Bypassing a Highly Unstable Frustrated Lewis Pair: Dihydrogen Cleavage by a Thermally Robust Silylium-Phosphine Adduct

Thomas J. Herrington, Bryan J. Ward, Laurence R. Doyle, Joe McDermott, Andrew J. P. White, Patricia A. Hunt* and Andrew E. Ashley*

Electronic Supplementary Information

Contents

Experimental Details	S 1
X-ray Crystallographic Details	S2
Synthesis of $[tBu_3P-SiiPr_3][B(C_6F_5)_4]$ (1)	S3
General Procedure for H ₂ /D ₂ Activation Experiments	S4
1 H, 13 C{ 1 H}, 31 P{ 1 H}, 29 Si and 19 F NMR data for 1	S5
High Resolution Mass Spectrometry (ES+)	S6
Variable temperature ³¹ P NMR spectroscopy ($-40^{\circ}C \rightarrow 100^{\circ}C$)	S7
D ₂ Activation	S8
³¹ P and ¹ H NMR Spectral Data for H ₂ Heterolysis Experiments	S9
0 Synthesis of $[i Pr_3 Si \cdot ClPh]^+ [B(C_6F_5)_4]^-$ and thermal decomposition experiment	S10
1 Computational Details I (Tables S1, S2; coordinates of intermediates)	S11
2 Computational Details II (QTAIM analysis)	S12
3 References	S13

S1 Experimental Details

For the following syntheses the sensitivity towards protic media meant all manipulations were performed inside an MBraun Labmaster DP glove box under a N₂ atmosphere. Solvents were purchased from Sigma Aldrich: PhCl (Anhydrous) and PhF (Anhydrous) were thoroughly dried and distilled over CaH₂; *n*-hexane was dried via filtering through activated alumina, and stored over a K-mirror. Deuterated PhCl (purchased from ABCR) was dried over CaH₂, vacuum distilled, and finally freeze-thaw degassed. Trisopropylsilane (Sigma-Aldrich, 99%) was used as supplied. tBu_3P^1 and $[Ph_3C][B(C_6F_5)_4]^2$ were prepared according to literature preparations. H₂ (5.5 Research Grade BOC) was dried *via* passage through a WA-500 OMX drying column purchased from Matheson NANOCHEM[®]. D₂ (99.8% Cambridge Isotope Laboratories) was dried *via* passage through a Supelpure-O[®] Oxygen/Moisture Trap. To prevent protonation from glassware, all reactions were performed in Teflon[®] vials (see S11) with NMR experiments recorded in tubes containing Teflon[®] inserts (Norell NMR-100-520D), except those requiring a glass capillary insert for referencing ³¹P NMR spectra (e.g. PPh₃/C₆D₅Cl; Figure 7).

Figure 1. Side and top views of Teflon[®] vials used in the synthesis of 1.

NMR spectra were recorded using Bruker AV-400 (400 MHz) and AV-500 (500 MHz) spectrometers. Chemical shifts, δ , are reported in parts per million (ppm). ¹H and ¹³C{¹H} chemical shifts are given relative to Me₄Si and referenced internally to the residual proton shift of the deuterated solvent employed. ¹⁹F, ³¹P{¹H} and ²⁹Si chemical shifts were referenced externally to CFCl₃, 85% H₃PO_{4(aq)} and Me₄Si, respectively. All samples were prepared inside a glovebox using NMR tubes fitted with J. Youngs valves and contained Teflon[®] inserts. In preparation for quantitative ¹H and ³¹P NMR data, *T₁* measurements were determined using an inverse-recovery experiment ([*t*Bu₃PH]⁺ = 3.2 s and **1** = 10 s). ³¹P NMR spectra were measured using an inverse gated acquisition with a relaxation delay of 70 s and excitation pulse of 30° (to avoid NOE build-up). The sweep width of 400 ppm (190 to –210 ppm) was acquired using 64K data points, resulting in an acquisition time of 0.51 s. Shorter

relaxation delays were found to deliver a higher relative phosphonium to adduct ratio in both ¹H and ³¹P NMR experiments.

High resolution mass spectrometry samples (HRMS ESI) were recorded using a Micromass LCT Premier spectrometer, using PhF solvent.

IR spectra were recorded on a Perkin Elmer GX FT-IR spectrometer (range 4000-400 cm⁻¹, resolution 0.5 cm⁻¹) using KBr pellets.

Elemental analysis was conducted by Mr. S. Boyer of the London Metropolitan University.

S2 X-ray Crystallographic Details

The absence of any disorder in the structure of **1** allowed for confident assignment of the silicon and phosphorus centres. Additionally, when the element identities were deliberately swapped the final *R*-factor rose from 0.0354 to 0.0382, the thermal parameters of the two atoms become more disparate, and a noticeable hole in the final ΔF map of 0.63 eÅ⁻³ was found only *ca*. 0.3 Å away from the silicon site (consistent with the over-assignment of electron density when it was being modelled as phosphorus).

