, 167.7 ppm .

(E)-Methyl 3-(2,3-dimethylphenyl)acrylate (3i-1) and (E)-methyl 3-(3,4-dimethylphenyl)acrylate (3i-2) ${ }^{7}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and 1,2-dimethylbenzene (2.7 mL , 22.5 mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded the desired product as colorless liquid ($42.2 \mathrm{mg}, 74 \%$ yield). The ratio of $\mathbf{3 i} \mathbf{- 1} / \mathbf{3 i} \mathbf{-} \mathbf{2}$ was $1.0 / 5.0$ as determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers): $\delta=2.28$ (s, CH_{3}, major isomer), 2.31 ($\mathrm{s}, \mathrm{CH}_{3}$, minor isomer), 2.33 ($\mathrm{s}, \mathrm{C}_{3}$, minor isomer), 3.80 (s , OCH_{3}, major isomer), 3.82 ($\mathrm{s}, \mathrm{OCH}_{3}$, minor isomer), 6.32 ($\mathrm{d}, J=15.6 \mathrm{~Hz},=\mathrm{C} \underline{H}$, minor isomer), 6.40 ($\mathrm{d}, J=16.0 \mathrm{~Hz},=\mathrm{C} \underline{H}$, major isomer), 7.09-7.19 (m, ArH, major+ minor isomer), 7.28 (d, $J=1.6 \mathrm{~Hz}, \operatorname{Ar} \underline{H}$, major isomer), 7.30 ($\mathrm{s}, \operatorname{Ar} \underline{\mathrm{H}}$, major isomer),
7.39 (d, $J=7.6 \mathrm{~Hz}, \mathrm{Ar} \underline{H}$, minor isomer), 7.66 (d, $J=16.0 \mathrm{~Hz},=\mathrm{CH}$, major isomer), 8.09 (d, $J=15.6 \mathrm{~Hz},=\mathrm{CH}$, minor isomer) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $19.4,19.85,19.91,20.7,51.7,116.6,119.4,124.6,124.8,125.8,125.9,129.1,129.4$, $129.9,130.3,131.7,132.2,133.8,134.7,136.2,136.7,137.2,137.5,139.6,141.4$, $143.8,145.2,167.6,167.8 \mathrm{ppm}$.

(E)-Methyl 3-(2,5-dimethylphenyl)acrylate (3j) ${ }^{8}$
$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and 1,4-dimethylbenzene (2.8 mL , 22.5 mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $3 \mathbf{j}$ as colorless liquid ($37.7 \mathrm{mg}, 66 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 6.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.090(\mathrm{~s}, 1 \mathrm{H}), 7.093(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.96$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=19.4,21.1,51.8,118.7$, 127.1, 130.9., 131.1, 133.3, 134.8, 135.9, 142.9, 167.7 ppm .

(E)-Methyl 3-mesitylacrylate (3k) ${ }^{9}$

$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), methyl acrylate ($27.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and mesitylene ($3.1 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $3 \mathbf{k}$ as a pale yellow solid (38.1 mg , 62% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.29(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$,
$6.06(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.18,21.20,51.8,123.0,129.3,131.1,137.0,138.5,143.6,167.6$ ppm.

(E)-Methyl 3-(benzofuran-2-yl)acrylate (3I) ${ }^{10}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), methyl acrylate ($54.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), 2,3-benzofuran ($33.1 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded 31 as a pale yellow solid ($40.5 \mathrm{mg}, 67 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.82(\mathrm{~s}$, $3 \mathrm{H}), 6.58(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.0,111.3,111.6,118.7,121.9,123.5,126.6$, $128.5,131.6,152.5,155.7,167.3 \mathrm{ppm}$.

