Iodine Mediated Oxidative Annulation for One Pot Synthesis of Pyrazines and Quinoxalines Using Multipathway Coupled Domino Strategy[†]

K K Durga Rao Viswanadham,^{b,§} Muktapuram Prathap Reddy,^{b,§} Pochampalli Sathyanarayana,^a Owk Ravi,^a Ruchir Kant,^{b#} Surendar Reddy Bathula^{*a,b}

^aDivision of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, India ^bPharmaceutics Division, ^{b#}Molecular and structural biology Division, CSIR-Central Drug Research Institute, Lucknow-226 031, India

Supporting Information

S2	Pharmaceutical and Bioactive natural Pyrazines and Quinoxalines(Figure S1)			
	X-ray crystal structure of 5k (Figure S2)			
S 3	Crystallographic Data of 5k (Table S1)			
S4	Table S2 and General Information			
S 5	General procedures			
S6-S17	Spectral Data and References			
S18-S55	NMR Spectra			

Figure S1. Pharmaceutical and Bioactive natural Pyrazines and Quinoxalines

Figure S2. X-ray crystal structure of compound 5k (CCDC -975936)

Compound	5k		
Empirical formula	$C_{22} H_{16} N_2 O$		
Formula weight	324.37		
Crystal System	Monoclinic		
Space group	P21/c		
<i>a</i> (Å)	6.182(4)		
<i>b</i> (Å)	28.80(2)		
<i>c</i> (Å)	9.743(6)		
α (°)	90.00		
$\beta(^{\circ})$	106.28(1)		
γ (°)	90.00		
$V(Å^3)$	1664.8(18)		
Z	4		
$D_c (g/cm^3)$	1.294		
F_{000}	680		
μ (mm ⁻¹)	0.08		
θ_{\max} (°)	25.38		
Total reflections	12951		
Unique reflections	3029		
Reflections $[I > 2\sigma(I)]$	2154		
Parameters	226		
$R_{ m int}$	0.0533		
Goodness-of-fit	1.151		
$R[F^2 > 2\sigma(F^2)]$	0.0678		
wR (F^2 , all data)	0.2328		
CCDC No.	975936		

 Table S1. Crystal data and structure refinement details for compound 5k.

Table S2. Details regarding the use of DMSO in stoichiometric amounts for the iodine mediated Pyrazines and Quinoxalines synthesis via MPCD strategy.

		I_2 (2 equiv.)	N,	.N	
Ph	+ or	${}^{2}K_{2}CO_{3}$ (1.2 eq	uiv.)	or	Ĭ)
1a	NH₂ 2a 3a	solvent, 100 °C	C Ph N Aa	Ph 5a	r 🗸
	solvent	DMSO	temp	time	yield
entry		(equiv.)	(°C)	(h)	(%) ^b
1	CCl ₄	2	100	12	n.r.
2	DCE	2	100	12	n.r.
3	THF	2	100	12	n.r.
4	dioxane	2	100	12	n.r.
5	THF	3	100	12	n.r.
6	CCl ₄	4	100	12	n.r.
7	THF	4	100	12	n.r.
8	dioxane	4	100	12	n.r.
^a React	tion conditions: 1a	(1. 0 mmol), 2a /F	$K_2 CO_3$ (1.0 m)	mol/1.2 i	mmol)
or 3a ((1.0 mmol) DMSO	(2 to 4 mmol) I ₂ (20 mm	ol), hea	ted in
differen	nt solvents at 100 °	C for 12 h. ^b Is	olated yield.	$CCl_4 = c$	carbon
tetrachl	oride, $DCE = 1,2$ -di	chloroethane, T	HF = tetrahyd	rofuran.	

1. General Information

All reactions, unless noted, were carried out under an open air atmosphere in flame-dried or oven-dried glassware with magnetic stirring. Analytical thin layer chromatography (TLC) was performed on Dynamic Adsorbents precoated (0.25 mm thickness) silica gel plates with F254 indicator. Visualization was accomplished by UV light (254 nm). Column chromatography was performed with silica gel (60-120 or 100–200 mesh) as the stationary phase. ¹H NMR spectra were recorded on a Bruker DRX-400 (400 MHz) spectrometer, and chemical shifts were reported in ppm. The peak information was described as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = double doublet, bs = broad singlet; coupling constant(s) in Hz. ¹³C NMR spectra were recorded on a Bruker DRX-400 (75 or 100 MHz) spectrometer with complete proton decoupling. High-resolution mass spectra (HRMS) were performed on QTof and MALDI-ToF/ToF mass spectrometer.

2. General procedure:

2A Pyrazines and Quinoxalines from terminal aryl alkynes: Aryl acetylene **1** (1.0 mmol), I₂ (2.0 mmol), and ethane-1, 2-diamine **2** (1.0 mmol)/K₂CO₃ (1.2 mmol) or benzene-1, 2-diamine **3** (1.0 mmol) were dissolved in DMSO (10 mL) and the mixture was stirred at 100 $^{\circ}$ C for 12 h. Upon completion, the mixture was diluted with water and extracted with EtOAc (3×20 mL). The extract was washed with Na₂S₂O₃ (5% w/w, aq.), brine and dried over anhydrous sodium sulphate. After removal of the solvent in vacuum, the residue was purified by column chromatography on silica gel to afford the **4** or **5**.

