Sodium Borohydride Stabilizes Very Active

Gold Nanoparticle Catalyst

Christophe Deraedt, Lionel Salmon, Sylvain Gatard, Roberto Ciganda, Ricardo Hernandez, Jaime Ruiz, Didier Astruc *

ELECTRONIC SUPPLEMENTARY INFORMATIONS

Table of content

General	data				P2
General	<i>uuuu</i>				· · · · · · · · · · · · ·
	General	General data	General data	General data	General data

II. Preparation of the AuNP solutions A, B, C, D, E.....P3

IV. Comparative catalysis table.....P8

V.	References	Р9
----	------------	----

I. General data

HAuCl₄ and NaBH₄ from Sigma Aldrich were used as received.

The **UV-vis.** absorption spectra were measured with Perkin-Elmer Lambda 19 UV-vis.

II. Synthesis of AuNPs in the water solutions A, B, C, D, and E.

1.5 mg of HAuCl₄ (Mw = 339.7 g.mol-1, n = 4.4 x 10^{-3} mmol) is dissolved in 32 mL of water in order to obtain [Au] = 1.38×10^{-1} mM. After 15 min of stirring 1 mL of a water solution of NaBH₄ is added quickly.

Solution A: 0.30 mg of NaBH₄ is dissolved in 1 mL of water (2 equiv. per gold atom)

Solution **B**: 1.5 mg of NaBH₄ is dissolved in 1 mL of water (10 equiv. per gold atom)

Solution C: 7.5 mg of NaBH₄ is dissolved in 1 mL of water (50 equiv. per gold atom)

Solution **D**: 15 mg of NaBH₄ is dissolved in 1 mL of water (100 equiv. per gold atom)

Solution E: 0 mg of NaBH₄ is dissolved in 1 mL of water (0 equiv. per gold atom)

These solutions are directly used in UV-vis spectroscopy in order to determine the SPB band of the AuNPs. TEM has been performed on the solution A, B, and C after 3 days of synthesis (+ after 1 month for solution B). As AuNPs in solution have fully precipitated after 1 hours, no TEM was performed on this solution.

TEM images:

Fig. S1 TEM of solution A. Few AuNPs were observed by TEM due to some precipitations. The average size of AuNPs is 5.5 ± 2 nm (calculated on 103 NPs).

Fig. S2 TEM of solution **B** after 3 days of synthesis. The average size of AuNPs is 2.8 ± 1 nm (calculated on 180 NPs). The TEM image after 1 month reveals quite the same average size (see main text).

Fig. 3 TEM of solution C. Only aggregates were observed by TEM. In this image it seems that the beginning of a AuNP network is formed.

III. Reduction of 4-nitrophenol

7 mg of 4-nitrophenol (0.05 mmol) is solubilised in a beaker containing 100 mL of water. Just before monitoring the reaction by UV-vis. spectroscopy, 186 mg of NaBH₄ (100 equiv. per Au atom) is added into the beaker. After 2 min the catalyst is added (1 ml of the solution **A**, **B**, **C**, **D**, and **E** corresponds to 0.2% mol of Au *per* 4-nitrophenol). The solution is directly used for monitoring.

Fig. S4 Kinetic study of the 4-nitrophenol reduction by NaBH₄ with 1% mol Au NPs (solution **B**) using UV-vis. spectroscopy at 400 nm (left) and plot of $-\ln(C_0/C_t)$ vs. time (s) for its disappearance (right).

Fig. S5 Kinetic study of the 4-nitrophenol reduction by NaBH₄ with 0.05% mol Au NPs (solution **B**) using UV-vis. spectroscopy at 400 nm (left) and plot of $-\ln(C_0/C_t)$ vs. time (s) for its disappearance (right). Runs were recorded every 40 seconds during the kinetic study.

Fig. S6 Kinetic study of the 4-nitrophenol reduction by NaBH₄ with 0.2% mol AuNPs (solution **A**) using UV-vis. spectroscopy at 400 nm (left) and plot of $-\ln(C_0/C_t)$ vs. time (s) for its disappearance (right). Runs were recorded every 40 seconds during the kinetic study.