(E)-Methyl 3-(benzo[b]thiophen-2-yl)acrylate (3m) ${ }^{10}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA (111.4 $\mu \mathrm{L}$, 1.5 mmol), methyl acrylate ($54.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), benzo[b]thiophene ($40.3 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{3 m}$ as a white solid ($41.7 \mathrm{mg}, 64 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.82(\mathrm{~s}, 3 \mathrm{H})$, $6.30(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.88(\mathrm{~d}$, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.0,119.2,122.6,124.6$, $125.0,126.4,128.8,138.0,139.6,139.7,140.4,167.1 \mathrm{ppm}$.

(E)-Methyl 3-(thiophen-2-yl)acrylate (3n-1) ${ }^{11}$

$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), methyl acrylate ($54.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), thiophene ($23.8 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded 3n-1 $\left(13.4 \mathrm{mg}, 27 \%\right.$ yield) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.79(\mathrm{~s}, 3 \mathrm{H})$, $6.24(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=5.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=51.8,116.7,128.2,128.6,131.1,137.4,139.7,167.4 \mathrm{ppm}$. Product $\mathbf{3 n - 2}$ was also obtained as a yellow solid ($45.4 \mathrm{mg}, 60 \%$ yield).

(2E,2'E)-Dimethyl 3,3'-(thiophene-2,5-diyl)diacrylate (3n-2) ${ }^{11}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.80(\mathrm{~s}, 6 \mathrm{H}), 6.26(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H})$, $7.71(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=52.0,118.5,131.8$, 136.7, 141.9, 167.0 ppm .

(E)-N,N-Dimethyl-3-(5-methylthiophen-2-yl)acrylamide (3o) ${ }^{12}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), N, N-dimethylacrylamide ($61.8 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), 2-methylthiophene (26.7 $\mu \mathrm{L}, 0.3 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=2 / 1, \mathrm{v} / \mathrm{v}$) afforded 30 as a yellow solid ($31.7 \mathrm{mg}, 54 \%$ yield). M.p.: $62-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.48(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 6.54(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.67-6.68 (m, 1H), $7.00(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.9,36.1,37.5,114.8,126.5,131.0,135.8,138.6,142.6$, 166.8 ppm . HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$196.0796, found 196.0794.

3-(5-Methylthiophen-2-yl)acrylonitrile (3p) ${ }^{13}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol})$, selectfluor $(212.6 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}, 1.5$ mmol), acrylonitrile ($98.7 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), 2-methylthiophene ($26.7 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded 3p as yellow liquid (a mixture of (E) - and (Z)-isomers, $23.4 \mathrm{mg}, 59 \%$ yield). The ratio of (E)-3p/(Z)-3p was $1.8: 1.0$ as determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, a mixture of two isomers): $\delta=2.50$ ($\mathrm{s}, \mathrm{CH}_{3}$, major isomer), 2.54 ($\mathrm{s}, \mathrm{CH}_{3}$, minor isomer), $5.14(\mathrm{~d}, J=12.0 \mathrm{~Hz},=\mathrm{CH}$, minor isomer), $5.48(\mathrm{~d}, J=16.4 \mathrm{~Hz},=\mathrm{CH}$, major isomer), 6.72-6.73 (m, major isomer), 6.76-6.77 (m, minor isomer), $7.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, major isomer), 7.13 ($\mathrm{d}, J=12.0 \mathrm{~Hz}$, minor isomer), 7.30 ($\mathrm{d}, J=3.6 \mathrm{~Hz}$, minor isomer), 7.37 (d, $J=16.4 \mathrm{~Hz}$, major isomer) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=15.9,16.0$, $90.0,92.8,118.1,118.5,126.1,126.9,132.1,133.4,136.0,136.6,141.3,143.1,145.2$, 146.2 ppm . HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 150.0377$, found 150.0377 .