2B Pyrazines and Quinoxalines from terminal aryl alkenes: To a clear solution of IBX (2.0 mmol) in 10 mL of DMSO was added the terminal aryl alkenes **6** (1.0 mmol) followed by iodine (2.0 mmol). The reaction mixture was stirred for 2-3 h, ethane-1, 2-diamine **2** and K₂CO₃ (1.0 mmol/1.2 mmol) or benzene-1, 2-diamine **3** (1.0 mmol) were added, the mixture was heated at 100 $^{\circ}$ C for 10 h. Upon completion, the mixture was filtered, diluted with water and extracted with EtOAc (3×20 mL). The extract was washed with Na₂S₂O₃ (5% w/w, aq.), brine and dried over anhydrous sodium sulphate. After removal of the solvent in vacuum, the residue was purified by column chromatography on silica gel to afford the **4** or **5**.

2C Pyrazines and Quinoxalines from aromatic ketones: A mixture of aromatic ketone **7** (1.0 mmol), and I₂ (2.0 mmol) in 10 mL of DMSO was stirred at 100 °C for 2-3 h. After disappearance of the reactant, then added ethane-1, 2-diamine **2** and K₂CO₃ (1.0 mmol/1.2 mmol) or benzene-1, 2-diamine **3** (1.0 mmol) and the mixture was heated at 100 °C for 10 h. Upon completion, the mixture was diluted with water and extracted with EtOAc (3×20 mL). The extract was washed with Na₂S₂O₃ (5% w/w, aq.), brine and dried over anhydrous sodium sulphate. After removal of the solvent in vacuum, the residue was purified by column chromatography on silica gel to afford the **4** or **5**.

2D Synthesis of 2-iodo-1-phenylethanone (A): phenyl acetylene 1a (1.0 mmol), and I₂ (2.0 mmol) were dissolved in DMSO (10 mL) and the mixture was stirred at 80 $^{\circ}$ C for 1 h. Upon completion, the mixture was diluted with water and extracted with EtOAc (3×20 mL). The extract was washed with Na₂S₂O₃ (5% w/w, aq.), brine and dried over anhydrous sodium sulphate. After removal of the solvent in vacuum, the residue was purified by column chromatography on silica gel to afford intermediate **A**.

3. Spectral data

3.1. Spectral data of Pyrazines

2-Phenylpyrazine (4a):¹ general procedure **2A/2B/2C** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.50$ (Hexane/ EtOAc, 8:2); yield 72% (224 mg); light yellow solid; mp 73-74 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.03$ (d, J = 1.28 Hz, 1H), 8.64 (dd, J = 3.92, 1.59 Hz, 1H), 8.51 (d, J = 2.4 Hz, 1H), 8.03–8.01 (m, 2H), 7.52–7.49 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.8$, 143.1, 141.9, 141.2, 135.3, 128.9, 128.0, 125.9; IR (KBr) v: 3019, 1637, 1469, 1080, 756, 668 cm⁻¹; ESIMS m/z [M+H]⁺: 157.3.

2-(p-Tolyl)-pyrazine (4b):¹ general procedure **2A/2B** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.55$ (Hexane/EtOAc, 8:2); yield 75% (254 mg); pale yellow solid; mp 56-57 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.00$ (s, 1H), 8.60 (bs, 1H), 8.47 (d, J = 2.15 Hz, 1H), 7.91 (d, J = 7.97 Hz, 2H), 7.32 (d, J = 7.91 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 152.9$, 144.1, 142.6, 142.1, 140.2, 133.6, 129.8, 126.9, 21.4; IR (KBr) v: 3436, 1637, 1467, 1078, 1016, 815, 756 cm⁻¹; ESIMS m/z [M+H]⁺: 171.3.

2-(m-Tolyl)-pyrazine (4j):¹ general procedure **2B** has been used; Column chromatography (Hexane/EtOAc) : $R_f = 0.55$ (Hexane/EtOAc, 8:2); yield 71% (241 mg); light yellow oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.02$ (s, 1H), 8.62 (bs, 1H), 8.50 (bs, 1H), 7.84 (s, 1H), 7.79 (d, J = 7.68 Hz, 1H), 7.40 (t, J = 7.59 Hz, 1H), 7.29 (d, J = 7.47 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 153.0$, 144.1, 142.8, 142.3, 138.8, 136.3, 130.7, 128.9, 127.6, 124.0, 21.5; IR (KBr) v: 3436, 1637, 1467, 1078, 1016, 815, 756 cm⁻¹; ESIMS m/z [M+H]⁺: 171.3.