S3 Synthesis of $[tBu_3P-SiiPr_3][B(C_6F_5)_4](1)$

Inside a glove-box, 1.6 equivalents *i*Pr₃SiH (0.110 g, 0.69 mmol) was added to a Teflon[®] vial containing a stirred orange slurry of [Ph₃C][B(C₆F₅)₄] (0.400 g, 0.43 mmol) in PhCl (2 ml), at room temperature. Over 5 minutes the solution decolourised, at which point 1.2 equivalents tBu_3P (0.105 g, 0.52 mmol) was added. After the solution was stirred for a further 5 minutes, addition of hexane (3 ml) led to formation of a white precipitate. The solid was left to settle and the supernatant siphoned off via syringe. To guarantee removal of trace tBu_3P and Ph₃CH, the solid was washed thoroughly with hexane (3 x 10 ml), and dried under vacuum to yield a white powder. Recrystallization of this product from PhCl (-25°C) produced

microcrystalline 1, which was washed with hexane (2 x 3 ml) and dried in vacuo (0.400 g, 89%, 0.39 mmol). Crystals suitable for X-ray crystallography were grown by cooling a concentrated PhF solution, from room temperature to -25°C, within a glove-box freezer. ¹H **NMR** (400.4 MHz, C₆D₅Cl, 25 °C) δ : 1.01 (d, ${}^{3}J_{\text{HH}} = 6$ Hz, 18H, [(CH₃)₂CH)]₃Si), 1.13 (d, ${}^{3}J_{\text{HP}} = 14 \text{ Hz}, 27\text{H}, [(CH_{3})_{3}\text{C}]_{3}\text{P}), 1.40 \text{ (m, 3H, } [(CH_{3})_{2}CH]_{3}\text{Si}). {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR} (125.8 \text{ MHz},$ C_6D_5Cl , 25 °C) δ : 17.0 (d, ${}^{2}J_{CP} = 7$ Hz, [(CH₃)₂CH]₃Si-P; d, ${}^{1}J_{C^{29}Si}$ (ca. 5%) = 50 Hz, $[(CH_3)_2CH]_3^{29}Si-P)$, 20.4 (s, $[(CH_3)_2CH]_3Si-P)$, 31.7 (br s, $[(CH_3)_3C]_3P)$, 41.1 (d, ${}^1J_{CP} = 10$ Hz, [(CH₃)₃C]₃P), 136.8 (dm, B(C₆F₅)₄, ${}^{1}J_{CF} = 240$ Hz, *m*-CF), 138.8 (dm, B(C₆F₅)₅, ${}^{1}J_{CF} = 240$ Hz, *m*-CF), 138.8 (dm, B(C₆F₅)₅, ${}^{1}J_{CF} = 240$ Hz, *m*-CF), 138.8 (d 235 Hz, p-CF), 148.9 (dm, B(C₆F₅)₄, ${}^{1}J_{CF} = 240$ Hz, o-CF). ³¹P{¹H} NMR (162.1 MHz, C_6D_5Cl , 25 °C) δ : 57.3 (s). ²⁹Si NMR (99.4 MHz, C_6D_5Cl , 25 °C) δ : 43.1 (d, ¹ J_{SiP} = 23 Hz). ¹⁹F NMR (376.8 MHz, C₆D₅Cl, 25 °C) δ: -166.1 (m, B(C₆F₅)₄, m-CF), -162.3 (t, B(C₆F₅)₄, ${}^{3}J_{FF} = 21$ Hz, *p*-CF), -131.6 (d, B(C₆F₅)₄, ${}^{3}J_{FF} = 17$ Hz, *o*-CF). **IR** (KBr, cm⁻¹): 1644 (s), 1515 (s), 1463 (s), 1402 (s), 1376 (s), 1329 (w), 1276 (s), 1163 (s), 1086 (s), 1024 (m), 980 (s). HRMS (ES+, m/z): for $[C_{21}H_{49}SiP]^+$ Calcd: 360.3341 Found: 360.3344. HRMS (ES-, *m*/z): for [BC₂₄F₂₀]⁻ Calcd: 679.9852 Found: 679.9854. Anal Calcd for C₄₅H₄₈BF₂₀PSi: C, 52.03; H, 4.66. Found: C, 51.84; H, 4.47.

S4 General Procedure for H₂/D₂ Activation Experiments.

1 proved to be highly reactive to even trace amounts of H_2O , hence NMR experiments were performed in Teflon[®] inserts. Reactions in dilute solution, such as those under H_2 , invariably become exposed to trace amounts of H_2O (especially as an impurity in H_2 gas), leading to $[tBu_3PH]^+[B(C_6F_5)_4]^-$ and $(iPr_3Si)_2O$ (2:1); hydrolysis thus produces twice the amount of phosphonium salt than the reaction with H_2 .

Inside a glove-box, 20mg (0.02 mmol) of **1** was dissolved in C_6D_5Cl and transferred to a J Young sealed NMR tube containing a Teflon[®] insert. The solution was then measured by both ³¹P and ¹H NMR to confirm the integrity of the adduct relative to any tBu_3P-H^+ impurity, which would result from partial hydrolysis. The solution was degassed once using the freeze-thaw method and sealed under 1 bar pressure of H₂ at 77 K (to ensure reproducible pressures all tubes were immersed in liquid N₂ to a control depth of 10 cm and backfilled for 10 s); this results in an equivalent internal NMR tube pressure of ca. 4 bar at room temperature. ³¹P and ¹H NMR spectra of the solution were subsequently recorded again to ascertain the contribution from adventitious moisture (from H₂ gas) to the tBu_3P-H^+ signal. The tube was then immersed in an oil bath (control depth 10 cm) and heated at 90°C. Reaction was complete after 8 hours, as judged by ³¹P and ¹H NMR spectroscopy. The yield for H₂ conversion is most reliably calculated via relative integration of ¹H NMR signals for the iPr_3SiH resonance against that of tBu_3PH (1:1 from H_2). This experiment was repeated a further 3 times to give a H_2 heterolysis yield of 90–94%, calculated on the basis of the initial amount of **1**.

