Electronic Supplementary Material (ESI) for ChemComm.

Supporting information

Sizeable red-shift of absorption and fluorescence of subporphyrazine induced by peripheral push and pull substitution

Xu Liang, ${ }^{\text {a }}$ Soji Shimizu, ${ }^{*}$,b and Nagao Kobayashi*, ${ }^{\text {a }}$
${ }^{\text {a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan }}$
${ }^{\text {b }}$ Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan

Contents:

i Experimental

ii Crystal packing diagrams of 2c
iii ${ }^{1} \mathrm{H}$ NMR spectra
iv Plot of position of the Q bands versus Hammett σ_{p} parameters
v DFT and TDDFT calculations
vi References
vii Appendix: HR-MALDI-FT-ICR-MS of 2a-c and 3a and ${ }^{1} \mathrm{H}$ NMR spectra in a full range

i. Experimental

General Procedure: Electronic absorption spectra were recorded on a JASCO V-570 spectrophotometer. Circular dichroism (CD) and magnetic circular dichroism (MCD) spectra were recorded on a JASCO J-725 spectrodichrometer equipped with a JASCO electromagnet, which produces magnetic fields of up to 1.03 T ($1 \mathrm{~T}=1$ tesla) with both parallel and antiparallel fields. The magnitudes were expressed in terms of molar ellipticity ($[\theta] / \mathrm{deg} \mathrm{dm}{ }^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) and molar ellipticity per tesla ($[\theta]_{\mathrm{M}} / \mathrm{deg} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} \mathrm{~T}^{-1}$), respectively. Fluorescence spectra were measured on a Hitachi F-4500 spectrofluorimeter. Absolute fluorescence quantum yields were measured on a Hamamatsu Photonics C9920-03G calibrated integrating sphere system. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AVANCE 500 spectrometer (operating at 500.13 MHz) using the residual solvent as an internal reference for ${ }^{1} \mathrm{H}\left(\delta=7.26 \mathrm{ppm}\right.$ for $\mathrm{CDCl}_{3}, \delta=5.32 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\delta=2.09$ ppm for toluene- d_{8}). High resolution mass spectra were recorded on a Bruker Daltonics solariX 9.4T spectrometer. Preparative separations were performed by silica gel column chromatography (Merck Kieselegel 60H) and recycling preparative GPC-HPLC (JAI LC-9201 with preparative JAIGEL-2H, 2.5H, and 3.0 H columns). Separation of all the enantiomers was carried out by high-performance liquid chromatography (HPLC) with a preparative CHIRALPAK IA column by monitoring the absorbance at 580 nm . All reagents and solvents were of commercial reagent grade and were used without further purification except where noted.

Crystallographic Data Collection and Structure Refinement. Data collection was carried out at -173(2) ${ }^{\circ} \mathrm{C}$ on a Bruker APEXII CCD diffractometer with Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$) for 2c. The structure was
solved by a direct method (SHELXS-97) ${ }^{[1]}$ and refined using a full-matrix least squares technique (SHELXL97). CCDC-1015544 contain the supplementary crystallographic data for 2 c and the data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational methods: The Gaussian 09 software package ${ }^{[2]}$ was used to carry out DFT and TDDFT calculations using the B3LYP functional and $6-31 G(d)$ basis sets. Structural optimization was performed on model compounds of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, \mathbf{3 c}$, and unsubstituted subporphyrazine $\mathbf{4}$ as a reference compound.

Scheme S1. Syntheses of 2-aryl-substituted 1,1,2-tricyanoethylene 1a-c.

Synthesis of P-1a: A 5 mL water solution of $\mathrm{NaOH}(16 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to a 30 mL methanol solution of p-anisaldehyde ($13.6 \mathrm{~g}, 0.1 \mathrm{~mol}$) and malononitrile ($7.92 \mathrm{~g}, 0.12 \mathrm{~mol}, 1.2$ equiv.). The resultant mixture was stirred at r.t. for 0.5 h . The solid was collected by filtration and further purified by silica gel column chromatography using CHCl_{3} as an eluent to afford 1,1-dicyano-2-methoxylpnehylethylene \mathbf{P} - $\mathbf{1 a}$ in yield $88 \%(16.2 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.91(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.8 \mathrm{~Hz}$), $7.65(\mathrm{~s}, 1 \mathrm{H}$, ethylene), $7.01(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=9.0 \mathrm{~Hz}), 3.92(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OMe})$.

