Supporting Information

Synthesis and Structural Characterization of a C4 Cumulene including 4-Pyridylidene Units, and Its Reactivity towards Ammonia-Borane

Di Wu, Yongxin Li, Rakesh Ganguly, Rei Kinjo*

Division of Chemistry and Biological Chemistry
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang link Singapore 637371 (Singapore)

Contents

1. Synthesis and spectroscopic data
2. Crystal structural parameters
3. DFT calculation results
4. References

1. Synthesis and spectroscopic data

General considerations: All reactions were performed under an atmosphere of argon or nitrogen by using standard Schlenk or dry box techniques; solvents were dried over Na metal, K metal or CaH_{2}. Reagents were of analytical grade, obtained from commercial suppliers and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained with a Bruker AV 300, Bruker AVIII 400 MHz BBFO1, Bruker AVIII 400MHz BBFO2, JEOL ECA400 SL spectrometers at 298 K unless otherwise stated. NMR multiplicities are abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet doublet. Coupling constants J are given in Hz. Electrospray ionization (ESI) and DART-TOF mass spectra were obtained at the Mass Spectrometry Laboratory at the Division of Chemistry and Biological Chemistry, Nanyang Technological University. Melting points were measured with OpticMelt Stanford Research System.

Synthesis of Compound 2: A solution of 4-chloro-3-mesitylpyridine 1 ($1.00 \mathrm{~g}, 4.32$ mmol) in THF (10 mL) was added into $4 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ in 1,4-dioxane. After the mixture was stirred for 10 min , the solvent was removed under vacuum. NaI (4.00 g , $26.68 \mathrm{mmol})$ and $\mathrm{MeCN}(30 \mathrm{~mL})$ were added to the residue, and then heated at $125{ }^{\circ} \mathrm{C}$ for 48 h . After cooling to r.t., an aq solution of $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ and $5 \% \mathrm{NaHSO}_{3}$ $(10 \mathrm{~mL})$ were added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, and all volatiles were removed under vacuum. The crude product was purified by flash column chromatography with Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(=1 / 1)$, and 2 was obtained as a red solid (55%). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.93(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.4,21.3,112.6,128.5$, 134.1, 136.0, 137.2, 138.4, 142.7, 148.3, 149.6; M.p.: $83{ }^{\circ} \mathrm{C}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NI}$: $324.0249[(M+H)]^{+}$; found: 324.0240.

Synthesis of Compound 3: A THF (30 mL) solution of $2(2.00 \mathrm{~g}, 6.19 \mathrm{mmol})$, trimethylsilyl acetylene ($1.67 \mathrm{~mL}, 12.47 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.72 \mathrm{~g}, 0.62 \mathrm{mmol})$, and $\mathrm{CuI}(0.35 \mathrm{~g}, 1.86 \mathrm{mmol})$ in dry triethylamine (30 mL) was stirred at $90^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, filtered through Celite and the solvents were evaporated under vacuum. The crude product was purified by flash column chromatography with Hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(=3 / 1)$, and $\mathbf{3}$ was obtained as a yellow oil (53%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.01$ ($\mathrm{s}, 9 \mathrm{H}$), 1.97 ($\mathrm{s}, 6 \mathrm{H}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}$), $6.93(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.6,20.4,21.2,101.2,102.9,125.2,128.1,131.4,133.7$, 136.4, 137.6, 139.3, 148.2, 150.5; HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NSi}: 294.1678$ $[(M+H)]^{+}$; found: 294.1674.

Synthesis of Compound 5: A THF solution (4 mL) of $\mathbf{3}$ ($0.78 \mathrm{~g}, 2.66 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.92 \mathrm{~g}, 6.66 \mathrm{mmol}$), and methanol (8 mL) was stirred at room temperature for 8 h . The mixture was washed with water, and then extracted with dichloromethane. The combined organic layers were dried over MgSO_{4}, and evaporated under vacuum to afford a yellow oil of 4 , which was used for next step without further purification. A toluene (20 mL) solution of $\mathbf{4}, 2(0.55 \mathrm{~g}, 1.70 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.20 \mathrm{~g}, 0.17 \mathrm{mmol})$, CuI ($0.06 \mathrm{~g}, 0.30 \mathrm{mmol}$), and diisopropylamine (8 mL), was stirred at $150{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, and filtered through Celite, and the solvent was evaporated in vacuo. The crude product was purified by flash column chromatography with Hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(=1 / 2)$ followed by recrystallization from chloroform/hexanes solution, and $\mathbf{5}$ was obtained as a colorless crystal (42%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.78$ ($\mathrm{s}, 12 \mathrm{H}$), $2.36(\mathrm{~s}, 6 \mathrm{H}), 6.88(\mathrm{~s}, 4$ H), 7.18 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.35(\mathrm{~s}, 2 \mathrm{H}), 8.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.3,21.3,91.6,125.9,128.3,130.4,133.3,136.3,137.6,138.2$, 148.1, 150.9; M.p.: $178{ }^{\circ} \mathrm{C}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2}$: 417.2331 $[(M+H)]^{+}$; found: 417.2334.