S5 ¹H, ¹³C{¹H}, ³¹P{¹H}, ²⁹Si and ¹⁹F NMR data for 1

Figure 2. ¹H NMR spectrum of 1 in C₆D₅Cl solvent. * denotes resonances attributed to residual protio-solvent.

Figure 3. ¹³C NMR spectrum of **1** in C₆D₅Cl solvent. \blacktriangle denotes trace [*t*Bu₃PH][B(C₆F₅)₄] (due to adventitious H₂O). Inset displays full spectrum, solvent resonances denoted by *.

Figure 4. ³¹P NMR spectrum of 1 in C₆D₅Cl solvent.

Figure 5. ²⁹Si NMR spectrum of 1 in C₆D₅Cl solvent. Inset reveals expanded region; ${}^{1}J(Si,P) = 23$ Hz.

Figure 6. ¹⁹F NMR spectrum of 1 in C_6D_5Cl solvent.

S6 High Resolution Mass Spectrometry (ES+) of 1

Elemental Composition Report

Single Mass Analysis

Tolerance = 7.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions

948 formula(e) evaluated with 2 results within limits (up to 50 best isotopic matches for each mass)

Elements Used:

C: 21-21 H: 0-200 N: 0-10 O: 0-10 Na: 0-1 Si: 0-1 P: 0-1

Minimum:				-1.5				
Maximum	:	5.0	7.0	50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norn	n)	Formula
360.3344	360.3341	0.3	0.8	-1.0	493.1	0.3	C21 H49	Si P

Variable Temperature ³¹P NMR spectroscopy of 1 **S7**

Figure 7. Variable temperature ³¹P NMR spectroscopy of 1 in C_6D_5Cl solvent. \blacktriangle denotes trace [tBu_3PH][B(C_6F_5)₄] (due to adventitious H₂O). Resonances referenced to internal capillary (Ph₃P in C₆D₅Cl; $\delta = -5.3$ ppm).

S8 D₂ Activation Experiments

Figure 8. ²H NMR (76.8 MHz) spectrum of $[tBu_3P-D][B(C_6F_5)_4]$ and iPr_3Si-D products after heating 1 under D₂ atmosphere (4 bar, 90°C) for 8 hours. ¹J(²H, P) = 66 Hz and ¹J(²H, ²⁹Si) = 27 Hz. Relative integrations of $[tBu_3P-D]^+$ and iPr_3Si-D resonances show quantitative (1:1) conversion of D₂.

Figure 9. ³¹P NMR spectrum of $[tBu_3P-D][B(C_6F_5)_4]$ after heating **1** under D₂ atmosphere (4 bar, 90°C) for 8 hours. ¹J(²H, P) = 66 Hz. \blacktriangle denotes trace $[tBu_3PH][B(C_6F_5)_4]$ (due to adventitious moisture in D₂).

Figure 10. ²⁹Si NMR spectra of *i*Pr₃Si-D after heating 1 under D₂ atmosphere (4 bar, 90°C) for 8 hours. ¹J(Si, ²H) = 27 Hz.

Figure 11. ³¹P NMR spectrum of **1** under H₂ atmosphere, prior to heating at 90°C. Presence of $[tBu_3PH][B(C_6F_5)_4]$ ($\delta = 60.2$ ppm; *ca.* 6 %) is due to hydrolysis by adventitious moisture in H₂.

Figure 12. ³¹P NMR spectrum of [*t*Bu₃PH][B(C₆F₅)₄] after H₂ heterolysis by 1 (C₆D₅Cl, 8 hours, 90°C).

Figure 13. ¹H NMR spectrum of 1 under H₂ (C₆D₅Cl, δ = 4.48 ppm) atmosphere, prior to heating at 90°C.

Figure 14. ¹H NMR spectrum after heating **1** under H₂ atmosphere (4 bar, 90°C) for 8 hours; *ca.* 94 % yield *i*Pr₃SiH calculated by relative integration of $[tBu_3P-H]^+$ and *i*Pr₃Si-*H* resonances. Remaining 6-7 % ³¹P deficit attributed to formation of $[tBu_3P-H]^+[B(C_6F_5)_4]$ and $(iPr_3Si)_2O$ by initial adventitious hydrolysis (see S4 and main text for explanation), as corroborated by the ³¹P NMR spectrum in Figure 9.

Figure 15. ¹⁹F NMR spectrum of 1 ([B(C₆F₅)₄]⁻ counterion; C₆D₅Cl), under H₂ atmosphere.

Figure 16. ¹⁹F NMR spectrum after heating **1** under H_2 atmosphere (4 bar, 90°C) for 8 hours, revealing the $[B(C_6F_5)_4]^-$ counterion to be intact after reaction completion.

S10 Synthesis of $[iPr_3Si \cdot ClPh]^+[B(C_6F_5)_4]^-$ and thermal decomposition experiment

The following is a modified procedure based on that reported by Müller *et al.*³ Inside a glovebox, *i*Pr₃SiH (0.015 g, 0.095 mmol) and PhCl (0.5 ml) were added to a Teflon® vial and cooled to -25 °C. After addition of solid [Ph₃C][B(C₆F₅)₄] (0.050 g, 0.054 mmol) the mixture was stirred for 5 minutes during which time the solution decolourised. Upon addition of hexanes (0.5 ml), a pale yellow oil formed which was allowed to settle before decanting away the supernatant and rinsing the oil with further hexanes (3 x 0.5 ml). Volatiles were then removed under vacuum leaving a thermally unstable pale yellow oil (which gradually turns brown over several days at room temperature) which was subsequently redissolved in PhCl for subsequent NMR studies; spectral data (¹H, ¹⁹F, ²⁹Si NMR) matched those previously reported.³ Upon heating of this solution under H₂ (the tube charged following the procedure detailed in Section S4) to 90°C in the NMR spectrometer (400 MHz) decomposition ensued, as evidenced by the disappearance of the ¹¹B and ¹⁹F NMR resonances for the [B(C₆F₅)₄] anion, concomitant with the production of resonances attributable to B(C₆F₅)₃⁴ and *i*Pr₃SiF⁵ (see Figures 17 and 18 below).