Fig. S7 Kinetic study of the 4-nitrophenol reduction by NaBH₄ with 0.2% mol Au NPs (solution C) using UV-vis. spectroscopy at 400 nm (left) and plot of $-\ln(C_0/C_t)$ vs. time (s) for its disappearance (right).

Fig. S8 Kinetic study of the 4-nitrophenol reduction by NaBH₄ with 0.2% mol Au NPs (solution **E**) using UV-vis. spectroscopy at 400 nm (left) and plot of $-\ln(C_0/C_t)$ vs. time (s) for its disappearance (right). Runs were recorded every 40 seconds during the kinetic study.

IV. Comparative table

Table 1. Some examples of AuNP systems used in 4-NP reduction							
Catalyst support ^[ref]	Au (% mol)	NaBH ₄ (equiv.)	k_{app} (s ⁻¹)	TOF (h ⁻¹)			
GO1	2.6	23	1.9 × 10 ⁻¹	126			
4,4-bpy ²	5	100	7.2 ×10 ⁻⁴	19			
PDDA/NCC ³	2.7	100	5.1×10^{-3}	212			
Boehmite ⁴	270	100	1.7×10^{-3}	0.69			
PANI ⁵	1.7	4.4	1.2×10^{-2}	570			
GO/SiO ₂ ⁶	1.6	200	1.7 ×10 ⁻²	1 028			
SNTs ⁷	27	42	1.1 × 10 ⁻²	46			
PNIPAP-b-P4VP ⁸	20	33	1.5×10^{-3}	16			
PDMAEMA-PS9	700	57	3.2×10^{-3}	1			
Poly(DVP-co-AA) ¹⁰	0.37	37	6.0×10^{-3}	222			
Chitosan ¹¹	17	3	1.2×10^{-2}	50			
CSNF ¹²	0.66	100	5.9 × 10 ⁻³	563			
PMMA ¹³	6.6	1500	7.2 × 10 ⁻³	89			
DMF ¹⁴	1	2000	3.0×10^{-3}	83			
SiO ₂ ¹⁵	10.6	29	1.0×10^{-3}	14			
PAMAM ¹⁶	1	17	2.0×10^{-3}	196			
EGCG-CF ¹⁷	100	1320	2.4×10^{-3}	2			
Biomass ¹⁸	5	66	4.6×10^{-4}	20			
TWEEN/GO ¹⁹	62.5	23	4.2×10^{-3}	7			
HPEI-IBAm ²⁰	9.5	100	-	120			
Graphene ²¹	43.4	71	3.2 × 10 ⁻³	12			
hydrogel ZnO ²²	333	3000	2.4×10^{-3}	3			
αCD^{23}	16.6	42	4.7×10^{-3}	34			
Peptide ²⁴	200	246	1.3×10^{-3}	7			
PC/PEI/PAA ²⁵	26.3	160	7.0×10^{-3}	33			
MPFs ²⁶	5	200	3.0×10^{-3}	80			
SiO ₂ @Au/CeO ₂ ²⁷	5	83	1.3 × 10 ⁻²	240			
Au(0)@TpTA-1 ²⁸	50	1624	5.35 × 10 ⁻³	9.23			
Au/DEND- PEG550 ²⁹	2	81	9.43 × 10 ⁻³	901			
solution B	1	100	2.0×10^{-2}	3000			
solution B	0.2	100	9.0×10^{-3}	9000			
solution B	0.05	100	1.0×10^{-3}	5455			

V. References

- 1. D. Jana, A. Dandapat and G. De, Langmuir, 2010, 26, 12177-12184.
- 2. J. Han, L. Li and R. Guo, Macromolecules, 2010, 43, 10636-10644.
- 3. C. Zhu, L. Han, P. Hu and S. Dong, Nanoscale, 2012, 4, 1641-1646.
- 4. Z. Zhang, C. Shao, P. Zou, P. Zhang, M. Zhang, M. Mu, Z. Guo, X. Li, C. Wang and Y. Liu, *Chem. Commun.*, 2011, 47, 3906-3908.
- 5. Y. Wang, G. Wei, W. Zhang, X. Jiang, P. Zheng, L. Shi and A. Dong, J. Mol. Catal. A-Chem., 2007, 266, 233-238.
- 6. M. Zhang, L. Liu, C. Wu, G. Fu and H. Zhao, B. He, *Polymer*, 2007, 48, 1989-1997.
- 7. W. Liu, X. Yang and W. Huang, J. Colloid. Interface. Sci., 2006, 304, 160-165.