Synthesis of Compound 6: Methyl trifluoromethanesulfonate ($1.3 \mathrm{~mL}, 9.60 \mathrm{mmol}$) was added into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (50 ml$)$ of $5(2.00 \mathrm{~g}, 4.80 \mathrm{mmol})$, and the reaction mixture was stirred at room temperature for 12 h . All volatiles were removed under vacuum, and the resulting solid was washed with diethyl ether and dichloromethane to afford a yellow solid (80%); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 1.73$ ($\mathrm{s}, 12 \mathrm{H}$), 2.37 ($\mathrm{s}, 6$ H), 4.27 ($\mathrm{s}, 6 \mathrm{H}$), $6.96(\mathrm{~s}, 4 \mathrm{H}), 8.03(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~s}, 2 \mathrm{H}), 8.62(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 20.1,21.3,49.5,96.1,129.6,129.7,131.4$, 136.9, 138.5, 140.7, 143.5, 145.2, 147.0, *Carbon for CF_{3} could not be observed, presumably due to overlap with other peaks; ${ }^{19} \mathrm{~F}$ NMR $\left(225.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta-78.5$; M.p.: $157{ }^{\circ} \mathrm{C}$ (Decomposed); HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}: 223.1361[(M / 2)]^{+}$; found: 223.1339.

Synthesis of Compound 7: THF (20 mL) was added at $-78{ }^{\circ} \mathrm{C}$ to a mixture of $\mathbf{6}$ $(0.30 \mathrm{~g}, 0.40 \mathrm{mmol})$ and $\mathrm{KC}_{8}(0.12 \mathrm{~g}, 0.89 \mathrm{mmol})$. The reaction mixture was allowed to warm to room temperature, and stirred for 2 h . After the filtration, solvent was evaporated under vacuum. The residue was extracted with toluene (50 mL), and after evaporating the solvent under vacuum, 7 was obtained as a black solid (60%); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{8}$-THF) $\delta 2.20(\mathrm{~s}, 18 \mathrm{H}), 2.81(\mathrm{~s}, 6 \mathrm{H}), 4.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.49(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{dd}, J=1.8 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{8}$-THF) $\delta 20.1,21.0,40.5,104.6,113.2,123.9,128.0,128.1,129.7$, 130.0, 135.7, 136.1, 137.5; M.p.: $155{ }^{\circ} \mathrm{C}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2}$:
$447.2800[(M+H)]^{+}$; found: 447.2823.

Synthesis of Compound $\mathbf{8 (H)}$: THF (3 mL) was added to a mixture of $7(28 \mathrm{mg}$, $0.062 \mathrm{mmol})$ and ammonia borane ($4.0 \mathrm{mg}, 0.13 \mathrm{mmol}$). The solution was then stirred at $60{ }^{\circ} \mathrm{C}$ for 6 h . After the solvent was removed under vacuum, the residue was recrystallized from THF, and $\mathbf{8 (H)}$ was obtained as a black solid (50%); ${ }^{1} \mathrm{H}$ NMR (400 MHz, d d_{8}-THF) $\delta 2.17$ ($\mathrm{s}, 12 \mathrm{H}$) 2.24 ($\mathrm{s}, 6 \mathrm{H}$), 2.89 ($\mathrm{s}, 6 \mathrm{H}$), 4.47 ($\mathrm{s}, 2 \mathrm{H}$), 5.27 (d, $J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~s}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}\right) \delta$ 19.6, 20.9, 40.2, 101.9, 107.7, 124.4, 126.1, 127.9, 129.7, 131.2, 135.5, 135.8, 137.6; M.p.: $182^{\circ} \mathrm{C}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{Na}: 471.2776[(M+\mathrm{Na})]^{+}$; found: 471.2799.