Figure 17. ¹¹B NMR spectrum after heating $[iPr_3Si \cdot ClPh]^+[B(C_6F_5)_4]^-$ under H₂ atmosphere (4 bar, 90°C, PhCl solvent) for 40 min, revealing the $[B(C_6F_5)_4]^-$ counterion (resonance denoted *; -16.4 ppm) to decompose into $B(C_6F_5)_3$ (resonance denoted •; 59.8 ppm).

Figure 18. ¹⁹F NMR spectrum after heating $[iPr_3Si \cdot ClPh]^+[B(C_6F_5)_4]^-$ under H₂ atmosphere (4 bar, 90°C, PhCl solvent) for 40 min, revealing the $[B(C_6F_5)_4]^-$ counterion (resonances denoted *; -132.1, -162.7 and -166.5 ppm) to be decompose into $B(C_6F_5)_3$ (resonances denoted •; -128.0, -142.6 and -160.1 ppm) and iPr_3SiF (-160.1 ppm; ¹ J_{FSi} = 298 Hz)

S11 Computational Details I

Calculations were performed using Gaussian 09 software suite.⁶ Geometry optimisations were initially performed, without symmetry constraints, using the M06-2X density functional in conjunction with the 6-31G(d,p) basis set for all atoms in the gas phase.⁷ The M06-2X functional has been shown to produce accurate thermodynamic data in related frustrated Lewis pair systems.⁸ Frequency analysis was performed for all stationary points following structure optimisation. This confirmed the nature of the intermediate as either a minimum (no imaginary frequency) or a transition state (only one imaginary frequency). Intrinsic reaction coordinate (IRC) calculations were used to connect transition states and minima located on the potential energy surface allowing a full energy profile of the reaction to be constructed.⁹ To better represent the reaction environment and effects of the chlorobenzene solvent, all intermediates were reoptimised and confirmed via vibrational analysis using M06-2X with 6-311+G(d,p) basis set for all atoms and the conductor-like polarisable continuum (C-PCM) model.¹⁰ Energies reported herein are obtained from the solvent-corrected calculations. In the conductor orbitals.¹¹

Intermediate	ΔΕ	ΔH	TΔS	ΔG
$1 + H_2$	0.00	0.00	0.00	0.00
Α	0.60	2.00	-19.84	21.85
TS _{AB}	129.80	130.69	-13.69	144.38
В	-61.46	-63.96	-11.93	-52.03
Dissociated products	-44.51	-51.26	39.20	-90.46

Table S1. Relative energies of H_2 activation intermediates and transition state (363K; kJ mol⁻¹).

Number of *iso*-propyl methine H atoms 3 2 0 1 pointing towards the P atom ΔH (kJ/mol) 0.00 13.04 19.71 32.17 20.02 ∆G (kJ/mol) 0.00 13.29 31.41

Table S2. Various conformers of 1 and their relative enthalpies and Gibbs free energies.

 $\label{eq:Figure 19. a)} Figure 19. a) HOMO and b) LUMO corresponding to heterolytic H_2 cleavage in TS_{AB}. P atom orange and Si atom grey.$

Coordinates of Intermediates

Adduct (1)

-	71		
scf	done: -1459.6	31143	
Ρ	-0.228402	0.025333	-0.003654
Si	2.263574	-0.043970	-0.023136
С	2.883135	0.400603	1.739471
Н	2.274892	-0.173373	2.444168
С	2.806763	-1.820357	-0.510955
С	2.884841	1.238187	-1.310822
Н	2.313835	2.156488	-1.147184
С	2.730830	0.860068	-2.794857
Н	1.698651	0.865660	-3.134419
Н	3.274322	1.586790	-3.404599
Н	3.141484	-0.125289	-3.022585
С	4.337184	-0.082012	1.952611
Н	5.044930	0.425758	1.296318
Н	4.627150	0.145248	2.981902
Н	4.457089	-1.154272	1.812442
С	-0.834982	1.816447	-0.324124
С	-0.890476	-0.561321	1.698426
С	-0.930105	-1.120951	-1.372408
С	-2.417540	-0.867415	-1.675760
Н	-2.588488	0.092979	-2.158301
Н	-2.734718	-1.641269	-2.380938
Н	-3.058678	-0.942091	-0.800478
С	-0.151448	-0.942196	-2.685396
Н	-0.551759	-1.665675	-3.400888
Н	-0.272598	0.043677	-3.124282
Н	0.911058	-1.152389	-2.576914
С	-0.771763	-2.594236	-0.961350
Н	-1.437570	-2.882699	-0.151423
Н	-1.038948	-3.203146	-1.828777
Н	0.252756	-2.847633	-0.692715
С	-2.315754	2.033540	0.034870
Н	-2.577631	3.043638	-0.293516
Н	-2.990359	1.343275	-0.466175
Н	-2.497794	1.990076	1.106969

