Supporting information

Sizeable red-shift of absorption and fluorescence of subporphyrazine induced by peripheral push and pull substitution

Xu Liang,^a Soji Shimizu,^{*,b} and Nagao Kobayashi^{*,a}

^a Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan

^b Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan

Contents:

- i Experimental
- ii Crystal packing diagrams of 2c
- iii ¹H NMR spectra
- iv Plot of position of the Q bands versus Hammett σ_p parameters
- v DFT and TDDFT calculations
- vi References
- vii Appendix: HR-MALDI-FT-ICR-MS of 2a-c and 3a and ¹H NMR spectra in a full range

i. Experimental

General Procedure: Electronic absorption spectra were recorded on a JASCO V-570 spectrophotometer. Circular dichroism (CD) and magnetic circular dichroism (MCD) spectra were recorded on a JASCO J-725 spectrodichrometer equipped with a JASCO electromagnet, which produces magnetic fields of up to 1.03 T (1 T = 1 tesla) with both parallel and antiparallel fields. The magnitudes were expressed in terms of molar ellipticity ($[\theta]/\text{deg dm}^3 \text{ mol}^{-1}\text{cm}^{-1}$) and molar ellipticity per tesla ($[\theta]_M/\text{deg dm}^3 \text{ mol}^{-1}\text{cm}^{-1}\text{T}^{-1}$), respectively. Fluorescence spectra were measured on a Hitachi F-4500 spectrofluorimeter. Absolute fluorescence quantum yields were measured on a Hamamatsu Photonics C9920-03G calibrated integrating sphere system. ¹H NMR spectra were recorded on a Bruker AVANCE 500 spectrometer (operating at 500.13 MHz) using the residual solvent as an internal reference for ¹H (δ = 7.26 ppm for CDCl₃, δ = 5.32 ppm for CD₂Cl₂ and δ = 2.09 ppm for toluene- d_8). High resolution mass spectra were recorded on a Bruker Daltonics solariX 9.4T spectrometer. Preparative separations were performed by silica gel column chromatography (Merck Kieselegel 60H) and recycling preparative GPC-HPLC (JAI LC-9201 with preparative JAIGEL-2H, 2.5H, and Separation of all the enantiomers was carried out by high-performance liquid 3.0H columns). chromatography (HPLC) with a preparative CHIRALPAK IA column by monitoring the absorbance at 580 nm. All reagents and solvents were of commercial reagent grade and were used without further purification except where noted.

Crystallographic Data Collection and Structure Refinement. Data collection was carried out at -173(2) °C on a Bruker APEXII CCD diffractometer with Mo K α radiation ($\lambda = 0.71073$ Å) for **2c**. The structure was

solved by a direct method (SHELXS-97)^[1] and refined using a full-matrix least squares technique (SHELXL-97). CCDC-1015544 contain the supplementary crystallographic data for **2c** and the data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational methods: The Gaussian 09 software package^[2] was used to carry out DFT and TDDFT calculations using the B3LYP functional and 6-31G(d) basis sets. Structural optimization was performed on model compounds of **2a**, **2b**, **2c**, **3c**, and unsubstituted subporphyrazine **4** as a reference compound.

Scheme S1. Syntheses of 2-aryl-substituted 1,1,2-tricyanoethylene 1a-c.

Synthesis of P-1a: A 5 mL water solution of NaOH (16 mg, 0.4 mmol) was added to a 30 mL methanol solution of *p*-anisaldehyde (13.6 g, 0.1 mol) and malononitrile (7.92 g, 0.12 mol, 1.2 equiv.). The resultant mixture was stirred at r.t. for 0.5 h. The solid was collected by filtration and further purified by silica gel column chromatography using CHCl₃ as an eluent to afford 1,1-dicyano-2-methoxylpnehylethylene **P-1a** in yield 88% (16.2 g). ¹H NMR (500 MHz, CDCl₃, 298K): δ [ppm] = 7.91 (d, 2H, phenyl; *J* = 8.8 Hz), 7.65 (s, 1H, ethylene), 7.01 (d, 2H, phenyl; *J* = 9.0 Hz), 3.92 (s, 3H, -OMe).