2-(4-(tert-butyl)phenyl)-pyrazine (4k): general procedure **2B** has been used; Column chromatography (Hexane/EtOAc) : $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 76% (322 mg); white solid; mp 86-87 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.01$ (d, J = 1.46 Hz, 1H), 8.61 (dd, J = 1.58, 2.43 Hz, 1H), 8.47 (d, J = 2.53 Hz, 1H), 7.97-7.94 (m, 2H), 7.55-7.52 (m, 2H), 1.37 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 153.4$, 153.0, 144.3, 142.7, 142.2, 133.7, 126.8, 126.2, 34.9, 31.4; IR (KBr) v: 3437, 3021, 1621, 1426, 1215, 1052, 759, 692 cm⁻¹; ESIMS m/z [M+H]⁺: 213.2.

2-(4-Methoxy-phenyl)-pyrazine (4c):¹ general procedure **2A/2B** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 76% (283 mg); colorless solid; mp 86-87 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.97$ (d, J = 1.46 Hz, 1H), 8.57 (dd, J = 2.50, 1.60 Hz, 1H), 8.43 (d, J = 2.53 Hz, 1H), 7.99-7.96 (m, 2H), 7.04-7.01 (m, 2H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 160.2$, 152.6, 144.0, 143.0, 142.3, 137.7, 130.0, 119.2, 115.9, 112.0, 55.4; IR (KBr) v: 3436, 1637, 1403, 769, 692 cm⁻¹; ESIMS m/z [M+H]⁺: 187.3.

2-(4-Fluorophenyl)-pyrazine (4d):¹ general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 8:2); yield 65% (225 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.00$ (s, 1H), 8.62 (d, J = 1.36 Hz, 1H), 8.50 (d, J = 2.27 Hz, 1H), 8.04–8.00 (m, 2H), 7.22-7.18 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 164.0$ (d, J = 250.3 Hz), 151.8, 144.1, 142.8, 141.8, 132.5, 128.8 (d, J = 8.46 Hz), 116.1 (d, J = 21.8 Hz); ESIMS m/z [M+H]⁺: 175.3.

2-(3-Methoxy-phenyl)-pyrazine (4f):¹ general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 68% (252 mg); pale yellow solid; mp 85-86 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.02$ (d, J = 1.46 Hz, 1H), 8.63 (dd, J = 2.33, 1.68, Hz, 1H), 8.57(d, J = 2.47 Hz, 1H), 7.60-7.56 (m, Hz, 2H), 7.42-7.41(t, J = 8.09 Hz, 1H), 7.04-7.04(m, 1H) 3.90(s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 157.1$, 152.0, 146.5, 142.1, 131.2, 131.0, 125.8, 121.3, 111.4, 55.6; IR (KBr) v: 3435, 3020, 1638, 1463, 1216, 758; ESIMS m/z [M+H]⁺: 187.3.

2-(3-Fluoro-phenyl)-pyrazine (4g): general procedure **2A/2C** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 63% (219 mg); yellow solid; mp 56-57 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.02$ (d, J = 1.43 Hz, 1H), 8.65(dd, J = 2.36, 1.62 Hz, 1H), 8.54 (d, J = 2.47 Hz, 1H), 7.80-7.75 (m, 2H), 7.51-7.45 (m, 1H), 7.20-7.15 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 164.7$, 162.2, 151.6, 144.3, 143.6, 142.2, 139.3, 138.7, 138.6, 130.78, 130.70, 122.54, 122.52, 117.0, 116.8, 114.2, 113.9; IR (KBr) v: 3440, 3021, 1595, 1215, 759, 672 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₀H₈FN₂ [M+H]⁺ 175.0672 found 175.0660.

2-(2-Methoxy-phenyl)-pyrazine (4h):² general procedure **2A/2B** has been used, Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 68% (245 mg); yellow oil, mp 132-133 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.15$ (d, J = 1.46 Hz, 1H), 8.65-8.64 (m, 1H), 8.54 (d, J = 2.56 Hz, 1H), 7.82 (dd, J = 7.63, 1.75 Hz 1H), 7.45-7.41(m, 1H), 7.13-7.09 (m, 1H), 7.04-7.02 (m, 1H), 3.89 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 157.1$, 151.9, 146.5, 144.1, 142.1, 131.2, 131.0, 125.8, 121.3, 111.4, 55.6; IR (KBr) v: 3436, 1637, 1403, 769, 692 cm⁻¹; ESIMS m/z [M+H]⁺: 187.3.

5-phenylpyrazine-2,3-dicarbonitrile (41):³ general procedure **2B** has been used; Column chromatography (Hexane/EtOAc); $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 65% (267 mg); white solid; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.29$ (s, 1H), 8.14-8.12 (m, 2H), 7.64-7.60 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 154.9$, 144.1, 133.0, 132.6, 130.8, 130.2, 129.8, 128.0; IR (KBr) v: 3405, 3021, 1635, 2200, 1406, 1215, 760, 670 cm⁻¹; ESIMS m/z [M+H]⁺: 207.3.