01010220	2.1001/1	1.000+00
-0.857381	3.248187	-1.907543
0.372453	2.018663	-2.153445
-1.337237	1.655350	-2.462511
-0.007430	2.824789	0.488636
-0.145582	2.725777	1.561161
1.056468	2.774412	0.264662
-0.349231	3.825384	0.210109
-2.392986	-0.894206	1.685481
-2.680475	-1.106551	2.719335
-3.016588	-0.074567	1.336174
-2.620339	-1.784562	1.102576
-0.653673	0.523793	2.762231
-1.291084	1.394698	2.628739
-0.905983	0.087131	3.731949
0.386210	0.843101	2.813942
-0.140429	-1.816461	2.172235
0.933029	-1.658539	2.259356
-0.512998	-2.059105	3.171197
-0.318394	-2.684284	1.544126
2.196576	-2.113722	-1.369848
4.269602	-1.835521	-1.013619
4.981174	-1.559184	-0.234691
4.513122	-2.853209	-1.330243
4.435698	-1.183153	-1.868314
2.793795	1.880035	2.155362
1.775115	2.218101	2.325203
3.339010	2.018520	3.092870
3.239871	2.551562	1.419529
4.362758	1.612909	-1.049795
4.530782	2.026422	-0.057474
5.037165	0.765915	-1.181168
4.656276	2.377572	-1.773917
2.646902	-2.913444	0.560780
3.151279	-3.821595	0.219947
3.094491	-2.634012	1.516333
1.610520	-3.176625	0.754297
	-0.857381 0.372453 -1.337237 -0.007430 -0.145582 1.056468 -0.349231 -2.392986 -2.680475 -3.016588 -2.620339 -0.653673 -1.291084 -0.905983 0.386210 -0.140429 0.933029 -0.512998 -0.318394 2.196576 4.269602 4.981174 4.513122 4.435698 2.793795 1.775115 3.339010 3.239871 4.362758 4.530782 5.037165 4.656276 2.646902 3.151279 3.094491 1.610520	-0.857381 3.248187 0.372453 2.018663 -1.337237 1.655350 -0.007430 2.824789 -0.145582 2.725777 1.056468 2.774412 -0.349231 3.825384 -2.392986 -0.894206 -2.680475 -1.106551 -3.016588 -0.074567 -2.620339 -1.784562 -0.653673 0.523793 -1.291084 1.394698 -0.905983 0.087131 0.386210 0.843101 -0.140429 -1.816461 0.933029 -1.658539 -0.512998 -2.059105 -0.318394 -2.684284 2.196576 -2.113722 4.269602 -1.835521 4.981174 -1.559184 4.513122 -2.853209 4.435698 -1.183153 2.793795 1.880035 1.775115 2.218101 3.339010 2.018520 3.239871 2.551562 4.362758 1.612909 4.530782 2.026422 5.037165 0.765915 4.656276 2.377572 2.646902 -2.913444 3.151279 -3.821595 3.094491 -2.634012 1.610520 -3.176625

Adduct + $H_2(A)$

-	73		
scf	done: -1460.8	300559	
Ρ	0.758988	-0.605859	0.00000
Si	3.151346	-0.497878	-0.703199
С	4.205800	-0.061053	0.840682
С	3.642265	-2.215983	-1.405742
С	3.311910	0.863529	-2.047188
Н	2.753253	1.732373	-1.687743
С	4.778487	1.335277	-2.182530
Н	5.439333	0.544021	-2.538829
Н	4.813464	2.143460	-2.917928
Н	5.190508	1.725381	-1.254111
Н	3.853478	-0.695136	1.659136
С	4.143564	1.396895	1.329480
Н	3.197005	1.650285	1.800011
Н	4.926150	1.556749	2.076167
Н	4.311271	2.117940	0.526786
С	-0.022988	1.144943	-0.047802

С	0.631195	-1.294659	1.785927
С	-0.221686	-1.757275	-1.180342
С	-1.747216	-1.602784	-1.055758
Н	-2.103309	-0.643589	-1.426870
Н	-2.197814	-2.376310	-1.684426
н	-2.118076	-1.749218	-0.043990
C	0.155167	-1.484688	-2.645152
н	-0 379685	-2 214200	-3 259400
н	-0 142305	-0 497911	-2 987709
н	1 217885	-1 619015	-2.907705
\hat{c}	0 122202	-3 226808	-2.030333
с u	0.133303	-3.220090	-0.900122
	-0.205525		0.045217
п	-0.323209	-3.82//5/	-1.090850
Н	1.205/90	-3.413003	-0.932188
C	-1.359628	1.236315	0./08658
Н	-1.763711	2.235446	0.521228
Н	-2.101499	0.516822	0.369809
Н	-1.238963	1.138692	1.785825
С	-0.270074	1.574869	-1.503396
Н	-0.570581	2.625561	-1.484175
Н	0.625096	1.507095	-2.120014
Н	-1.076612	1.021100	-1.978478
С	0.928472	2.185800	0.563290
Н	1.099023	2.041088	1.626288
Н	1.890583	2.228255	0.055289
Н	0.458316	3.165686	0.443681
С	-0.789770	-1.742880	2.169071
Ĥ	-0.762992	-2.012462	3.228944
н	-1.538956	-0.963331	2.051006
н	-1 111904	-2 627924	1 623932
Ċ	1 081589	-0 227780	2 797231
ц	0 3760/3	0.227700	2.757251
LI LI	1 120521	0.394020	2.000904
п	2 070012	-0.711594	3.773020
п С	2.0/0015	0.1/0100	2.5/025/
C II	1.565299	-2.500807	1.972062
н	2.606383	-2.263961	1.760376
н	1.508438	-2./9/115	3.023026
н	1.2/4488	-3.363419	1.3/9/95
Н	2.835248	-2.529521	-2.0/4020
С	4.903630	-2.106067	-2.293785
Н	5.784652	-1.799079	-1.728734
Н	5.115083	-3.092660	-2.714644
Н	4.781937	-1.418273	-3.128062
Н	2.630028	4.836198	1.938183
Н	3.070589	4.306038	1.665480
С	2.777401	0.520810	-3.448860
Н	1.692842	0.470914	-3.494042
Н	3.093347	1.298219	-4.149659
Н	3.161770	-0.428969	-3.825584
С	3,860563	-3.347412	-0.385596
Ĥ	4,312951	-4.202478	-0.895016
н	4.534577	-3.060366	0.423733
н	2 938751	-3 698229	0 070680
Ċ	5 687766	-0 444691	0 621281
с ц	6 220720	_0 225072	1 520020
и Ц	5 01030720	-0.2230/2	0 101600 T.J.
п	5.0200UZ	-T.2010/2	0.404000
г1	0.127102	0.129142	-0.10100/

