Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

for

Electrophilic iodine(I) compounds induced semipinacol rearrangement via C–X bond cleavage

Nobuya Tsuji, Yusuke Kobayashi, Yoshiji Takemoto*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

CONTENTS

1. General information	S3
2. Preparation of substrates	S3
3. General procedure for iodine(I)-mediated semipinacol rearrangement	S12
4. Preparation of the chiral substrate	S14
5. The appearance of the reaction mixture	S15
6. Preparation of the iodoimidazolium salt	S15
7. Maximum values of electrostatic potential energy	S17
8. Calculated energetic properties of XB-donors and Cartesian coordinates of calcula	ted structures
9. Detection of MS signal of IBr	823
10. References	S23
11. Copies of ¹ H and ¹³ C NMR charts	825
12. Copies of HPLC charts	S53

1. General information

All non-aqueous reactions were carried out under a positive atmosphere of argon in dried glassware unless otherwise noted. Solvents and materials were obtained from commercial suppliers and used without further purification. Column chromatography was performed on Cica silica gel 60 (230-400 mesh) or Fuji Silysia silica gel (NH, 100-200 mesh), gel permeation chromatography was performed with LC-9201 and flash column chromatography was performed on Cica silica gel 60 (spherical/40-100 µm). Reactions and chromatography fractions were analyzed employing pre-coated silica gel plate (Merck Silica Gel 60 F₂₅₄). All melting points were measured on BÜCHI M-565 melting point apparatus and are uncorrected. IR spectra were measured on JASCO FT/IR-4100. Unless otherwise noted, NMR spectra were obtained in CDCl₃. ¹H NMR (500 MHz) spectra were recorded with JEOL ECP-500 spectrometers and chemical shifts are reported in δ (ppm) relative to TMS (in CDCl₃) as internal standard. Unless otherwise noted, ¹³C NMR (126 MHz) spectra were also recorded using JEOL ECP-500 spectrometers and referenced to the residual CHCl₃ signals. ¹H NMR multiplicities are reported as follows: br = broad; m = multiplet; s = singlet; d = doublet; t = triplet; q = quartet; sep = septet. Low-resolution mass spectra were recorded on a JMS-HX/HX 110A or MS700 mass spectrometer. High-resolution mass spectra were obtained on a JMS-HX/MS700 (FAB) or a Shimazu LCMS-IT-TOF fitted with an ESI. Optical rotations were recorded on a JASCO P-2200 polarimater with a path length of 1 cm; concentrations are quoted in grams per 100 mL. $[\alpha]_D$ values are measured in 10^{-1} deg cm²g⁻¹. Enantiomeric excess was determined by high performance liquid chromatography (HPLC) analyses. Unless otherwise noted, all materials and solvent were purchased from Tokyo Kasei Co., Aldrich Inc., and other commercial suppliers and were used without purification. All non-commercially available substrates were prepared according to the literature procedure as indicated below.

2. Preparation of substrates

General procedure for the preparation of benzyl bromide 1.

$$R^{1} \xrightarrow{OH}_{R^{2}} R^{2} \xrightarrow{1) R_{3}SiOTf, 2,6-lutidine} R^{1} \xrightarrow{P}_{R^{2}} OSiR_{3}$$

To a solution of tertiary alcohol (2.0 mmol, 1.0 equiv) in $CH_2Cl_2(10 \text{ mL})$ under argon atmosphere was added 2,6-lutidine (4.0 mmol, 2.0 equiv) and TBSOTf or TMSOTf (2.4 mmol, 1.2 equiv) at 0 °C. The resulting mixture was stirred at room temperature until consumption of the starting material, as monitored by TLC (hexane/EtOAc = 9:1). The reaction was quenched with H₂O, and the product was extracted with CHCl₃ three

times. The combined organic layer was dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The residue was filtered through a plug of silica gel with hexane to yield the corresponding silyl ether. To the solution of the obtained silyl ether (0.5 mmol, 1.0 equiv) in CCl_4 (10 mL) under argon atmosphere was added *N*-bromosuccinimide (0.55 mmol, 1.1 equiv) and benzoyl peroxide (0.05 mmol, 0.1 equiv). The resulting mixture was stirred under reflux until consumption of the starting material, as monitored by TLC (hexane). The reaction was quenched with aqueous $Na_2S_2O_3$ solution, and the product was extracted with CHCl₃ three times. The combined organic layer was dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (hexane) to yield the corresponding benzyl bromide **1**.