Synthesis of P-1b: A 5 mL water solution of NaOH (16 mg, 0.4 mmol) was added to a 30 mL methanol mixture of *p*-tolualdehyde (12.0 g, 10 mmol) and malononitrile (7.92g, 12 mmol, 1.2 equiv.). The resultant mixture was stirred at r.t. for 0.5 h. The solid was collected by filtration and further purified by silica gel column chromatography using CHCl₃ as an eluent to afford 1,1-dicyano-2-*p*-tolylethylene **P-1b** in 86% yield (14.4 g). ¹H NMR (500 MHz, CDCl₃, 298K): δ [ppm] = 7.81 (d, 2H, phenyl; *J* = 8.3 Hz), 7.72 (s, H, ethylene), 7.34 (d, 2H, phenyl; *J* = 8.2 Hz), 2.45 (s, 1H, -CH₃).

Synthesis of P-1c: A 5 mL water solution of NaOH (16 mg, 0.4 mmol) was added to a 30 mL methanol mixture of *p*-trifluoromethylbenzaldehyde (17.4 g, 10 mmol) and malononitrile (7.92g, 12 mmol, 1.2 equiv.). The resultant mixture was stirred at r.t. for 0.5 h. The solid was collected by filtration and further purified by silica gel column chromatography using CHCl₃ as an eluent to afford 1,1-dicyano-2-*p*-trifluoromethylphenylethylene **P-1c** in 80% yield (17.7 g). ¹H NMR (500 MHz, CDCl₃, 298K): δ [ppm] = 8.01 (d, 2H, phenyl; *J* = 8.8 Hz), 7.84 (s, 1H, ethylene), 7.81 (d, 2H, phenyl; *J* = 8.4 Hz).

Synthesis of P-2a: KCN (1.02 g, 15.5 mmol, 1.03 equiv.) was stirred in 20 mL of water and heated at 60 °C. After KCN was completely dissolved in the water, a 20 mL of EtOH solution of 1,1-dicyano-2-

methoxylpnehylethylene **P-1a** (2.76 g, 15.0 mmol) was slowly added, and the resultant mixture was then continuously stirred at 60 °C for 15 min. After cooled to room temperature, a solution of acetic acid (2mL) and water (10 mL) was added, and the solvent was removed under vacuum. Further purification was carried out by silica gel column chromatography (eluent: CHCl₃:MeOH = 10:1) to afford 1,1,2-tricyano-2-methoxylphenylethane **P-2a** in 65% yield (2.06 g). ¹H NMR (500 MHz, CDCl₃, 298K): δ [ppm] = 7.42 (d, 2H, phenyl; *J* = 8.8 Hz), 7.01 (d, 2H, phenyl; *J* = 8.8 Hz), 4.40 (d, 1H, ethylene; *J* = 6.0 Hz), 4.18 (d, 1H, ethylene; *J* = 6.0 Hz), 3.85 (s, 3H, -OMe).

Synthesis of P-2b: KCN (1.02 g, 15.5 mmol, 1.03 equiv.) was stirred in 20 mL of water and heated at 60 °C. After KCN was completely dissolved in the water, a 20 mL of EtOH solution of 1,1-dicyano-2-*p*-tolylethylene P-1b (2.52 g, 15 mmol) was slowly added, and the resultant mixture was then continuously stirred at 60 °C for 15 min. After cooled to room temperature, a solution of acetic acid (2mL) and water (10 mL) was added, and the solvent was removed under vacuum. Further purification was carried out by silica gel column chromatography (eluent: CHCl₃:MeOH = 10:1) to afford 1,1,2-tricyano-2-*p*-tolylethane P-2b in 62% yield (1.81 g). ¹H NMR (CDCl₃, 298K): δ [ppm] = 7.38 (d, 2H, phenyl; *J* = 8.2 Hz), 7.32 (d, 2H, phenyl; *J* = 8.2 Hz), 4.41 (d, 1H, ethylene; *J* = 6.0 Hz), 4.20 (d, 1H, ethylene; *J* = 6.0 Hz), 2.41 (s, 3H, -CH₃).

Synthesis of P-2c: KCN (1.02 g, 15.5 mmol, 1.03 equiv.) was stirred in 20 mL of water and heated at 60 °C. After KCN was completely dissolved in the water, a 20 mL of EtOH solution of 1,1-dicyano-2-*p*-trifluoromethylphenylethylene **P-1c** (3.4 g, 15 mmol) was slowly added, and the resultant mixture was then continuously stirred at 60 °C for 15 min. After cooled to room temperature, a solution of acetic acid (2mL) and water (10 mL) was added, and the solvent was removed under vacuum. Further purification was carried out by silica gel column chromatography (eluent: CHCl₃:MeOH = 10:1) to afford 1,1,2-tricyano-2-*p*-trifluoromethylphenylethane **P-2c** in yield 42% (1.57 g). ¹H NMR (CDCl₃, 298K): δ [ppm] = 7.82 (d, 2H, phenyl; *J* = 8.2 Hz), 7.68 (d, 2H, phenyl; *J* = 8.2 Hz), 4.53 (d, 1H, ethylene; *J* = 5.7 Hz), 4.31 (d, 1H, ethylene; *J* = 5.7 Hz).