H₂ Activation Transition State (TS_{AB})

-	73		
scf	done: -1460.7	47048	
Р	0.024186	0.176631	-0.006777
Si	4.077924	0.336243	-0.569220
C C	5 304406	0 350691	0 823013
c	3 579998	-1 316804	-1 254263
c	3 860368	1 952055	-1 617050
L L	2 691642	2 695742	-1.01/039
с С	5.001042	2.005/42	2 240275
	5.190542	2.120409	-2.3492/3
п	5.484578	1.301039	-3.0061/3
н	5.0/01/2	3.012/40	-2.9/50/0
н	6.022399	2.324656	-1.661606
Н	4.966/03	-0.362835	1.581681
C	5.614120	1./0491/	1.46//44
н	4.809463	2.046668	2.117208
Н	6.512682	1.611013	2.081947
Н	5.807557	2.479551	0.721182
С	-1.045602	1.754828	-0.232326
С	-0.218008	-0.414643	1.805912
С	-0.710059	-1.172791	-1.156291
С	-2.240392	-1.297040	-1.191492
Н	-2.717460	-0.418725	-1.624787
Н	-2.504443	-2.152067	-1.823802
Н	-2.671492	-1.469437	-0.206355
С	-0.215073	-0.901935	-2.592151
Н	-0.536603	-1.732115	-3.229223
Н	-0.615732	0.011900	-3.022963
Н	0.874426	-0.849184	-2.647746
С	-0.126531	-2.542084	-0.765655
Н	-0.535158	-2,926574	0.167593
н	-0.381239	-3.259797	-1.551551
н	0.962948	-2.518607	-0.682673
C	-2.427136	1.745646	0.438082
н	-2 944446	2 675715	0 177695
н	-3 046504	0 917136	0 093970
ц	-2 373062	1 702020	1 52/231
Ċ	-1 263400	2 057256	_1 725527
L L	1 600640	2.057250	1 902242
п	-1.000045	2.002003	-1.005242
	-0.551004	2.034992	-2.295191
п С	-1.965978	1.3/4138	-2.199/41
C	-0.2182/1	2.940054	0.302749
н	0.031523	2.859480	1.358562
н	0.712046	3.048187	-0.262423
Н	-0./9/149	3.859/43	0.169269
C	-1.545945	-1.111332	2.135877
Н	-1.565341	-1.330091	3.209152
Н	-2.411037	-0.487826	1.910971
Н	-1.661659	-2.060286	1.613847
С	-0.045643	0.762436	2.783643
Н	-0.860567	1.481991	2.745318
Н	-0.024168	0.351987	3.798133
Н	0.896224	1.290666	2.629370
С	0.942605	-1.373790	2.131889
Н	1.905992	-0.867832	2.015743
Н	0.858078	-1.684719	3.178301
Н	0.947510	-2.274313	1.521643

Н	2.526430	-1.192369	-1.522614
С	4.373231	-1.586005	-2.555987
Н	5.442212	-1.704175	-2.364339
Н	4.011201	-2.521035	-2.989969
Н	4.242382	-0.802706	-3.304547
Н	2.897769	2.123970	1.341119
Н	2.324379	1.767792	1.026170
С	2.691290	1.748784	-2.603516
Н	1.757200	1.516559	-2.090390
Н	2.572309	2.698729	-3.129899
Н	2.868798	0.975099	-3.354704
С	3.716396	-2.481123	-0.266175
Н	3.352071	-3.397787	-0.737084
Н	4.758090	-2.651071	0.014902
Н	3.140783	-2.320008	0.645990
С	6.582856	-0.240044	0.157027
Н	7.350736	-0.335209	0.927628
Н	6.429779	-1.231205	-0.273257
Н	6.981038	0.417528	-0.620007

H₂ Activation Products (B)