[1-(a-Bromobenzyl)cyclohexyl]oxy(tert-butyl)dimethylsilane (1a)

Colorless solid (75%, 2 steps); Mp: 38–42 °C; IR (ATR): 2930, 2857, 1453, 1254, 1106, 1001, 890, 836, 774, 702 cm⁻¹; ¹H NMR (CDCl₃ 500MHz): δ = 7.55–7.53 (m, 2H), 7.30–7.25 (m, 3H), 5.25 (s, 1H), 2.28–2.15 (m, 1H), 1.76–1.68 (m, 1H), 1.60–1.16 (m, 8H), 0.98 (s, 9H), 0.24 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 139.8, 129.7, 128.1, 127.9, 77.3, 62.1, 38.6, 35.7, 26.2, 25.5, 23.4, 23.3, 18.8, -1.57, -1.65; LRMS (FAB): *m*/*z* (relative intensity) 327 ([M–*t*Bu]⁺, 5), 325 ([M–*t*Bu]⁺, 5), 303 ([M–Br]⁺, 15), 73 (100); HRMS (FAB): calcd for C₁₅H₂₂⁸¹BrOSi ([M–*t*Bu]⁺): 327.0603; found 327.0608

[1-(a-Bromobenzyl)cyclohexyl]oxytrimethylsilane (1b)

Colorless solid (62%, 2 steps); Mp: 56–59 °C; IR (ATR): 2935, 2858, 1494, 1352, 1249, 1164, 1114, 1076, 1030, 1003, 894, 835, 752, 697 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): $\delta = 7.52-7.45$ (m, 2H), 7.31–7.23 (m, 3H), 5.12 (s, 1H), 2.02–1.90 (m, 1H), 1.74–1.60 (m, 2H), 1.59–1.30 (m, 7H), 0.21 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 139.7$, 129.7, 128.1, 127.9, 77.7, 63.7, 38.2, 36.0, 25.6, 23.0, 2.9; LRMS (FAB): *m/z* (relative intensity) 261 ([M–Br]⁺, 45), 73 (100); HRMS (FAB): calcd for C₁₆H₂₅OSi ([M–Br]⁺): 261.1675; found 261.1664

[1-(a-Bromobenzyl)cyclopentyl]oxy(*tert*-butyl)dimethylsilane (1e)

Yellow oil (71%, 2 steps); IR (ATR): 2954, 2856, 1471, 1253, 1089, 1005, 925, 834, 805, 771, 697 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.52–7.50 (m, 2H), 7.30–7.23 (m, 3H), 4.90 (s, 1H), 2.15–2.08 (m, 1H), 1.87–1.68 (m, 4H), 1.67–1.52 (m, 3H), 0.90 (s, 9H), 0.16 (s, 3H), 0.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 140.1, 129.6, 128.1, 128.0, 87.5, 64.3, 39.7, 38.4, 26.1, 24.3, 24.0, 18.7, 2.27, 2.34; LRMS (FAB): *m/z* (relative intensity) 289 ([M–Br]⁺, 40), 73 (100); HRMS (FAB): calcd for C₁₈H₂₉OSi ([M–Br]⁺): 289.1988; found 289.1982

[1-(a-Bromobenzyl)cycloheptyl]oxy(tert-butyl)dimethylsilane (1f)

Colorless oil (17%, 2 steps, not optimized); IR (ATR): 2926, 2855, 1461, 1360, 1253, 1219, 1090, 1002, 949, 872, 833, 804, 772, 698 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.57–7.50 (m, 2H), 7.30–7.23 (m, 3H), 5.00 (s, 1H), 2.23 (dd, *J* = 14.5, 8.1 Hz, 1H), 1.89–1.82 (m, 1H), 1.67–1.20 (m, 10H), 0.95 (s, 9H), 0.26 (s, 3H), 0.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 140.0, 129.8, 128.1, 127.9, 81.6, 65.4, 41.5, 39.5, 30.0, 29.8, 26.3, 23.3, 23.1, 18.9, -1.45, -1.53; LRMS (FAB): *m/z* (relative intensity) 317 ([M–Br]⁺, 25), 73 (100); HRMS (FAB): calcd for C₂₀H₃₃OSi ([M–Br]⁺): 317.2301; found 317.2299

[3-(a-Bromobenzyl)pentyl]oxy(tert-butyl)dimethylsilane (1g)