5-(4-methoxyphenyl-) pyrazine-2,3-dicarbonitrile (4m):⁴ general procedure **2B** has been used; Column chromatography (Hexane/EtOAc); $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 67% (316 mg); yellow solid; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.22$ (s, 1H), 8.14-8.12 (m, 2H), 7.11-7.09 (m, 2H), 3.94 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 163.8$, 154.4, 143.4, 133.3, 130.0, 129.6, 125.0, 115.4, 113.5, 113.2, 55.8; IR (KBr) v: 3410, 3019, 1635, 1216, 760, 676cm⁻¹; ESIMS m/z [M+H]⁺: 237.3.

2-(2-fluorophenyl)- pyrazine (40):⁵ general procedure **2C** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.6$ (Hexane/EtOAc, 9:1); yield 69% (240 mg); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.09$ (dd, J = 2.16, 1.68 Hz, 1H), 8.68 (dd, J = 2.38, 1.65 Hz, 1H), 8.53 (d, J = 2.47 Hz, 1H), 7.98-8.02 (m, 1H), 7.42-7.47 (m, 1H), 7.28-7.32 (m, 1H), 7.18-7.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 160.7$ (d, J = 251.10 Hz), 149.6, 145.7 (d, J = 12.00 Hz), 144.6, 143.3, 131.7 (d, J = 8.49 Hz), 131.1 (d, J = 2.38 Hz), 125.0 (d, J = 3.10 Hz), 124.6 (d, J = 12.30 Hz), 116.6 (d, J = 22.71 Hz); IR (KBr) v: 3401, 1623, 1400, 1148, 1074, 762, 669 cm⁻¹; ESIMS m/z [M+H]⁺:175.2.

2-(3-chlorophenyl)- pyrazine (4n):¹ general procedure **2**C has been used; Column chromatography (Hexane/ EtOAc); $R_f = 0.6$ (Hexane/EtOAc, 9:1); yield 66% (396 mg); light

yellow solid; mp 95-96 °C; ¹H NMR (400 MHz, CDCl₃) δ = 9.01 (d, *J* = 1.44 Hz, 1H), 8.64 (dd, *J* = 2.44, 1.57 Hz, 1H), 8.54 (d, *J* = 2.49 Hz, 1H), 8.04-8.05 (m, 1H), 7.87-7.90 (m, 1H), 7.44-7.45 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ = 151.6, 144.5, 143.7, 142.3, 138.3, 135.5, 130.52, 130.17, 127.3, 125.1; IR (KBr) v: 3402, 1635, 1463, 1146,1079, 760, 670 cm⁻¹; ESIMS m/z [M+H]⁺:191.2.

2-(2,4-dimethoxyphenyl)- pyrazine (4p):⁶ general procedure **2**C has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.4$ (Hexane/EtOAc, 9:1); yield 76 % (328 mg); white solid; mp 75-76 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.14$ (d, J = 1.57 Hz, 1H), 8.60 (dd, J = 2.54, 1.66 Hz, 1H), 8.39 (d, J = 2.57 Hz, 1H), 7.83 (d, J = 8.60 Hz, 1H), 6.65 (dd, J = 8.60, 2.34 Hz, 1H), 6.57 (d, J = 2.32, 1H), 3.89 (s, 3H), 3.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 162.5$, 158.6, 152.0, 146.3, 144.1, 141.6, 132.3, 118.8, 105.8, 99.0, 55.8, 55.7; IR (KBr) v: 3404, 1612, 1462, 1126, 1029, 929, 762, 669 cm⁻¹; ESIMS m/z [M+H]⁺: 217.

2-(4-cyclohexylphenyl)- pyrazine (4r): general procedure **2C** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.5$ (Hexane/EtOAc, 9:1); yield 75% (357 mg); white solid; mp 176-178 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.00$ (d, J = 1.36 Hz, 1H), 8.61 (dd, J = 2.44, 1.60 Hz, 1H), 8.46 (d, J = 2.44 Hz, 1H), 7.94 (d, J = 8.33, Hz, 2H), 7.35 (d, J = 8.13 Hz, 2H), 2.54-2.61 (m, 1H), 1.75-1.90 (m, 5H), 1.37-1.51 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 153.1$, 150.4, 144.3, 142.7, 142.2, 134.1, 127.8, 127.1, 44.6, 34.5, 27.0, 26.3; IR (KBr) v: 3681, 3400, 1634, 1470, 928, 757, 669, 626 cm⁻¹; ESIMS m/z [M+H]⁺: 239.2.