Ρ	-0.215736	0.368020	0.00000
Si	4.281765	1.267341	-0.653804
С	5.623635	0.684490	0.548724
С	3.681672	-0.107919	-1.817714
С	4.728917	2.859699	-1.577505
Н	4.727290	3.646138	-0.811703
С	6.116348	2.853631	-2.235859
Н	6.223416	2.033986	-2.951741
Н	6.281077	3.788270	-2.781577
Н	6.916826	2.757641	-1.499526
Н	5.123589	-0.040857	1.204497
С	6.089099	1.860119	1.421372
Н	5.251680	2.358082	1.918347
Н	6.781802	1.516929	2.195769
Н	6.613354	2.611306	0.822942
С	-0.923694	1.996932	-0.601610
С	-0.197895	0.177589	1.865393
С	-0.846155	-1.141210	-0.923960
С	-2.379562	-1.136270	-1.002685
Н	-2.765146	-0.312607	-1.602738
Н	-2.691641	-2.065873	-1.485306
Н	-2.847665	-1.101950	-0.017260
С	-0.227011	-1.157938	-2.335088
Н	-0.518998	-2.100700	-2.804613
Н	-0.571966	-0.353665	-2.977232
Н	0.864686	-1.135962	-2.293601
С	-0.376615	-2.433739	-0.234220
Н	-0.797925	-2.574441	0.758691
Н	-0.721534	-3.264898	-0.854109
Н	0.711703	-2.497360	-0.181547
С	-2.319955	2.255458	-0.018425
Н	-2.684661	3.198012	-0.435222
Н	-3.036358	1.477004	-0.283940
Н	-2.306035	2.362913	1.065988

С	-1.001063	1.985623	-2.137274
Н	-1.313105	2.984574	-2.450523
Н	-0.030237	1.783222	-2.596134
Н	-1.738376	1.282604	-2.519928
С	0.040936	3.134721	-0.209004
Н	-0.015834	3.400080	0.842104
Н	1.078511	2.899430	-0.456543
Н	-0.245642	4.017940	-0.784836
С	-1.548117	-0.342087	2.381033
Н	-1.498497	-0.370058	3.472563
Н	-2.375367	0.315266	2.106216
Н	-1.776046	-1.350299	2.038574
С	0.106945	1.524827	2.541104
Н	-0.703861	2.243664	2.437357
Н	0.227376	1.323172	3.608384
Н	1.037940	1.967526	2.182327
С	0.951815	-0.773129	2.249612
Н	1.917716	-0.372924	1.929700
Н	0.968603	-0.838247	3.340525
Н	0.840634	-1.782754	1.865084
Н	2.723454	0.254607	-2.218907
С	4.598693	-0.393155	-3.015923
Н	5.601948	-0.684377	-2.693794
Н	4.196129	-1.214809	-3.617213
Н	4.699385	0.475298	-3.669432
Н	3.096312	1.603831	0.204412
Н	1.142898	0.445894	-0.352193
С	3.641517	3.205858	-2.606364
Н	2.644039	3.238186	-2.158660
Н	3.833706	4.183953	-3.057777
Н	3.615382	2.471382	-3.416822
С	3.421537	-1.397926	-1.025537
Н	2.959980	-2.165225	-1.656543
Н	4.357595	-1.814614	-0.642432
Н	2.770935	-1.235519	-0.159392
С	6.821779	-0.022474	-0.101023
Н	7.560605	-0.293075	0.660163
Н	6.527650	-0.940960	-0.613549
Н	7.324375	0.617978	-0.830581

H_2

	2			
scf	done:	-1.1685	538	
Н	-0.7623	97	0.062069	0.000000
Н	-1.5065	69	0.062069	0.000000

*i*Pr₃SiH

	~~		
-	32		
scf	done: -645.6	13642	
Si	0.269235	0.304480	-0.003971
С	2.066426	0.711594	0.447714
С	-0.007523	-1.546716	-0.314425
Н	0.131238	-2.024243	0.664363
С	-0.399417	1.391322	-1.408110
Н	-1.490383	1.277262	-1.361628
С	0.049441	0.988511	-2.819876

Н	-0.303965	-0.008541	-3.091374
Н	-0.346886	1.691208	-3.560525
Н	1.138579	0.991657	-2.917011
Н	2.029016	1.716063	0.889251
С	3.044694	0.760128	-0.734346
Н	2.784784	1.545184	-1.447605
Н	4.061166	0.961027	-0.379588
Н	3.070581	-0.187322	-1.279522
С	0.977213	-2.200704	-1.293855
Н	2.004291	-2.164918	-0.924389
Н	0.719082	-3.253886	-1.447461
Н	0.960384	-1.714243	-2.273002
Н	-0.545310	0.645377	1.203062
С	2.568052	-0.255395	1.530824
Н	3.561429	0.038298	1.884504
Н	1.899558	-0.282790	2.396026
Н	2.647289	-1.275233	1.141792
С	-0.072829	2.866753	-1.131928
Н	-0.552442	3.516281	-1.871011
Н	-0.410796	3.181733	-0.140585
Н	1.004962	3.048375	-1.186891
С	-1.458758	-1.795213	-0.752536
Н	-1.665906	-2.867816	-0.821564
Н	-2.177443	-1.360174	-0.052219
Н	-1.652533	-1.360364	-1.737945