Synthesis of P-1b: A 5 mL water solution of $\mathrm{NaOH}(16 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to a 30 mL methanol mixture of p-tolualdehyde ($12.0 \mathrm{~g}, 10 \mathrm{mmol}$) and malononitrile ($7.92 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv.). The resultant mixture was stirred at r.t. for 0.5 h . The solid was collected by filtration and further purified by silica gel column chromatography using CHCl_{3} as an eluent to afford 1,1-dicyano-2-p-tolylethylene $\mathbf{P} \mathbf{- 1 b}$ in 86% yield (14.4 g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=7.81$ (d, 2 H , phenyl; $J=8.3 \mathrm{~Hz}$), 7.72 (s, H, ethylene), $7.34(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.2 \mathrm{~Hz}), 2.45\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}_{3}\right)$.

Synthesis of P-1c: A 5 mL water solution of $\mathrm{NaOH}(16 \mathrm{mg}, 0.4 \mathrm{mmol})$ was added to a 30 mL methanol mixture of p-trifluoromethylbenzaldehyde ($17.4 \mathrm{~g}, 10 \mathrm{mmol}$) and malononitrile ($7.92 \mathrm{~g}, 12 \mathrm{mmol}, 1.2$ equiv.). The resultant mixture was stirred at r.t. for 0.5 h . The solid was collected by filtration and further purified by silica gel column chromatography using CHCl_{3} as an eluent to afford 1,1-dicyano-2-ptrifluoromethylphenylethylene $\mathbf{P}-1 \mathrm{c}$ in 80% yield (17.7 g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ [ppm] = 8.01 (d, 2H, phenyl; $J=8.8 \mathrm{~Hz}), 7.84$ (s, 1H, ethylene), 7.81 (d, 2H, phenyl; $J=8.4 \mathrm{~Hz}$).

Synthesis of P-2a: KCN (1.02 g, $15.5 \mathrm{mmol}, 1.03$ equiv.) was stirred in 20 mL of water and heated at $60^{\circ} \mathrm{C}$. After KCN was completely dissolved in the water, a 20 mL of EtOH solution of 1,1-dicyano-2-
methoxylpnehylethylene P-1a ($2.76 \mathrm{~g}, 15.0 \mathrm{mmol}$) was slowly added, and the resultant mixture was then continuously stirred at $60^{\circ} \mathrm{C}$ for 15 min . After cooled to room temperature, a solution of acetic acid (2 mL) and water (10 mL) was added, and the solvent was removed under vacuum. Further purification was carried out by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1$) to afford 1,1,2-tricyano-2methoxylphenylethane P-2a in 65% yield (2.06 g). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.42(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.8 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.8 \mathrm{~Hz}), 4.40(\mathrm{~d}, 1 \mathrm{H}$, ethylene; $J=6.0 \mathrm{~Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}$, ethylene; $J=$ 6.0 Hz), 3.85 (s, 3H, -OMe).

Synthesis of P-2b: KCN ($1.02 \mathrm{~g}, 15.5 \mathrm{mmol}, 1.03$ equiv.) was stirred in 20 mL of water and heated at $60^{\circ} \mathrm{C}$. After KCN was completely dissolved in the water, a 20 mL of EtOH solution of 1,1-dicyano-2-p-tolylethylene $\mathbf{P - 1 b}(2.52 \mathrm{~g}, 15 \mathrm{mmol})$ was slowly added, and the resultant mixture was then continuously stirred at $60^{\circ} \mathrm{C}$ for 15 min . After cooled to room temperature, a solution of acetic acid $(2 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$ was added, and the solvent was removed under vacuum. Further purification was carried out by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1$) to afford 1,1,2-tricyano-2-p-tolylethane $\mathbf{P}-\mathbf{2 b}$ in 62% yield (1.81 g). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): ~ \delta[\mathrm{ppm}]=7.38(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.2 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.2 \mathrm{~Hz}), 4.41(\mathrm{~d}$, 1 H , ethylene; $J=6.0 \mathrm{~Hz}), 4.20(\mathrm{~d}, 1 \mathrm{H}$, ethylene; $J=6.0 \mathrm{~Hz}), 2.41\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

Synthesis of P-2c: KCN (1.02 g, $15.5 \mathrm{mmol}, 1.03$ equiv.) was stirred in 20 mL of water and heated at $60^{\circ} \mathrm{C}$. After KCN was completely dissolved in the water, a 20 mL of EtOH solution of 1,1-dicyano-2-ptrifluoromethylphenylethylene P-1c ($3.4 \mathrm{~g}, 15 \mathrm{mmol}$) was slowly added, and the resultant mixture was then continuously stirred at $60^{\circ} \mathrm{C}$ for 15 min . After cooled to room temperature, a solution of acetic acid (2 mL) and water $(10 \mathrm{~mL})$ was added, and the solvent was removed under vacuum. Further purification was carried out by silica gel column chromatography (eluent: $\mathrm{CHCl}_{3}: \mathrm{MeOH}=10: 1$) to afford 1,1,2-tricyano-2-ptrifluoromethylphenylethane P-2c in yield $42 \%(1.57 \mathrm{~g}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=7.82(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.2 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.2 \mathrm{~Hz}), 4.53(\mathrm{~d}, 1 \mathrm{H}$, ethylene; $J=5.7 \mathrm{~Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}$, ethylene; $J=$ $5.7 \mathrm{~Hz})$.