2-(thiophen-2-yl)- pyrazine (4q):¹ general procedure **2**C has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.4$ (Hexane/EtOAc, 9:1); yield 76% (246 mg); Slight yellow solid; mp 97-98 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.96$ (d, J = 1.48 Hz, 1H), 8.50 (dd, J = 2.52, 1.64 Hz, 1H), 8.40 (d, J = 2.58 Hz, 1H), 7.69 (dd, J = 3.70, 1.04 Hz, 1H), 7.48 (dd, J = 5.04, 1.02, 1H), 7.16 (dd, J = 4.99, 3.72 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 148.7$, 144.2,142.5, 141.5, 140.8, 129.2, 128.6, 126.0; IR (KBr) v: 3400, 1631, 1466, 1216, 1069, 928, 759, 670 cm⁻¹; ESIMS m/z [M+H]⁺: 163.3.

2-(2,4-dimethoxyphenyl)-5,6,7,8-tetrahydroquinoxaline (4u): general procedure **2C** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.4$ (Hexane/EtOAc, 9:1); yield 71 % (383 mg); green oil ; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.80$ (s, 1H), 7.73 (d, J = 8.56 Hz, 1H), 6.62 (dd, J = 8.51, 2.35 Hz, 1H), 6.55 (d, J = 2.35 Hz, 1H), 3.85 (s, 3H), 3.851 (s, 3H), 2.97-2.99 (m, 4H), 1.93 –1.94 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 161.9$, 158.4, 152.1, 149.7, 148.6, 142.9, 132.0, 119.5, 105.6, 99.0, 55.78, 55.70, 32.3, 31.8, 23.0; IR (KBr) v: 3404, 1612, 1452, 1128, 1033, 928, 760, 670 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₆H₁₉N₂O₂ [M+H]⁺ 271.1447 found 271.1445.

2-(4-nitrophenyl)- pyrazine (4s): general procedure **2**C has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.5$ (Hexane/EtOAc, 9:1); yield 56 % (224 mg); light yellow solid; mp 178-179 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.12$, (d, J = 1.16 Hz, 1H), 8.71 (s, 1H), 8.63 (d, J = 2.36 Hz, 1H), 8.37 (d, J = 8.85 Hz, 2H), 8.22 (d, J = 8.90 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 150.5$, 148.9, 144.7, 144.6, 142.7, 142.4, 128.0, 124.4; IR (KBr) v: 3403, 2402, 1632, 1401, 1022, 761, 669 cm⁻¹; ESIMS m/z [M+H]⁺: 202.2.

2-methyl-3-phenylpyrazine (4t):⁷ general procedure **2**C has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.6$ (Hexane/EtOAc, 9:1); yield 70% (190 mg); white solid; mp 36-37 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.48$ (dd, J = 2.49, 0.59 Hz, 1H), 8.44 (d, J = 2.47, 1H), 7.56-7.59 (m, 2H), 7.42-7.51 (m, 3H), 2.64 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 154.2$, 152.0, 142.3, 141.7, 138.8, 129.1, 128.9, 128.6, 23.3; IR (KBr) v: 3402, 1634, 1399, 927, 760, 669 cm⁻¹; ESIMS m/z [M+H]⁺:171.2.

2-(2-methoxyphenyl)-6-methylpyrazine and 2-(2-methoxyphenyl)-5-methylpyrazine (4i): general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 81% (324 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.00$ (d, J = 1.49 Hz, 1H), 8.91 (s, 1H), 7.80-7.77 (m, 2H), 7.42-7.38 (m, 2H), 7.11-7.07(m, 2H); 7.02-7.00 (m, 2H); 3.87 (s, 3H); 2.61(s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 160.25$, 160.23, 153.2, 152.1, 151.5, 149.6, 143.8, 142.7, 141.0, 139.1, 138.1, 137.9, 130.0, 119.3, 118.9, 115.6, 115.5, 112.3, 111.9, 55.4, 21.7, 21.2; IR (KBr) v: 3436, 3019, 2401, 1680, 1470, 1216, 1039, 759 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₂H₁₃N₂O [M+H]⁺ 201.1028 found 201.1024.

2-(4-fluorophenyl)-6-methylpyrazine and 2-(4-fluorophenyl)-5-methylpyrazine (4e): general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 77% (290 mg); yellow oil; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.88$ (d, J = 1.35 Hz, 1H), 8.80 (s, 1H), 8.51 (d, J = 0.98 Hz, 1H), 8.41 (s, 1H), 7.79-7.7 (m, 4H), 7.49-7.43 (m, 2H) 7.17-7.12 (m, 2H), 2.63 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 162.1, 153.4, 152.6, 150.3, 148.5, 143.9, 143.2, 140.8, 138.8, 130.5, 130.4, 122.4, 121.1, 116.6, 116.4, 116.2, 114.0, 113.8, 113.7, 113.5, 21.6, 21.2; IR (KBr) v: 3432, 3019, 2400, 1633, 1404, 1215, 757 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₁H₁₀FN₂ [M+H]⁺ 189.0828 found 189.0835.$

3.2. Spectral data of Quinoxalines

2-Phenylquinoxaline (5a):¹ general procedure 2A/2B/2C has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.50$ (Hexane/EtOAc, 8:2); yield 76% (314 mg); light yellow solid; mp 80-81 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.33$ (s, 1H), 8.21–8.11 (m, 4H), 7.80–7.73 (m, 2H), 7.59–7.51 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.9$, 143.3, 142.3, 141.6, 136.8, 130.3, 129.6, 129.5, 129.1, 127.5; IR (KBr) v: 3437, 3019, 1634, 1409, 1050, 759 cm⁻¹; ESIMS m/z [M+H]⁺: 207.3.