(E)-Ethyl 3-(5-((E)-3-methoxy-3-oxoprop-1-en-1-yl)thiophen-2-yl)acrylate (3q) ${ }^{14}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), methyl acrylate ($54.0 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), (E)-ethyl 3-(thiophen-2-yl)acrylate ($54.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$)
afforded $3 \mathbf{q}$ as a yellow solid ($40.5 \mathrm{mg}, 51 \%$ yield). M.p.: $56-58{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.25$ (d, $J=15.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (s, 2H), 7.69 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.4,52.0,60.9,118.4,119.0,131.7,131.8$, 136.4, 136.7, 141.8, 142.0, 166.6, 167.0 ppm. HRMS (ESI ${ }^{\dagger}$): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 289.0510$, found 289.0514 .

3-Phenylcoumarin (6a) ${ }^{15}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, coumarin ($43.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{6 a}$ as a white solid ($49.2 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=116.6,119.8,124.6,128.0,128.5,128.6$, $128.7,129.0,131.5,134.9,140.0,153.7,160.7 \mathrm{ppm}$.

3-(4-Methoxyphenyl)-2H-chromen-2-one (6b) ${ }^{15}$
$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), coumarin ($43.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and anisole ($2.4 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{6 b}$ as a white solid $(60.1 \mathrm{mg}, 79 \%$
yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.86(\mathrm{~s}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.5,114.1,116.5,120.0,124.6$, $127.2,127.8,128.0,130.0,131.2,138.6,153.5,160.3,160.9 \mathrm{ppm}$.

6-Methyl-3-phenyl-2H-chromen-2-one (6c) ${ }^{15}$
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, 6-methylcoumarin ($48.1 \mathrm{mg}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{6 c}$ as a white solid ($52.3 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.42(\mathrm{~s}, 3 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H})$, 7.33 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.9,116.3,119.6,127.8,128.4,128.6,128.7$, $128.9,132.6,134.3,135.0,140.0,151.8,160.9 \mathrm{ppm}$.

2-Phenyl-1,4-benzoquinone (7a) ${ }^{16}$
$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), 1,4 -benzoquinone ($32.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) and benzene ($2.0 \mathrm{~mL}, 22.5 \mathrm{mmol}$) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1, \mathrm{v} / \mathrm{v}$) afforded 7 a as a yellow solid ($34.8 \mathrm{mg}, 63 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.82-6.89(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=\underset{\text { S16 }}{128.6}, 129.3,130.2,132.8,136.3,137.1,146.0$,
186.7, 187.7 ppm.

2-Phenyl-1,4-naphthoquinone (7b) ${ }^{16}$

$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, 1,4-naphthoquinone ($47.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) and benzene $(2.0 \mathrm{~mL}, 22.5$ mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1, \mathrm{v} / \mathrm{v}$) afforded $\mathbf{7 b}$ as a yellow solid (66.1 mg , 94\% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.49(\mathrm{~m}, 3 \mathrm{H})$, 7.57-7.58 (m, 2H), 7.79 (t, $J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.11-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.18-8.20(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=126.1,127.2,128.6,129.6,130.2,132.2,132.6$, $133.5,133.95,134.02,135.3,148.2,184.5,185.3 \mathrm{ppm}$.

2-(2-Methoxy-5-methylphenyl)naphthalene-1,4-dione (7c) ${ }^{16}$

$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, $1.5 \mathrm{mmol})$, 1,4-naphthoquinone ($47.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 4-methylanisole (2.8 mL , 22.5 mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}=2 / 1-1 / 1, \mathrm{v} / \mathrm{v}$) afforded 7 c as a yellow solid (78.2 $\mathrm{mg}, 87 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.33$ (s, 3H), 3.76 (s, 3H), 6.89 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73-7.77 (m, 2H), 8.10-8.16 (m, 2H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=20.5$, 56.0, 111.4, 123.2, 126.1, 127.0, 130.0, 131.1, 131.5, 132.3, 132.7, 133.6, 133.8,
136.7, 148.4, 155.3, 183.7, 185.4 ppm.