Colorless oil (54%, 2 steps); IR (ATR): 2967, 2929, 2855, 1472, 1255, 1131, 1071, 887, 836, 806, 746, 701 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.55–7.50 (m, 2H), 7.30–7.24 (m, 3H), 4.94 (s, 1H), 2.04 (dt, *J* = 14.0, 7.2 Hz, 1H), 1.83 (dt, *J* = 14.0, 7.1 Hz, 1H), 1.45–1.41 (m, 2H), 0.97 (s, 9H), 0.94 (t, *J* = 7.5 Hz, 3H), 0.81 (t,

J = 7.5 Hz, 3H), 0.26 (s, 3H), 0.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 139.8$, 130.1, 128.1, 127.8, 81.1, 62.7, 31.5, 29.4, 26.5, 19.1, 9.4, 8.7, -1.0, -1.1; LRMS (FAB): m/z (relative intensity) 291 ([M–Br]⁺, 22), 73 (100); HRMS (FAB): calcd for C₁₈H₃₁OSi ([M–Br]⁺): 291.2144; found 291.2145

[1-(a-Bromobenzyl)-4-tert-butylcyclohexyl]oxytrimethylsilane (1h)

Colorless solid (57%, 2 steps); Mp: 72–75 °C; IR (ATR): 2951, 2870, 1450, 1369, 1248, 1139, 1058, 892, 836, 772, 699, 672 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.43–7.36 (m, 2H), 7.30–7.21 (m, 3H), 4.86 (s, 1H), 2.04–1.98 (m, 1H), 1.78–1.71 (m, 1H), 1.58–1.48 (m, 2H), 1.40–1.33 (m, 5H), 0.83 (s, 9H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 139.7, 129.7, 128.1, 128.0, 78.0, 68.1, 47.6, 36.8, 35.0, 32.4, 27.7, 23.0, 22.6, 3.0; LRMS (FAB): *m/z* (relative intensity) 317 ([M–Br]⁺, 12), 73 (100); HRMS (FAB): calcd for C₂₀H₃₃OSi ([M–Br]⁺): 317.2295; found 317.2304

[1-(a-Bromobenzyl)-4-oxocyclohexyl]oxy(tert-butyl)dimethyl silane (1i)

Yellowish solid (30%, 2 steps); Mp: 50–54 °C; IR (ATR): 2957, 2927, 2857, 1251, 1225, 1158, 1095, 1018, 1005, 938, 893, 836, 805, 776, 698 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.46–7.42 (m, 2H), 7.32–7.25 (m, 3H), 5.22 (s, 1H), 3.84 (ddd, *J* = 11.6, 7.2, 4.0 Hz, 1H), 3.77 (ddd, *J* = 11.4, 7.1, 4.0 Hz, 1H), 3.65–3.57 (m, 2H), 1.98–1.94 (m, 1H), 1.85 (ddd, *J* = 12.9, 8.1, 4.2 Hz, 1H), 1.75–1.63 (m, 2H), 0.99 (s, 9H), 0.31 (s, 3H), 0.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 139.0, 129.7, 128.5, 128.2, 75.2, 64.7, 64.5, 63.2, 38.0, 35.4, 26.3, 18.9, -1.5, -1.6; LRMS (FAB): *m*/*z* (relative intensity) 305 ([M–Br]⁺, 9), 73 (100); HRMS (FAB): calcd for C₁₈H₂₉O₂Si ([M–Br]⁺): 305.1931; found 305.1942

$[1-(\alpha-Bromo-4-fluorobenzyl) cyclohexyl] oxy(\textit{tert-butyl}) dimethylsilane~(1j)$

Colorless needle (62%, 2 steps); Mp: 56-59 °C; IR (ATR): 2927, 2855, 1605, 1509, 1457, 1359, 1254, 1230,

1160, 1102, 1000, 892, 836, 801, 773, 738, 688, 648, 620 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.54–7.52 (m, 2H), 6.98–6.95 (m, 2H), 5.26 (s, 1H), 2.31–2.20 (m, 1H), 1.73 (dt, *J* = 9.2, 4.5 Hz, 1H), 1.63–1.38 (m, 6H), 1.34–1.18 (m, 2H), 0.97 (s, 9H), 0.24 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 162.4 (d, *J* = 247.1 Hz), 135.7 (d, *J* = 2.8 Hz), 131.3 (d, *J* = 8.1 Hz), 114.8 (d, *J* = 21.5 Hz), 77.3, 60.7, 38.7, 36.0, 26.2, 25.5, 23.4 (2C), 18.8, -1.6, -1.7; LRMS (FAB): *m/z* (relative intensity) 345 ([M–*t*Bu]⁺, 13), 343 ([M–*t*Bu]⁺, 12), 73 (100); HRMS (FAB): calcd for C₁₅H₂₁⁷⁹BrFOSi ([M–*t*Bu]⁺): 343.0524; found 343.0525