Synthesis of Compound 8(D): Reaction was performed with same condition for the synthesis of $\mathbf{8}(\mathbf{H})$ using $\mathrm{D}_{3} \mathrm{NBD}_{3}$ instead of $\mathrm{H}_{3} \mathrm{NBH}_{3}$. A pure $\mathbf{8}(\mathbf{D})$ was obtained by recrystallization from THF in 47% yield; HRMS (ESI): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{D}_{2} \mathrm{~N}_{2}$: $451.3082[(M+H)]^{+}$; found: 451.3062.
${ }^{1} \mathrm{H}^{2}$ NMR (d_{8}-THF) spectrum of compounds $8(\mathrm{H}) *$:

* a peak at 4.47 ppm corresponds to the protons at the central $s p^{2}$-carbons of $\mathbf{8}(\mathbf{H})$.

${ }^{1}$ H NMR (d_{8}-THF) spectrum of compounds $8(D) *:$
* No peak was observed at 4.47 ppm .

2. Crystal structural parameters of Compounds 5, 7 and 8

X-ray data collection and structural refinement. Intensity data for compounds 5, 7 and $\mathbf{8}$ were collected using a Bruker APEX II diffractometer. The crystals of 5, $\mathbf{7}$ and $\mathbf{8}$ were measured at $103(2) \mathrm{K}$. The structure was solved by direct phase determination (SHELXS-97) and refined for all data by full-matrix least squares methods on F^{2}. ${ }^{[S 1]}$ All non-hydrogen atoms were subjected to anisotropic refinement. The hydrogen atoms were generated geometrically and allowed to ride in their respective parent atoms; they were assigned appropriate isotropic thermal parameters and included in the structure-factor calculations. CCDC: 1016579-1016581 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data request/cif.

Table S1. Summary of Data Collection and Structure Refinement.

	5	7	8
Formula	$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2}$	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2}$
Fw	416.54	446.61	448.63
cryst syst	monoclinic	trigonal	trigonal
space group	P121/n 1	$R-3$	$R-3$
Size (mm^{3})	$0.280 \times 0.340 \times 0.400$	$0.190 \times 0.200 \times 0.220$	$0.400 \times 0.410 \times 0.420$
T, K	103(2)	103(2)	103(2)
$a, ~ \AA$	10.9355(13)	23.567(3)	23.7045(15)
b, \AA	18.231(2)	23.567(3)	23.7045(15)
c, \AA	12.2805(15)	12.0950(14)	11.9100(8)
α, deg	90	90	90
β, deg	$109.896(4)^{\circ}$	90	90
γ, deg	90	120	120
$\mathrm{V}, \mathrm{A}^{3}$	2302.2(5)	5817.6(17)	5795.7(8)
Z	4	9	9
$d_{\text {calcd }} \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.202	1.147	1.157
μ, mm^{-1}	0.070	0.066	0.067
Refl collected	28904	9257	24989
$T_{\text {min }} / T_{\text {max }}$	0.867	0.789	0.926
$\mathrm{N}_{\text {measd }}$	5735	3114	3935
[$\mathrm{R}_{\text {int }}$]	0.0450	0.0641	0.0808
$R[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	0.0457	0.0875	0.0635
$R_{w}[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$	0.1322	0.3040	0.1720
GOF	1.035	1.074	1.022
Largest diff peak/hole $\left[\mathrm{e} \cdot \AA^{-3}\right]$	0.306/-0.223	0.371/-0.398	0.379 /-0.355

3. DFT calculation results

Gaussian 09 was used for all density functional theory (DFT) calculations. ${ }^{[S 2]}$ Geometry optimization, frequency calculations, and Natural bond order (NBO) analysis on compound 7 were performed at the $\mathrm{M} 05-2 \mathrm{X} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory.