2-(3-Bromo-4-methoxyphenyl)naphthalene-1,4-dione (7d)
$\mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(111.4 \mu \mathrm{~L}$, 1.5 mmol), 1,4-naphthoquinone ($47.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 2-bromoanisole (2.8 mL , 22.5 mmol) at room temperature for 24 h . Purification via column chromatography on silica gel (n-hexane/ethyl acetate $=20 / 1, \mathrm{v} / \mathrm{v}$) afforded $7 \mathbf{d}$ as a yellow solid $(42.4 \mathrm{mg}$, 41% yield). M.p.: 202-204 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.97(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.19(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=56.6,111.7,112.0,126.1,127.0,127.2,130.2,132.2,132.5$, 134.05, 134.07, 134.5, 146.2, 157.6, 184.5, 185.1 ppm. HRMS (ESI $^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrNaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 364.9789$, found 364.9788 .

2-(3,4-Dichlorophenyl)naphthalene-1,4-dione (7e) ${ }^{16}$

$\operatorname{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(137.0 \mathrm{mg}, 0.6 \mathrm{mmol})$, TFA $(222.8 \mu \mathrm{~L}$, 3.0 mmol), 1,4-naphthoquinone ($47.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1,2-dichlorobenzene (2.5 $\mathrm{mL}, 22.5 \mathrm{mmol}$) at room temperature for 48 h . Purification via column chromatography on silica gel (petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=1 / 1$, v/v) afforded 7e as a yellow solid ($48.3 \mathrm{mg}, 53 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07(\mathrm{~s}, 1 \mathrm{H})$,
7.42 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=4.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.11-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.17-8.19(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $126.3,127.3,128.7,130.7,131.4,132.1,132.3,133.0,133.3,134.3,134.7,135.8$, 145.9, 183.9, 184.8 ppm .

X. References

(1) A. Kubota, M. H. Emmert and M. S. Sanford, Org. Lett., 2012, 14, 1760.
(2) J. Tummatorn, P. A. Albiniak and G. B. Dudley, J. Org. Chem., 2007, 72, 8962.
(3) K. Itoh, A. Tsuruta, J.-i. Ito, Y. Yamamoto and H. Nishiyama, J. Org. Chem., 2012, 77, 10914.
(4) S. Thielges, P. Bisseret and J. Eustache, Org. Lett., 2005, 7, 681.
(5) B. R. Ambler and R. A. Altman, Org. Lett., 2013, 15, 5578.
(6) (a) Z. Zhang and Z. Wang, J. Org. Chem., 2006, 71, 7485; (b) G. Xie, P. Chellan, J.

Mao, K. Chibale and G. S. Smith, Adv. Synth. Catal., 2010, 352, 1641.
(7) H. K. Neudeck, Monatsh. Chem., 1996, 127, 185.
(8) A. El-Batta, C. Jiang, W. Zhao, R. Anness, A. L. Cooksy and M. Bergdahl, J. Org. Chem., 2007, 72, 5244.
(9) T. Matsuda, S. Shiose and Y. Suda, Adv. Synth. Catal., 2011, 353, 1923.
(10) B. Zhang, Q. Yang, X. He, J. Chao, J. Chang and Q. Wu, Chem. J. Chinese. U., 2012, 33, 1471.
(11) Y. Fujiwara, O. Maruyama, M. Yoshidomi and H. Taniguchi, J. Org. Chem., 1981, 46, 851.
(12) M. Oberholzer and C. M. Frech, Green Chem., 2013, 15, 1678.
(13) C. Qin and N. Jiao, J. Am. Chem. Soc., 2010, 132, 15893.
(14) T. Thiemann, M. Watanabe and J. Iniesta, Engineering Sciences Reports, 2007, 28, 379.
(15) F. Jafarpour, H. Hazrati, N. Mohasselyazdi, M. Khoobi and A. Shafiee, Chem. Comтип., 2013, 49, 10935.
(16) S. Zhang, F. Song, D. Zhao and J. You, Chem. Commun., 2013, 49, 4558.
XI. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra

ヘ

n
ले
ले
운

$\stackrel{2}{1}$

n
§
i