2-(p-Tolyl)-quinoxaline (5b):¹ general procedure 2A/2B has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.55$ (Hexane/EtOAc, 8:2); yield 78 % (343 mg); light yellow solid; mp 89-90 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.29$ (s, 1H), 8.13–8.08 (m, 4H), 7.75 (m, 2H), 7.35 (d, J = 7.9 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.8$, 143.3, 142.3, 141.4, 140.5, 134.0, 130.1, 129.9, 129.5, 129.2, 129.1, 127.4, 21.4; IR (KBr) v: 3435, 3019, 1636, 1421, 1215, 1048, 928, 757, 669 cm⁻¹; ESIMS m/z [M+H]⁺: 221.3.

2-(4-ethylphenyl)-quinoxaline (5e):³ general procedure **2A/2B** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.55$ (Hexane/EtOAc, 8:2); yield 77 % (360 mg); pale yellow solid; mp 77-78 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.31$ (s, 1H), 8.15–8.09 (m, 4H), 7.77-7.72 (m, 2H), 7.40 (d, J = 8.20 Hz, 2H), 2.75 (q, J = 15.01, 7.47 Hz, 2H) 1.30 (t, J = 7.52 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.9$, 146.8, 143.3, 142.3, 141.4, 134.2, 130.2, 129.5, 129.3, 129.0, 128.7, 127.5, 28.7, 15.4; IR (KBr) v: 3434, 3019, 2400, 1637, 1422, 1216, 757 cm⁻¹; ESIMS m/z [M+H]⁺: 235.3.

2-(4-tert-Butyl-phenyl)-quinoxaline (5d):⁸ general procedure **2A/2C** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 79% (414 mg); colorless liquid; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.31$ (s, 1H), 8.16-8.10 (m, 4H), 7.79-7.71 (m,2H), 7.60 -7.58(m,2H),1.39 (s, 9H)); ¹³C NMR (75 MHz, CDCl₃) $\delta = 153.6$, 151.9, 143.4, 142.4, 141.5, 134.1, 130.2, 129.6, 129.2, 127.4, 126.2, 34.9, 31.3; IR (KBr) v: 3437, 3021, 1621, 1426, 1215, 1052, 759 cm⁻¹; ESIMS m/z [M+H]⁺: 263.2.

2-m-tolylquinoxalin (5f):³ general procedure **2A** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.55$ (Hexane/EtOAc, 8:2); yield 74% (329 mg); colorless solid; mp 83-84 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.31$ (s, 1H), 8.17-8.11 (m, 2H), 8.02 (s, 1H), 7.98-7.96

(m, 1H), 7.81-7.33 (m, 2H) 7.46 (T, J = 7.63 Hz, 1H) 7.35-7.33 (m, 1H) 2.50 (S, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 152.1$, 143.5, 142.3, 141.5, 138.9, 136.7, 131.0, 130.2, 129.6, 129.4, 129.1, 129.0, 128.2, 124.7, 21.5; IR (KBr) v: 3436, 1637, 1403, 1215, 758 cm⁻¹; ESIMS m/z [M+H]⁺: 221.3.

2-(4-Methoxyphenyl)-quinoxaline (5c):¹ general procedure **2A/2B/2C** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/ EtOAc, 8:2); yield 80% (378 mg); colorless solid; mp 104-105 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.16$ (s, 1H), 8.05–8.03 (m, 2H), 7.99-7.96 (m, 2H), 7.64-7.57 (m, 2H), 6.95-6.93(m, 2H), 3.76 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 161.4$, 151.4, 143.0, 142.3, 141.2, 130.1, 129.4, 129.3, 129.07, 129.03, 128.9, 114.5, 55.4; IR (KBr) v: 3440, 3020, 1613, 1423, 1216, 759 cm⁻¹; ESIMS m/z [M+H]⁺: 237.3.

6,7-dimethyl-2-phenylquinoxaline (5m):⁹ general procedure **2B** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.55$ (Hexane/ EtOAc, 8:2); yield 79% (354 mg); Yellow solid; Mp 120-121 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.22$ (s, 1H), 8.17-8.15 (m, 2H), 7.90 (s, 1H), 7.85 (s, 1H), 7.57-7.47 (m, 3H) 2.51 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.0$, 142.5, 141.3, 140.8, 140.7, 140.2, 137.2, 129.9, 129.1, 128.8, 128.2, 127.5, 20.49, 20.46; IR (KBr) v: 3416, 3020, 1622, 1393, 1215, 759 cm⁻¹; ESIMS m/z [M+H]⁺: 235.3.