Synthesis of 1a: 2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (DDQ; 2.3 g 10.0 mmol, 2.0 equiv.) was added to a 50 mL CHCl₃ solution of 1,1,2-tricyano-2-methoxylphenylethane **P-2a** (1.06 g, 5.0 mmol). The resultant mixture was stirred at room temperature for 2 h under air. After removal of the solvent, the mixture was purified by alumina gel column chromatography (eluent: CHCl₃) and then by silica gel column chromatography (eluent: CHCl₃) and then by silica gel column chromatography (eluent: CHCl₃) to afford 1,1,2-tricyano-2-methoxylphenylethylene **1a** in 95% yield (0.99 g). ¹H NMR (500 MHz, CDCl₃, 298K): δ [ppm] = 8.10 (d, 2H, phenyl; *J* = 9.2 Hz), 7.08 (d, 2H, phenyl; *J* = 9.2 Hz), 3.96 (s, 3H, -OMe).

Synthesis of 1b: 2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (DDQ; 2.3 g 10.0 mmol, 2.0 equiv.) was added to a 50 mL CHCl₃ solution of 1,1,2-tricyano-2-*p*-tolylethane **P-2b** (0.98 g, 5.0 mmol). The resultant mixture was stirred at room temperature for 2 h under air. After removal of the solvent, the mixture was purified by alumina gel column chromatography (eluent: CHCl₃) and then by silica gel column chromatography (eluent: CHCl₃) to afford 1,1,2-tricyano-2-*p*-tolylethylene **1b** in 92% yield (0.89 g) ¹H NMR (500 MHz, CDCl₃, 298K): δ

[ppm] = 7.95 (d, 2H, phenyl; J = 8.5 Hz), 7.41 (d, 2H, phenyl; J = 8.5 Hz), 2.50 (s, 3H, -CH₃).

Synthesis of 1c: 2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (DDQ; 2.3 g 10.0 mmol, 2.0 equiv.) was added to a 50 mL CHCl₃ solution of 1,1,2-tricyano-2-*p*-trifluoromethylphenylethane **P-2c** (1.25 g, 5.0 mmol). The resultant mixture was stirred at room temperature for 2 h under air. After removal of the solvent, the mixture was purified by alumina gel column chromatography (eluent: CHCl₃) and then by silica gel column chromatography (eluent: CHCl₃) and then by silica gel column chromatography (eluent: CHCl₃) to afford 1,1,2-tricyano-2-*p*-trifluorophenylethylene **1c** in 75% yield (0.93 g). ¹H NMR (CDCl₃, 298K): δ [ppm] = 8.10 (d, 2H, phenyl; *J* = 8.5 Hz), 7.90 (d, 2H, phenyl; *J* = 8.5 Hz).

Synthesis of 2a: Boron trichloride (1.0 M *p*-xylene solution, 0.35 mL, 0.35 equiv.) was added to 1,1,2-tricyano-2-*p*-methoxyphenylethylene **1a** (209 mg, 1.0 mmol) at room temperature. The resulting mixture was gradually heated at 140 °C, and the temperature maintained for 45 min. After removal of the solvent, the reaction mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate = 10 : 1) and bio-beads (Sx-1) column (eluent: CHCl₃). Recrystallization from toluene and hexane provided compound **2a** in 3.3% yield (7.40 mg). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 8.88 (d, *J* = 9.1 Hz, 6H), 7.24 (d, *J* = 9.1 Hz, 6H), 4.00 (s, 9H; -OMe); UV/vis (toluene): λ_{max} [nm] (ε [M⁻¹ cm⁻¹]) = 633 (42300), 435 (17300); HR-MALDI-TOF-MS: *m*/*z* = 673.1555 (Calcd. for C₃₆H₂₁BClN₉O₃ [*M*⁻], 673.1554).