Table S2 Optimized structure of 7 (atom, $\mathrm{x}-, \mathrm{y}-\mathrm{z}$ - positions in \AA)

C	4.165933	4.636439	-0.13996
N	3.204047	3.576983	0.085042
C	1.849751	3.846793	0.04542
C	3.606279	2.256391	0.038332
C	0.920359	2.875832	0.022358
C	2.742536	1.222635	0.015002
C	1.301696	1.473564	0.014353
C	3.233178	-0.18246	0.003094
C	0.41071	0.471535	0.005576
C	3.455273	-0.85094	1.211521
C	3.398887	-0.85149	-1.21416
C	-0.41083	-0.47192	-0.00421
C	3.213368	-0.15229	2.523743
C	3.88179	-2.17527	1.183839
C	3.826034	-2.17569	-1.20572
C	3.098711	-0.15239	-2.5137
C	-1.30192	-1.47385	-0.01371
C	4.080043	-2.85049	-0.01597
C	-0.92079	-2.87617	-0.02205
C	-2.74273	-1.22271	-0.015
C	4.577353	-4.27261	-0.02737
C	-1.85032	-3.84698	-0.04583
C	-3.60662	-2.25632	-0.03904
C	-3.23313	0.182478	-0.00301
N	-3.20456	-3.57696	-0.08591
C	-3.4531	0.851731	-1.2114
C	-3.40066	0.850815	1.214374
C	-4.16671	-4.63634	0.138302
C	-3.2092	0.153782	-2.52362
C	-3.87936	2.176137	-1.18361
C	-3.82749	2.17511	1.206028
C	-3.10273	0.150867	2.513977
C	-4.0794	2.850685	0.016275
C	-4.5764	4.272916	0.027755
H	5.111694	4.369492	0.327707
H	3.80453	5.553654	0.321052

H	4.335309	4.817418	-1.20523
H	1.587111	4.895007	0.049783
H	4.675285	2.092288	0.037485
H	-0.12842	3.134426	0.016871
H	2.219367	0.296349	2.535876
H	3.935865	0.649546	2.682091
H	3.291395	-0.85487	3.351603
H	4.053423	-2.69341	2.120283
H	3.954529	-2.69388	-2.14901
H	3.792497	0.67164	-2.68511
H	2.091579	0.265822	-2.49354
H	3.173232	-0.84666	-3.34879
H	0.127939	-3.13493	-0.01623
H	4.218369	-4.80532	-0.90707
H	4.246342	-4.81	0.860488
H	5.668716	-4.298	-0.04458
H	-1.58784	-4.89523	-0.05044
H	-4.6756	-2.09205	-0.03871
H	-5.1122	-4.36912	-0.32975
H	-3.80522	-5.55347	-0.3228
H	-4.33663	-4.81761	1.203432
H	-2.21495	-0.29432	-2.53466
H	-3.93108	-0.64837	-2.68319
H	-3.28654	0.856673	-3.35128
H	-4.04936	2.694868	-2.12003
H	-3.95739	2.692772	2.149418
H	-3.79737	-0.67272	2.684096
H	-2.0959	-0.26811	2.494969
H	-3.17784	0.844807	3.349293
H	-4.21782	4.805329	0.907806
H	-4.24474	4.810456	-0.85977
H	-5.66777	4.298537	0.044331

Table S3. The NPA charges of 7 calculated at M05-2X/6-311G(d,p) level of theory.

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
C	1	-0.35001	1.99931	4.33685	0.01385	6.35001
N	2	-0.43585	1.99925	5.42417	0.01243	7.43585
C	3	0.01339	1.99910	3.96505	0.02245	5.98661
C	4	0.02750	1.99893	3.95101	0.02256	5.97250
C	5	-0.23794	1.99908	4.22175	0.01711	6.23794
C	6	-0.07948	1.99896	4.06043	0.02008	6.07948
C	7	-0.14466	1.99884	4.12990	0.01592	6.14466
C	8	-0.06878	1.99882	4.05301	0.01696	6.06878
C	9	-0.04206	1.99862	4.02872	0.01472	6.04206
C	10	0.02111	1.99893	3.96617	0.01378	5.97889
C	11	0.02248	1.99893	3.96479	0.01379	5.97752
C	12	-0.04206	1.99862	4.02872	0.01472	6.04206
C	13	-0.60882	1.99928	4.60010	0.00945	6.60882
C	14	-0.23687	1.99895	4.22196	0.01596	6.23687
C	15	-0.23695	1.99895	4.22204	0.01596	6.23695
C	16	-0.60947	1.99928	4.60077	0.00942	6.60947
C	17	-0.14467	1.99884	4.12990	0.01592	6.14467
C	18	-0.00636	1.99902	3.99359	0.01376	6.00636
C	19	-0.23795	1.99908	4.22176	0.01711	6.23795
C	20	-0.07947	1.99896	4.06042	0.02008	6.07947
C	21	-0.60127	1.99928	4.59220	0.00980	6.60127
C	22	0.01340	1.99910	3.96505	0.02245	5.98660
C	23	0.02749	1.99893	3.95102	0.02256	5.97251
C	24	-0.06878	1.99882	4.05300	0.01696	6.06878
N	25	-0.43584	1.99925	5.42417	0.01243	7.43584
C	26	0.02114	1.99893	3.96614	0.01379	5.97886
C	27	0.02246	1.99893	3.96482	0.01379	5.97754
C	28	-0.35001	1.99931	4.33685	0.01385	6.35001
C	29	-0.60884	1.99928	4.60012	0.00945	6.60884
C	30	-0.23688	1.99895	4.22197	0.01596	6.23688
C	31	-0.23695	1.99895	4.22204	0.01596	6.23695
C	32	-0.60945	1.99928	4.60075	0.00942	6.60945
C	33	-0.00636	1.99902	3.99359	0.01376	6.00636
C	34	-0.60127	1.99928	4.59220	0.00980	6.60127
H	35	0.20007	0.00000	0.79842	0.00151	0.79993
H	36	0.19940	0.00000	0.79896	0.00164	0.80060
H	37	0.18591	0.00000	0.81104	0.00306	0.81409
H	38	0.20436	0.00000	0.79367	0.00197	0.79564