$[1-(\alpha-Bromo-3-chlorobenzyl) cycloheptyl] oxy(\textit{tert-butyl}) dimethylsilane~(1k)$

Colorless solid (71%, 2 steps); Mp: 59–63 °C; IR (ATR): 2929, 2857, 1472, 1255, 1219, 1164, 1102, 1000, 878, 836, 773, 726, 706, 681 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.67 (s, 1H), 7.37–7.30 (m, 2H), 7.25–7.16 (m, 3H), 5.21 (s, 1H), 2.34–2.25 (m, 1H), 1.76–1.15 (m, 9H), 0.99 (s, 9H), 0.23 (s, 3H), 0.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.7, 133.9, 130.1, 129.0, 128.3, 127.4, 60.0, 38.7, 36.0, 26.2, 25.5, 23.5, 23.4, 18.8, –1.6, –1.7 (One peak of quaternary carbon is missing due to overlapping); LRMS (FAB): *m/z* (relative intensity) 337 ([M–Br]⁺, 8), 73 (100); HRMS (FAB): calcd for C₁₉H₃₀ClOSi ([M–Br]⁺): 337.1754; found 337.1756

[1-(a-Bromo-4-bromobenzyl)cyclohexyl]oxy(tert-butyl)dimethylsilane (11)

Colorless solid (75%); Mp: 91–94 °C; IR (ATR): 2940, 2851, 1485, 1254, 1219, 1163, 1105, 1071, 999, 892, 830, 775, 730, 692 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.46–7.38 (m, 4H), 5.21 (s, 1H), 2.27–2.23 (m, 1H), 1.75–1.71 (m, 1H), 1.63–1.37 (m, 6H), 1.33–1.17 (m, 2H), 0.97 (s, 9H), 0.23 (s, 3H), 0.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 138.8, 131.3, 131.1, 122.1, 77.3, 60.4, 38.6, 36.0, 26.2, 25.5, 23.4, 18.8, -1.58, -1.63; LRMS (FAB) : *m*/*z* (relative intensity) 383 ([M–Br]⁺, 8), 381 ([M–Br]⁺, 8), 73 (100); HRMS (FAB): calcd for C₁₉H₃₀⁷⁹BrOSi ([M–Br]⁺): 381.1249; found 381.1252

11 and 1m were synthesized by silvlation, Suzuki–Miyaura coupling followed by radical bromination.

1-[(4-Bromobenzyl)cyclohexyl]oxy(*tert*-butyl)dimethylsilane (S-1I) was synthesized by silylation of 1-[(4-bromophenyl)methyl]cyclohexanol² in the same procedure as described above. To the solution of the resulting silyl ether (0.3 mmol) in DME/H₂O (4:1, 1.0 mL) under argon atmosphere was added sodium carbonate (0.75 mmol, 2.5 equiv), boronic acid (0.36 mmol, 1.2 eqiv), and Pd(PPh₃)₄ (0.015 mmol, 5 mol %) at room temperature. The resulting mixture was stirred at 80 °C until consumption of the starting material, as monitored by TLC (hexane). The reaction was quenched with H₂O, and the product was extracted with EtOAc three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography (hexane/EtOAc) to yield the corresponding biaryl (S-1I and S-1m).

[1-[4-(4-Cyanophenyl)benzyl]cyclohexyl]oxy(tert-butyl)dimethylsilane (S-1m)

Yellow solid (68%, 2 steps); Mp: 85–87 °C; IR (ATR): 2928, 2855, 2227, 1725, 1607, 1494, 1470, 1255, 1147, 1063, 1006, 835, 772, 683 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.72–7.67 (m, 4H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.9 (s, 2H), 1.72–1.65 (m, 2H), 1.55–1.34 (m, 7H), 1.28–1.22 (m, 1H), 0.89 (s, 9H), 0.09 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 145.7, 139.5, 136.8, 132.7, 131.6, 127.6, 126.5, 119.2, 110.6, 76.1, 47.9, 37.5, 26.2, 25.6, 22.9, 18.6, 1.51; HRMS (ESI): calcd. for C₂₆H₃₅NaNOSi ([M+Na]⁺): 428.2380, Found: 428.2387