Synthesis of 1a: 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; $2.3 \mathrm{~g} 10.0 \mathrm{mmol}, 2.0$ equiv.) was added to a 50 mL CHCl 3 solution of 1,1,2-tricyano-2-methoxylphenylethane $\mathbf{P}-2 \mathrm{a}(1.06 \mathrm{~g}, 5.0 \mathrm{mmol})$. The resultant mixture was stirred at room temperature for 2 h under air. After removal of the solvent, the mixture was purified by alumina gel column chromatography (eluent: CHCl_{3}) and then by silica gel column chromatography (eluent: CHCl_{3}) to afford 1,1,2-tricyano-2-methoxylphenylethylene 1a in 95% yield (0.99 g). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta[\mathrm{ppm}]=8.10(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=9.2 \mathrm{~Hz}), 7.08(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=9.2 \mathrm{~Hz}$), 3.96 (s, 3H, -OMe).

Synthesis of 1b: 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; $2.3 \mathrm{~g} 10.0 \mathrm{mmol}, 2.0$ equiv.) was added to a $50 \mathrm{~mL} \mathrm{CHCl}_{3}$ solution of 1,1,2-tricyano-2-p-tolylethane $\mathbf{P - 2 b}(0.98 \mathrm{~g}, 5.0 \mathrm{mmol})$. The resultant mixture was stirred at room temperature for 2 h under air. After removal of the solvent, the mixture was purified by alumina gel column chromatography (eluent: CHCl_{3}) and then by silica gel column chromatography (eluent: CHCl_{3}) to afford 1,1,2-tricyano-2-p-tolylethylene $\mathbf{1 b}$ in 92% yield (0.89 g) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ
$[\mathrm{ppm}]=7.95(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.5 \mathrm{~Hz}), 7.41(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.5 \mathrm{~Hz}), 2.50\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

Synthesis of 1c: 2,3-Dichloro-5,6-dicyano-p-benzoquinone (DDQ; $2.3 \mathrm{~g} 10.0 \mathrm{mmol}, 2.0$ equiv.) was added to a 50 mL CHCl 3 solution of 1,1,2-tricyano-2- p-trifluoromethylphenylethane \mathbf{P} - 2 c ($1.25 \mathrm{~g}, 5.0 \mathrm{mmol}$). The resultant mixture was stirred at room temperature for 2 h under air. After removal of the solvent, the mixture was purified by alumina gel column chromatography (eluent: CHCl_{3}) and then by silica gel column chromatography (eluent: CHCl_{3}) to afford 1,1,2-tricyano-2-p-trifluorophenylethylene 1 c in 75% yield (0.93 g). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta[\mathrm{ppm}]=8.10(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.5 \mathrm{~Hz}), 7.90(\mathrm{~d}, 2 \mathrm{H}$, phenyl; $J=8.5 \mathrm{~Hz})$.

Synthesis of 2a: Boron trichloride ($1.0 \mathrm{M} p$-xylene solution, $0.35 \mathrm{~mL}, 0.35$ equiv.) was added to 1,1,2-tricyano-2-p-methoxyphenylethylene $\mathbf{1 a}(209 \mathrm{mg}, 1.0 \mathrm{mmol})$ at room temperature. The resulting mixture was gradually heated at $140^{\circ} \mathrm{C}$, and the temperature maintained for 45 min . After removal of the solvent, the reaction mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate $=10: 1$) and bio-beads (Sx-1) column (eluent: CHCl_{3}). Recrystallization from toluene and hexane provided compound 2a in 3.3% yield $(7.40 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=8.88(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.24(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 6 \mathrm{H}), 4.00(\mathrm{~s}, 9 \mathrm{H} ;-\mathrm{OMe}) ; \mathrm{UV} / \mathrm{vis}$ (toluene): $\lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=633$ (42300), 435 (17300); HR-MALDI-TOF-MS: $m / z=673.1555$ (Calcd. for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{BClN}_{9} \mathrm{O}_{3}\left[M^{-}\right]$, 673.1554).