Synthetic procedure of 2b: Boron trichloride (1.0 M *p*-xylene solution, 0.35 mL, 0.35 equiv.) was added to 1,1,2-tricyano-2-*p*-tolylethylene **1b** (193 mg, 1.0 mmol) at room temperature. The resulting mixture was gradually heated at 140 °C, and the temperature maintained for 45 min. After removal of solvents under vacuum, the reaction mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate = 10 : 1), GPC-HPLC (eluent: CHCl₃). Recrystallization from toluene and hexane provided compound **2b** in 5.6% yield (11.7 mg). ¹H NMR (500 MHz, CDCl₃): δ [ppm] = 8.71 (d, *J* = 8.3Hz, 6H), 7.55 (d, *J* = 8.1 Hz, 6H), 2.63 (s, 9H; -CH₃); UV/vis (toluene): λ_{max} [nm] (ε [M⁻¹ cm⁻¹]) = 594 (41200), 419 (15400); HR-MALDI-TOF-MS: *m*/*z* = 625.1705 (Calcd. for C₃₆H₂₁BClN₉ [*M*⁻], 625.1707).

Synthetic procedure of 2c: Boron trichloride (1.0 M *p*-xylene solution, 0.35 mL, 0.35 equiv.) was added to 1,1,2-tricyano-2-*p*-trifloromethylphenyl-ethylene **1c** (193 mg, 1.0 mmol) at room temperature. The resulting mixture was gradually heated at 140 °C, and the temperature maintained for 45 min. After removal of solvents under vacuum, the crude mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate = 8 : 1) and bio-beads (Sx-1) column (eluent: toluene). Recrystallization from toluene and hexane provided compound **2c** in 7.2% yield (18.9 mg). ¹H NMR (500 MHz, toluene-*d*₈): δ [ppm] = 8.68 (d, *J* = 8.2Hz, 6H), 7.39 (d, *J* = 8.3Hz, 6H); UV/vis (toluene): λ_{max} [nm] (ε [M⁻¹ cm⁻¹]) = 571 (41200), 390 (14900); HR-MALDI-TOF-MS: *m/z* = 787.0857 (Calcd. for C₃₆H₁₂BClF₉N₉ [*M*⁻], 787.0859).

Synthetic procedure of 3a: The subporphyrazine **3a** was isolated from the reaction mixture of the synthesis of **2a**. The reaction mixture was purified by silica gel column chromatography (eluent: toluene : ethylacetate = 10 : 1) and bio-beads (Sx-1) column (eluent: CHCl₃). Recrystallization from toluene and hexane provided the target compound in a 0.2% yield (0.45 mg). ¹H NMR (500 MHz, CD₂Cl₂): δ [ppm] = 8.91 (d, *J* = 9.0 Hz,

2H); 8.78 (d, *J* =9.0Hz, 2H), 8.71 (d, *J* = 9.0Hz, 2H), 7.30 (d, *J* = 9.1Hz, 2H), 7.23 (d, *J* = 9.1Hz, 2H), 7.20 (d, *J* = 9.1 Hz, 2H), 4.01 (s, 3H; -OMe), 3.98 (s, 3H; -OMe), 3.96 (s, 3H; -OMe); UV/vis (toluene): λ_{max} [nm] (ε [M⁻¹ cm⁻¹]) = 629 (41000), 499 (27100), 435 (22700); HR-MALDI-TOF-MS: *m*/*z* = 673.1553 (Calcd. for C₃₆H₂₁BClN₉O₃ [*M*⁻], 673.1555).

ii. Crystal packing diagrams of 2c

Fig. S1. Crystal packing diagram of **2c**.

iii. ¹HNMR spectra

Fig. S2. ¹H NMR spectra of 2a in CDCl₃.

Fig. S3. ¹H NMR spectra of **2b** in CDCl₃.

Fig. S4. ¹H NMR spectra of **2c** in toluene-*d*₈.

Fig. S5. ¹H NMR spectra of **3a** in CD₂Cl₂.

iv. Plot of position of the Q bands versus Hammett $\sigma_{\rm p}$ parameters

Fig. S6. Plot of position of the Q bands of the push-pull subporphyrazines versus Hammett σ_p parameters.

v. DFT and TDDFT calculations

Fig. S7. Frontier MO diagrams of 2a-2c, 3a, and 4.

Fig. S8. Frontier MOs of 2a.

Fig. S9. Frontier MOs of 2b.

Fig. S10. Frontier MOs of 2c.