2-(2,4-dimethoxyphenyl)-6,7-dimethylquinoxaline (5n): general procedure **2**C has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.4$ (Hexane/EtOAc, 8:2); yield 88 % (517 mg); white solid ; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.23$ (s, 1H), 7.89-7.86 (m, 2H), 7.82 (s, 1H), 6.68 (dd, J = 2.38, 8.60 Hz, 1H), 6.59 (d, J = 2.32 Hz, 1H), 3.887 (s, 3H), 3.886 (s, 3H), 2.49 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 162.5,158.8,151.2,146.5, 141.8, 140.2, 139.9, 139.5, 132.7,$ 128.6, 128.2, 120.0, 106.0, 99.6, 55.8, 55.7, 20.5, 20.4; IR (KBr) v: 3407, 2924, 2852, 1608,1282, 1209, 1030, 871, 831 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₈H₁₉N₂O₂ [M + H]⁺ 295.1447found 295.1445.

Phenyl(2-phenylquinoxalin-6-yl)methanone (5j):³ general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/ EtOAc, 9:1); yield 69% (427 mg); colorless solid; mp 131-132 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.42$ (s,1H), 8.50 (s, 1H), 8.27-8.24 (m, 4H), 7.91-7.89 (m, 2H), 7.65-7.52 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 195.8$, 153.5, 144.5, 144.3, 140.7, 138.0, 137.2, 136.4, 133.0, 132.4, 130.9, 130.4, 130.3, 130.2, 129.4, 128.6, 127.6; IR (KBr) v: 3406, 2958, 1651, 1319, 1309, 840, 695 cm⁻¹; ESIMS m/z [M+H]⁺: 311.3.

Phenyl (2-p-tolylquinoxalin-6-yl)methanone (5k): general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/ EtOAc, 9:1); yield 76% (492 mg); light yellow solid; mp 156-157 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.38$ (s, 1H), 8.47 (s, 1H), 8.24 (s, 2H), 8.15 (d, J = 8.02 Hz, 2H), 7.90 (d, J = 7.36 Hz, 2H), 7.64 (t, J = 7.35 Hz, 1H), 7.53 (t, J = 7.49 Hz, 2H), 7.39 (d, J = 7.98 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 195.6, 153.2, 144.3, 144.2, 141.2, 140.4, 137.6, 137.1, 133.4, 132.8, 132.3, 130.1, 130.0, 129.9, 128.5, 127.6, 21.5; IR (KBr) v: 3436, 3019, 1656, 1421, 1215, 1048, 757 cm⁻¹; HRMS (ESI-TOF) Calcd for C₂₂H₁₇N₂O [M+H]⁺ 325.1341 found 325.1352.$

2-(4-tert-Butyl-phenyl)-quinoxalin-6-yl]-phenyl-methanone (5l): general procedure **2A** has been used; Column chromatography (Hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 73% (534 mg); colorless solid; mp 179-180 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.39$ (s, 1H), 8.485-8.483 (m, 1H), 8.254-8.252 (m, 2H), 8.20-8.17 (m, 2H), 7.91-7.89 (m, 2H), 7.64-7.51 (m, 4H), 7.55-7.51(m, 2H), 1.4 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 195.7$, 154.4, 153.4, 144.5, 144.3, 140.5, 137.7, 137.3, 133.5, 132.9, 132.4, 130.27, 130.24, 130.1, 128.6, 127.6, 126.4, 35.0, 31.3; IR (KBr) v: 3435, 3019, 1654, 1404, 1215, 757 cm⁻¹; HRMS (ESI-TOF) Calcd for C₂₅H₂₃N₂O [M+H]⁺ 367.1810 found 367.1807.

5-Methyl-2-p-tolylquinoxaline (5i): general procedure **2A/2B** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 40% (187 mg); light yellow solid; mp 95-96 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.30$ (s, 1H), 8.16 (d, J = 7.86 Hz, 2H), 7.92 (t, J = 5.16 Hz, 1H), 7.60 (d, J = 5.04 Hz, 2H), 7.36 (d, J = 7.66 Hz, 2H), 2.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 150.2$, 142.5, 141.4, 141.3, 140.3, 137.8, 134.3, 130.1, 129.8, 129.0, 127.3, 126.8, 21.4, 17.1; IR (KBr) v: 3437, 3020, 1631, 1414, 1215, 1050, 758 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₆H₁₅N₂ [M+H]⁺ 235.1235 found 235.1234.

8-Methyl-2-p-tolylquinoxaline (5i): general procedure **2A/2B** has been used; Column chromatography (Hexane/ EtOAc): $R_f = 0.45$ (Hexane/EtOAc, 9:1); yield 36% (168 mg); light yellow solid; mp 94-95 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.31$ (s, 1H), 8.10 (d, J = 7.97 Hz, 2H), 7.83 (d, J = 8.37 Hz, 1H), 7.65 (t, J = 7.37 Hz, 1H), 7.56 (d, J = 6.89 Hz, 1H), 7.37(d, J = 7.88 Hz, 2H), 2.82 (s, 3H), 2.45 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.4$, 142.5, 141.9, 140.6, 140.3, 137.3, 134.1, 129.98, 129.91, 129.4, 127.48, 127.43, 21.4, 17.3; IR (KBr) v: 3437, 3022, 1632, 1414, 1216, 1050, 759 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₆H₁₅N₂ [M+H]⁺ 235.1235 found 235.1234.