8. Y. C. Chang and D. H. Chen, J. Hazard. Mater., 2009, 165, 664-669.

- 9. H. Koga, E. Tokunaga, M. Hidaka, Y. Umemura, T. Saito, A. Isogai and T. Kitaoka, *Chem. Commun.*, 2010, **46**, 8567-8569.
- 10. K. Kuroda, T. Ishida and M. Haruta, J. Mol. Catal. A-Chem, 2009, 298, 7-11.
- 11. H. Yamamoto, H. Yano, H. Kouchi, Y. Obora, R. Arakawa and H. Kawasaki, *Nanoscale*, 2012, 4, 4148-4154.
- 12. S.-H. Wu, C.-T. Tseng, Y.-S. Lin, C.-H. Lin, Y. Hung and C.-Y. Mou, *J. Mater. Chem.*, 2011, **21**, 789-794.
- 13. H. Wu, Z. Liu, X. Wang, B. Zhao, J. Zhang and C. Li, J. Colloid. Interf. Sci., 2006, **302**, 142-148.
- 14. H. Wu, X. Huang, M. Gao, X. Liao and B. Shi, Green. Chem. 2011, 13, 651-658.
- 15. K. B. Narayanan and N. Sakthivel, J. Hazard. Mater., 2011, 189, 519-525.
- 16. W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, S. Liu, Y. Luo and X. Sun, J. Hazard. Mater., 2011, 197, 320-326.
- 17. X.-Y. Liu, F. Cheng, Y. Liu, H.-J. Liu and Y. Chen, J. Mater. Chem., 2010, 20, 360-368.
- 18. J. Li, C.-Y. Liu and Y. Liu, J. Mater. Chem., 2012, 22, 8426-8430.
- 19. H. Koga and T. Kitaoka, Chem. Eng. J., 2011, 168, 420-425.
- 20. T. Huang, F. Meng and L. Qi, J. Phys. Chem. C., 2009, 113, 13636-13642.
- 21. R. Bhandari and M. R. Knecht, *Catalysis Science & Technology*, 2012, **2**, 1360-1366.
- 22. B. Ballarin, M. C. Cassani, D. Tonelli, E. Boanini, S. Albonetti, M. Blosi and M. Gazzano, J. Phys. Chem. C., 2010, **114**, 9693-9701.
- 23. Y. Zhu, J. Shen, K. Zhou, C. Chen, X. Yang and C. Li, J. Phys. Chem. C., 2011, 115, 1614-1619.
- 24. Y. Xia, Z. Shi and Y. Lu, Polymer, 2010, 51, 1328-1335.
- 25. H. Wei and Y. Lu, Chem.- An Asian J., 2012, 7, 680-683.
- 26. H. Yang, K. Nagai, T. Abe, H. Homma, T. Norimatsu and R. Ramaraj, *Acs. Appl. Mater. Inter.*, 2009, **1**, 1860-1864.
- 27. B. Liu, S. Yun, Q. Wang, W. Hu, P. Jing, Y. Liu, W. Jia, Y. Liu, L. Liu, and J. Zhang, *Chem. Commun.*, 2013, **49**, 3757-3759.
- 28. P. Pachfule, S. Kandambeth, D. Diàz Diàz and Rahul Banerj, *Chem. Commun.*, 2014, **50**, 3169-3172.
- 29. L. Na, M. Echeverria, S. Moya, J. Ruiz and D. Astruc, *Inorg. Chem.* 2014, **53**, 6954-6961.