Synthetic procedure of $\mathbf{2 b}$: Boron trichloride ($1.0 \mathrm{M} p$-xylene solution, $0.35 \mathrm{~mL}, 0.35$ equiv.) was added to 1,1,2-tricyano-2-p-tolylethylene $\mathbf{1 b}(193 \mathrm{mg}, 1.0 \mathrm{mmol})$ at room temperature. The resulting mixture was gradually heated at $140^{\circ} \mathrm{C}$, and the temperature maintained for 45 min . After removal of solvents under vacuum, the reaction mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate $=10: 1$), GPC-HPLC (eluent: CHCl_{3}). Recrystallization from toluene and hexane provided compound $\mathbf{2 b}$ in 5.6% yield (11.7 mg). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta[\mathrm{ppm}]=8.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.63\left(\mathrm{~s}, 9 \mathrm{H} ;-\mathrm{CH}_{3}\right) ; \mathrm{UV} / \mathrm{vis}$ (toluene): $\lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=594$ (41200), 419 (15400); HR-MALDI-TOF-MS: $m / z=625.1705$ (Calcd. for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{BClN}_{9}\left[M^{-}\right], 625.1707$).

Synthetic procedure of 2c: Boron trichloride ($1.0 \mathrm{M} p$-xylene solution, $0.35 \mathrm{~mL}, 0.35$ equiv.) was added to 1,1,2-tricyano-2-p-trifloromethylphenyl-ethylene $1 \mathrm{c}(193 \mathrm{mg}, 1.0 \mathrm{mmol})$ at room temperature. The resulting mixture was gradually heated at $140^{\circ} \mathrm{C}$, and the temperature maintained for 45 min . After removal of solvents under vacuum, the crude mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate $=8: 1$) and bio-beads ($\mathrm{Sx}-1$) column (eluent: toluene). Recrystallization from toluene and hexane provided compound 2 c in 7.2% yield $(18.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR (500 MHz , toluene- d_{8}): δ [ppm] $=8.68$ (d, $J=8.2 \mathrm{~Hz}, 6 \mathrm{H}$), $7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 6 \mathrm{H})$; UV/vis (toluene): $\lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)=571$ (41200), 390 (14900); HR-MALDI-TOF-MS: $m / z=787.0857$ (Calcd. for $\mathrm{C}_{36} \mathrm{H}_{12} \mathrm{BClF}_{9} \mathrm{~N}_{9}\left[M^{-}\right], 787.0859$).

Synthetic procedure of 3a: The subporphyrazine 3a was isolated from the reaction mixture of the synthesis of 2a. The reaction mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate $=10: 1$) and bio-beads (Sx-1) column (eluent: CHCl_{3}). Recrystallization from toluene and hexane provided the target compound in a 0.2% yield $(0.45 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta[\mathrm{ppm}]=8.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}$,
$2 \mathrm{H}) ; 8.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.01 ($\mathrm{s}, 3 \mathrm{H} ;-\mathrm{OMe}$), 3.98 ($\mathrm{s}, 3 \mathrm{H} ;-\mathrm{OMe}$), 3.96 ($\mathrm{s}, 3 \mathrm{H} ;-\mathrm{OMe}$); UV/vis (toluene): $\lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right)$ $=629$ (41000), 499 (27100), 435 (22700); HR-MALDI-TOF-MS: $m / z=673.1553$ (Calcd. for $\mathrm{C}_{36} \mathrm{H}_{21} \mathrm{BClN}_{9} \mathrm{O}_{3}\left[M^{-}\right]$, 673.1555).
ii. Crystal packing diagrams of 2c

Fig. S1. Crystal packing diagram of $\mathbf{2 c}$.
iii. ${ }^{1} \mathrm{HNMR}$ spectra

Fig. S2. ${ }^{1} \mathrm{H}$ NMR spectra of 2a in CDCl_{3}.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 b}$ in CDCl_{3}.

Fig. S4. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c}$ in toluene- d_{8}.

Fig. S5. ${ }^{1} \mathrm{H}$ NMR spectra of 3 a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.
iv. Plot of position of the Q bands versus Hammett σ_{p} parameters

Fig. S6. Plot of position of the Q bands of the push-pull subporphyrazines versus Hammett σ_{p} parameters.
v. DFT and TDDFT calculations

Fig. S7. Frontier MO diagrams of 2a-2c, 3a, and 4.

Fig. S8. Frontier MOs of 2a.

Fig. S9. Frontier MOs of $\mathbf{2 b}$.

Fig. S10. Frontier MOs of 2c.

Fig. S11. Frontier MOs of 3a.

Table S1. Selected transition energies and wave functions of 1a and 2a calculated by the TDDFT method (B3LYP/6$31 \mathrm{G}(\mathrm{d})$).

[a] Oscillator strength. [b] Wave functions based on the eigenvectors predicted by TDDFT. H and L represent the HOMO and LUMO, respectively.

vi. Reference

1. G. M. Sheldrick, SHELXL-97, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.
2. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
vii. Appendix: HR-MALDI-FT-ICR-MS of $2 \mathrm{a}-\mathrm{c}$ and 3 a and ${ }^{1} \mathrm{H}$ NMR spectra in a full range