H	39	0.21138	0.00000	0.78596	0.00266	0.78862
H	40	0.23289	0.00000	0.76447	0.00263	0.76711
H	41	0.22961	0.00000	0.76836	0.00203	0.77039
H	42	0.21381	0.00000	0.78433	0.00186	0.78619
H	43	0.20515	0.00000	0.79320	0.00165	0.79485
H	44	0.20578	0.00000	0.79070	0.00352	0.79422
H	45	0.20588	0.00000	0.79059	0.00353	0.79412
H	46	0.21373	0.00000	0.78429	0.00198	0.78627
H	47	0.23075	0.00000	0.76724	0.00201	0.76925
H	48	0.20503	0.00000	0.79333	0.00164	0.79497
H	49	0.23289	0.00000	0.76448	0.00263	0.76711
H	50	0.20816	0.00000	0.79008	0.00176	0.79184
H	51	0.20828	0.00000	0.78995	0.00177	0.79172
H	52	0.21386	0.00000	0.78418	0.00196	0.78614
H	53	0.20436	0.00000	0.79367	0.00197	0.79564
H	54	0.21138	0.00000	0.78596	0.00266	0.78862
H	55	0.20007	0.00000	0.79842	0.00151	0.79993
H	56	0.19940	0.00000	0.79896	0.00164	0.80060
H	57	0.18591	0.00000	0.81104	0.00306	0.81409
H	58	0.22963	0.00000	0.76834	0.00203	0.77037
H	59	0.21383	0.00000	0.78431	0.00186	0.78617
H	60	0.20515	0.00000	0.79320	0.00165	0.79485
H	61	0.20578	0.00000	0.79070	0.00352	0.79422
H	62	0.20588	0.00000	0.79059	0.00353	0.79412
H	63	0.21372	0.00000	0.78431	0.00198	0.78628
H	64	0.23073	0.00000	0.76727	0.00200	0.76927
H	65	0.20504	0.00000	0.79332	0.00164	0.79496
H	66	0.20817	0.00000	0.79007	0.00176	0.79183
H	67	0.20827	0.00000	0.78996	0.00177	0.79173
H	68	0.21386	0.00000	0.78418	0.00196	0.78614

[^0]Geometry optimization and frequency calculations on $\mathbf{A B}$ performed at the M05-2X/6-311G(d,p) level of theory.

Table S4 Optimized structure of AB (atom, $x-, y-$, $z-$ positions in \AA)

N	-0.0001	-0.73233	0
H	-0.94775	-1.09018	0
H	0.474155	-1.08877	0.820998
H	0.474155	-1.08877	-0.821
B	-0.0001	0.933961	0
H	1.167626	1.240517	0
H	-0.5835	1.241863	1.011082
H	-0.5835	1.241863	-1.01108

Figure Frontier orbitals of AB.

4. References

[S1] Bruker AXS SHELXTL, Madison, WI; SHELX-97G. M. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122, SHELX-2013, http://shelx.uni-ac. gwdg.de/SHELX/index.php.
[S2] Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.N.Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R.L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J.Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

[^0]: $\begin{array}{lllllll}* & \text { Total } & 0.00000 & 67.96707 & 171.44256 & 0.59037 & 240.00000\end{array}$