Yellow oil (42%, 2 steps); IR (ATR): 2928, 2855, 1725, 1471, 1442, 1307, 1244, 1216, 1146, 1111, 1083, 1059, 1007, 833, 811, 756, 683 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): $\delta = 8.28-8.26$ (m, 1H), 7.99 (dt, J = 7.76, 1.37 Hz, 1H), 7.79 (ddd, J = 7.7, 1.9, 1.1 Hz, 1H), 7.54–7.47 (m, 3H), 7.29 (d, J = 8.2 Hz, 2H), 3.94 (s, 3H), 2.86 (s, 2H), 1.72–1.65 (m, 2H), 1.55–1.35 (m, 7H), 1.25–1.18 (m, 1H), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.2$, 141.4, 138.4, 137.8, 131.5, 131.4, 130.7, 128.9, 128.2, 128.2, 126.5, 76.1, 52.3, 37.4, 26.2, 25.6, 22.8, 18.6, 1.5; LRMS (FAB): m/z (relative intensity) 381 ([M–tBu]⁺, 4), 73 (100), HRMS (FAB): calcd for C₂₃H₂₉O₃Si ([M–tBu]⁺): 381.1891; found 381.1890

To the solution of **S-1m** (0.12 mmol, 1.0 equiv) in CCl_4 (5 mL) under argon atmosphere was added *N*-bromosuccinimide (0.13 mmol, 1.1 equiv) and benzoyl peroxide (0.01 mmol, 0.1 equiv). The resulting mixture was stirred under reflux until consumption of the starting material, as monitored by TLC (hexane). The reaction was quenched with aqueous Na₂S₂O₃ solution, and the product was extracted with CHCl₃ three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography (hexane/EtOAc) to yield the corresponding benzyl bromide **1m**.

[1-[α-Bromo-4-(4-cyanophenyl)benzyl]cyclohexyl]oxy(*tert*-butyl)dimethylsilane (1m)

Colorless oil (68%); IR (ATR): 2929, 2856, 2227, 1606, 1494, 1470, 1349, 1254, 1164, 1101, 1001, 893, 826, 772, 751, 730, 690 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): $\delta = 7.73-7.66$ (m, 6H), 7.52 (d, J = 8.5 Hz, 2H), 5.31 (s, 1H), 2.31–2.28 (m, 1H), 1.77–1.73 (m, 1H), 1.65–1.23 (m, 8H), 0.93 (s, 9H), 0.26 (s, 3H), 0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 145.1$, 140.9, 138.8, 132.7, 130.4, 127.7, 126.8, 119.0, 111.1, 77.3, 61.0, 38.7, 36.1, 26.2, 25.5, 23.5, 18.8, -1.5, -1.6; LRMS (FAB): m/z (relative intensity) 404 ([M–Br]⁺, 5), 73 (100); HRMS (FAB): calcd for C₂₆H₃₄NOSi ([M–Br]⁺): 404.2410; found 404.2407

[1-[a-Bromo-4-(3-methoxycarbonylphenyl)benzyl]cyclohexyl]oxy(tert-butyl)dimethylsilane (11)

Colorless oil (90%); IR (ATR): 2929, 2856, 1725, 1442, 1308, 1244, 1165, 1110, 1001, 893, 836, 761, 740, 690 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): $\delta = 8.29-8.26$ (m, 1H), 8.02-8.00 (m, 1H), 7.81-7.76 (m, 1H), 7.67-7.63 (m, 2H), 7.57-7.48 (m, 3H), 5.32 (s, 1H), 3.94 (s, 3H), 2,32-2.23 (m, 1H), 1.77-1.72 (m, 1H), 1.68-1.20 (m, 8H), 1.00 (s, 9H), 0.26 (s, 3H), 0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.2$, 141.0, 139.8, 139.4, 131.5, 130.8, 130.2, 129.0, 128.5, 128.3, 126.7, 77.3, 61.5, 52.3, 38.6, 36.1, 26.2, 25.5, 23.5, 23.4, 18.9, -1.5, -1.6; LRMS (FAB): *m*/*z* (relative intensity) 437 ([M-Br]⁺, 8), 73 (100); HRMS (FAB): calcd for C₂₇H₃₇O₃Si ([M-Br]⁺): 437.2512; found 437.2516

Substrate bearing benzyl chloride 1d was prepared from 2-phenyl-1-oxaspiro[2.5]octane.