[*t*Bu₃PH]⁺

scf	done: -815.2	04240	
Ρ	0.261626	1.053730	0.000446
С	0.366226	2.869891	0.459490
С	1.780776	0.053508	0.462924
С	-1.364496	0.237397	0.459167
С	-1.721402	0.499056	1.929723
Н	-1.919001	1.550814	2.133495
Н	-2.636659	-0.054773	2.153902
Н	-0.947919	0.149434	2.615516
С	-2.472466	0.766579	-0.472288
Н	-3.368994	0.173090	-0.276778
Н	-2.728199	1.807071	-0.299251
Н	-2.212494	0.634715	-1.524957
С	-1.279521	-1.279481	0.220378
Н	-0.598247	-1.781944	0.904086
Н	-2.277393	-1.686161	0.400639
Н	-1.007724	-1.519298	-0.809376
С	0.768916	3.048227	1.930568
Н	0.748451	4.117972	2.154048
Н	0.077119	2.554681	2.615156
Н	1.777539	2.691803	2.136485
С	-0.989658	3.554562	0.218800
Н	-0.843130	4.622230	0.398571
Н	-1.332413	3.438601	-0.811133
Н	-1.766297	3.216321	0.901859
С	1.380062	3.564418	-0.470397
Н	2.408399	3.262670	-0.298322
Н	1.135417	3.408294	-1.523401
Н	1.317282	4.637212	-0.272192

С	1.729328	-0.386340	1.933295
Н	2.663439	-0.907766	2.157366
Н	1.650918	0.459019	2.618919
Н	0.912989	-1.078228	2.137163
С	3.053641	0.884119	0.228289
Н	3.144603	1.727439	0.909862
Н	3.903150	0.223162	0.416021
Н	3.132329	1.235846	-0.802162
С	1.877117	-1.170275	-0.468918
Н	1.865719	-0.878346	-1.521447
Н	2.837589	-1.652156	-0.270367
Н	1.101637	-1.910501	-0.299320
Н	0.263929	1.052425	-1.403798

S12 Computational Details II (QTAIM analysis)

Bader's Atoms in Molecules (QTAIM) theory provides a means of analyzing the topology of the electron density (p(r)) to describe interatomic interactions and rationalise chemical bonding. Electron properties including bond critical points (BCP), the Laplacian of the electron density ($\nabla^2 \rho(r)$) and the local electron kinetic (G), potential (V) and total (H) energy densities can be derived using QTAIM to reveal the nature of these interactions. The presence of a BCP indicates the lowest point of electron density between two nuclei and the bond path represents the line of maximum electron density. Should the Laplacian of the electron density at a BCP indicate a large and negative value this signifies the electronic charge is concentrated locally between the two nuclei. This is typical of a covalent or 'shared' interaction. Conversely, a small and positive value for the Laplacian indicates depletion of charge along the bond path. This is representative of an interaction between closed shell systems such as ionic bonding, van der Waals interactions and hydrogen bonding.

We have used QTAIM to examine the types of interactions between the fragments that comprise the H₂ activation transition state (TS_{AB}) in an attempt to rationalise the stabilising interactions at long Si…P distances (greater than the sum of the van der Waal radii).

Table S3. Selected $\rho(r)$ and $\nabla^2 \rho(r)$ values (in a.u.) corresponding to C-H...P, P...H and Si...H interactions.

Table S4. Selected $\rho(r)$ and $\nabla^2 \rho(r)$ values (in a.u.) corresponding to C–H···H–C and C–H···C interactions.

QTAIM analysis indicates the existence of several BCPs between the tBu_3P and Si iPr_3 fragments. Examination of the transition state from a side on view (Table S2) reveals the presence of two C–H…P interactions. These interactions have small, positive values associated with $\rho(r)$ (0.0078 and 0.0081) and $\nabla^2 \rho(r)$ (+0.0163 and +0.0169), consistent with weak van der Waals interactions.¹²

Adoption of a top-down view of the transition state (Table S4) reveals a number of C–H···H– C and C–H···C interactions. As with the C–H···P interactions, $\rho(r)$ and $\nabla^2 \rho(r)$ have small, positive associated values, again characteristic of weak van der Waals interactions. The summation of several weak van der Waals interactions between the *t*Bu₃P and Si*i*Pr₃ fragments contributes to the stabilisation of the transition state.

Table S5. Selected $\rho(r)$ and $\nabla^2 \rho(r)$ values (in a.u.) corresponding to P…H(H), Si…H(H) and C–H…H(H) interactions.

S13 References

- 1 R. C. Srivastava, J. Chem. Res-S. 1985, 330.
- 2 M. Lehmann, A. Schulz and A. Villinger, *Angew. Chem. Int. Ed.* 2009, **48**, 7444.
- 3 A. Schaefer, W. Saak, D. Haase and T. Mueller, *Angew. Chem. Int. Ed.*, 2012, **51**, 2981.
- 4 C. Wang, G. Erker, G. Kehr and R. Frölich, *Organometallics*, 2005, 24, 4760.
- 5 M. Arisawa, T. Ichikawa and M. Yamaguchi, *Tetrahedron Lett.*, 2013, **54**, 4327.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.

Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009.

- 7 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.* 2008, **120**, 215.
- 8 S. Schirmer and S. Grimme, *Top. Curr. Chem.* 2013, **332**, 213.
- K. Fukui, Acc. Chem. Res. 1981, 14, 363; b) H. P. Hratchian and H. B. Schlegel, in Theory and Applications of Computational Chemistry: The First 40 Years, (Eds.: C. E. Dykstra, G. Frenking, K. S. Kim, G. Scuseria), Elsevier, Amsterdam, 2005, 195–1
- 10 (a) V. Barone and M. Cossi, *J. Phys. Chem. A* 1998, **102**, 1995; (b) M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comput. Chem.* 2003, **24**, 669.
- 11 R. Dennington, T. Keith and J. Millam, GaussView, Version 5, *Semichem Inc.*, Shawnee Mission KS, 2009.
- 12 R. Parthasarathi, V. Subramanian and N. Sathyamurthy, *J. Phys. Chem. A.*, 2006, **110**, 3349.