6-Methyl-2-p-tolylquinoxaline and 7-Methyl-2-p-tolylquinoxaline (5g):¹¹ general procedure **2A** has been used; Column chromatography (hexane/EtOAc): $R_f = 0.60$ (Hexane/ EtOAc, 9:1); yield 78% (368 mg); Brown solid; mp 102-103 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.24$ (d, J = 9.82 Hz, 1H), 8.09-8.06 (m, 2H), 8.02-7.96 (m, 1H), 7.88 (d, J = 17.86 Hz, 1H), 7.60-7.53 (m, 1H), 7.31 (d, J = 7.94 Hz, 2H), 2.59 (s, 3H), 2.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.6$, 151.0, 143.1, 142.3, 141.4, 140.7, 140.6, 140.2, 140.1, 139.9, 139.7, 134.1, 132.4, 131.5, 129.8, 129.0, 128.5, 128.3, 127.9, 127.3, 127.2, 21.8, 21.7, 21.3; IR (KBr) v: 3437, 3021, 1634, 1414, 1215, 1050, 759 cm⁻¹; ESIMS m/z [M+H]⁺: 235.3.

2-(4-ethylphenyl)-6-methylquinoxaline and 2-(4-ethylphenyl)-7-methylquinoxaline (5h): general procedure **2A** has been used; Column chromatography (hexane/EtOAc): $R_f = 0.40$ (Hexane/EtOAc, 9:1); yield 85% (421 mg); light yellow solid; mp 95-96 °C; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.24$ (d, J = 9.81 Hz, 1H), 8.11-8.09 (m, 2H), 8.03-7.97 (m, 1H), 7.89 (d, J = 17.86 Hz, 1H), 7.60-7.53 (m, 1H), 7.38 (d, J = 7.94 Hz, 2H), 2.74 (q, J = 15.08 Hz, 2H), 2.60 (s, 3H), 1.29 (t, J = 7.62 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) $\delta = 151.8$, 151.1, 146.6, 146.5, 143.2, 142.4, 141.5, 140.7, 140.6, 139.9, 139.8, 134.4, 132.4, 131.6, 129.0, 128.6, 128.5, 128.4, 127.9, 127.5, 127.4, 28.7, 21.84, 21.80, 15.4; IR (KBr) v: 3437, 3021, 1621, 1426, 1215, 1052, 759 cm⁻¹; HRMS (ESI-TOF) Calcd for C₁₇H₁₇N₂ [M+H]⁺ 249.1392 found 249.1390.

4. References

- 1 P. P. Singh, S. K. Aithagani, M. Yadav, V. P. Singh and R. A. Vishwakarma, J. Org. Chem., 2013, **78**, 2639-2648.
- 2 L. Boully, M. Darabantu, A. Turck and N. Ple, J. Heterocycl. Chem., 2005, 42, 1423.
- 3 S. Paul and B. Basu, *Tetrahedron Lett.*, 2011, **52**, 6597-6602.
- 4 T. Fukunaga and R. W. Begland, J. Org. Chem., 1984, 49, 813-821.
- 5 S.-J. Lou, D.-Q. Xu, A.-B. Xia, Y.-F. Wang, Y.-K. Liu, X.-H. Du and Z.-Y. Xu, *Chem. Commun.*, 2013, **49**, 6218-6220.
- 6 A. Kodimuthali, B. C. Chary, P. L. Prasunamba and M. Pal, *Tetrahedron Lett.*, 2009, **50**, 1618-1621.
- 7 J. U. Jeong, X. Dong, A. Rahman and R. W. Marquis, *Tetrahedron Lett.*, 2010, **51**, 974-976.
- 8 S. Shi, T. Wang, W. Yang, M. Rudolph and A. S. K. Hashmi, *Chem.-Eur. J.*, 2013, **19**, 6576-6580.
- 9 C. Zhang, Z. Xu, L. Zhang and N. Jiao, *Tetrahedron*, 2012, **68**, 5258-5262.
- 10 C. S. Cho, W. X. Ren and S. C. Shim, Tetrahedron Lett., 2007, 48, 4665-4667.
- 11 S. Singh, P. Mishra, M. Srivastava, S. B. Singh, J. Singh and K. P. Tiwari, *Green. Chem. Lett. Rev.*, 2012, 5, 587-593.

ppm

2.563 2.2663 2.2667 2.2660 2.260 1.1.94 1.1.94 1.1.94 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.88 1.1.78 1.1.

-----0.0001