HOMO-3

Fig. S11. Frontier MOs of 3a.

compd	energy [nm]	<i>f</i> ^[a]	wave function ^[b]
2a	614	0.376	$+ 0.629 L \leftarrow H > + 0.290 L + 1 \leftarrow H > + \dots$
	614	0.376	$+ 0.629 L+1 \leftarrow H> + 0.290 L \leftarrow H> + \dots$
	547	0.195	$+ 0.472 L+1 \leftarrow H-2 > + 0.472 L \leftarrow H-1 > - 0.142 L \leftarrow H-2 > + 0.142 L+1 \leftarrow H-1 > + \dots$
	547	0.195	$+ 0.472 L+1 \leftarrow H-1 > - 0.472 L \leftarrow H-2 > - 0.142 L+1 \leftarrow H-2 > - 0.142 L \leftarrow H-1 > + \dots$
	416	0.162	$+ 0.606 L+1 \leftarrow H-3 > + 0.280 L \leftarrow H-3 > - 0.132 L \leftarrow H-9 > +$
	416	0.162	$+ 0.606 L \leftarrow H-3 > - 0.280 L+1 \leftarrow H-3 > + 0.132 L+1 \leftarrow H-9 > + \dots$
2b	564	0.356	$+0.687 L \leftarrow H> +$
	564	0.356	$+0.687 L+1 \leftarrow H> +$
	501	0.115	$+ 0.344 L \leftarrow H-2 > + 0.357 L+1 \leftarrow H-2 > - 0.357 L \leftarrow H-1 > + 0.344 L+1 \leftarrow H-1 > + \dots$
	501	0.115	$+ 0.357 L \leftarrow H-2 > - 0.344 L+1 \leftarrow H-2 > + 0.344 L \leftarrow H-1 > + 0.357 L+1 \leftarrow H-1 > + \dots$
	407	0.167	$+ 0.550 L + 1 \leftarrow H - 3 > - 0.130 L \leftarrow H - 8 > + 0.199 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L + 1 \leftarrow H - 6 > - 0.168 L \leftarrow H - 5 > + 0.109 L \leftarrow H - 5 $
			$0.148 L+1 \leftarrow H-5 > -0.148 L \leftarrow H-4 > -0.168 L+1 \leftarrow H-4 > -0.122 L \leftarrow H-3 > + \dots$
	407	0.167	$+ 0.550 L \leftarrow H-3> + 0.130 L+1 \leftarrow H-8> + 0.199 L \leftarrow H-6> - 0.148 L \leftarrow H-5> - 0.148 $
			$0.168 L+1 \leftarrow H-5> + 0.168 L \leftarrow H-4> - 0.148 L+1 \leftarrow H-4> + 0.122 L+1 \leftarrow H-3> + \dots$
2c	528	0.341	$+ 0.677 L \leftarrow H > - 0.122 L+1 \leftarrow H-3 > + 0.109 L+1 \leftarrow H > +$
	528	0.341	$+0.677 L+1 \leftarrow H>+0.122 L \leftarrow H-3>-0.109 L \leftarrow H>+$
	403	0.190	$+ 0.574 L+1 \leftarrow H-3 > - 0.118 L \leftarrow H-9 > - 0.127 L+1 \leftarrow H-9 > - 0.219 L+1 \leftarrow H-6 > + 0.574 L+1 \leftarrow H-6 > $
			$0.153 L+1 \leftarrow H-5 > + 0.153 L \leftarrow H-4 > - 0.114 L \leftarrow H-3 > + 0.112 L \leftarrow H > + \dots$
	403	0.190	$+ 0.574 L \leftarrow H-3 > - 0.127 L \leftarrow H-9 > + 0.118 L+1 \leftarrow H-9 > - 0.219 L \leftarrow H-6 > -$
			$0.153 L \leftarrow H-5> + 0.153 L+1 \leftarrow H-4> + 0.114 L+1 \leftarrow H-3> - 0.112 L+1 \leftarrow H> + \dots$
3 a	610	0.223	$+ 0.521 L \leftarrow H > + 0.437 L + 1 \leftarrow H > +$
	594	0.252	$+ 0.535 L+1 \leftarrow H> - 0.445 L \leftarrow H> +$
	496	0.283	$+0.657 L+1 \leftarrow H-2 > -0.107 L \leftarrow H-3 > -0.206 L \leftarrow H-1 > +$
	423	0.117	$+0.472 L+1 \leftarrow H-3 > -0.458 L \leftarrow H-3 > -0.125 L \leftarrow H-9 > +$
	422	0.229	$+ 0.487 L \leftarrow H-3> + 0.456 L+1 \leftarrow H-3> - 0.107 L \leftarrow H-9> + 0.107 L+1 \leftarrow H-9> + \dots$

Table S1. Selected transition energies and wave functions of **1a** and **2a** calculated by the TDDFT method (B3LYP/6-31G(d)).

[a] Oscillator strength. [b] Wave functions based on the eigenvectors predicted by TDDFT. H and L represent the HOMO and LUMO, respectively.

vi. Reference

1. G. M. Sheldrick, SHELXL-97, Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen, Germany, 1997.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.

S16