To the solution of 2-phenyl-1-oxaspiro[2.5]octane (1.5 mmol) in MeCN/DMF (4:1, 15 mL) was added LiCl (7.5 mmol, 5 equiv) and Amberlyst 15R (520 mg). The resulting heterogeneous mixture was stirred at room temperature until consumption of the starting material, as monitored by TLC (hexane). The reaction mixture was filtrated and concentrated *in vacuo*. The residue was purified by flash column chromatography (hexane/EtOAc) to yield the regioisomeric mixture of chlorohydrin (desired : undesired = 4:1). To the solution of this inseparable mixture (0.7 mmol in total) in CH₂Cl₂ (7 mL) under argon atmosphere was added 2,6-lutidine (1.4 mmol, 2.0 equiv) and TMSOTf (0.85 mmol, 1.2 equiv) at 0 °C. The resulting mixture was stirred at room temperature until consumption of the starting material, as monitored by TLC (hexane/EtOAc 9:1). The reaction was quenched with H₂O, and the product was extracted with CHCl₃ three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was filtered through silica gel with hexane to yield the regioisomeric mixture of the silyl ether. These regioisomers were separated by gel permeation chromatography (GPC) to afford **1d** as colorless oil.

[1-(a-Chlorobenzyl)cyclohexyl]oxytrimethylsilane (1d)

Colorless oil (39%, 2 steps); IR (ATR): 2936, 2858, 1452, 1249, 1166, 1149, 1117, 1076, 1030, 104, 897, 835, 740, 697 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.51–7.40 (m, 2H), 7.39–7.27 (m, 3H), 4.96 (s, 1H), 1.89–1.33 (m, 10H), 0.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 139.1, 129.4, 1281, 127.8, 78.0, 70.1, 36.7, 35.4, 25.6, 22.7, 22.7, 2.8; LRMS (FAB): *m/z* (relative intensity) 261 ([M–Cl]⁺, 18), 73 (100); HRMS (FAB): calcd for C₁₆H₂₅OSi ([M–Cl]⁺): 261.1675; found 261.1678

10 and **1p** were synthesized by the silulation of the corresponding bromohydrin¹. The procedure for the silulation is same as described above.

(2-Bromo-1-phenylcyclohexyl)oxytrimethylsilane (10)

Colorless oil (59%); IR (ATR): 2938, 2359, 1447, 1250, 1155, 1087, 1067, 1023, 1005, 930, 906, 868, 837, 752, 697 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.41–7.25 (m, 5H), 4.52–4.47 (m, 1H), 2.60–2.45 (m, 2H), 2.00–1.92 (m, 2H), 1.84–1.67 (m, 3H), 1.59–1.52 (m, 1H), –0.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 146.3, 128.0, 127.7, 126.1, 76.7, 61.5, 30.6, 29.4, 21.2, 19.9, 1.9; LRMS (FAB): *m*/*z* (relative intensity) 247 ([M–Br]⁺, 20), 73 (100); HRMS (FAB): calcd for C₁₅H₂₃OSi ([M–Br]⁺): 247.1518; found 247.1523

(2-Bromo-1,1-diphenylethyl)oxytrimethylsilane (1p)

Colorless oil (92%); IR (ATR): 3059, 2956, 1492, 1447, 1250, 1185, 1150, 1120, 1073, 1017, 921, 837, 753, 697 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.41–7.24 (m, 10H), 4.17 (1, 2H), 0.00 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 145.2, 128.0, 127.5, 127.2, 79.8, 43.2, 1.94; LRMS (FAB): *m/z* (relative intensity) 269 ([M–Br]⁺, 13), 73 (100) ; HRMS (FAB): calcd for C₁₇H₂₁OSi ([M–Br]⁺): 269.1362; found 269.1366

3. General procedure for iodine(I)-mediated semipinacol rearrangement.

To a homogeneous solution of benzyl bromide **1** (0.05 mmol, 1.0 equiv) in nitromethane (1.0 mL) under argon atmosphere was added *N*-iodosuccinimide (0.055 mmol, 1.1 equiv) in the dark. The resulting mixture was stirred under exclusion of light at room temperature until consumption of the starting material, as monitored by TLC (hexane/EtOAc). The reaction was quenched with saturated aqueous Na₂S₂O₃ solution, and the product was extracted with CHCl₃ five times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by flash column chromatography (hexane/EtOAc) to yield the corresponding ketone **2**. The compound characterization data for **2a**,³ **2e**,⁴ **2f**,³ **2g**,⁵ **2l**⁶ were all identical to the literature data.

cis-5-tert-Butyl-2-phenylcycloheptan-1-one (2h)

Colorless solid; Mp: 37–40 °C; IR (ATR): 2949, 2859, 1702, 1450, 1366, 1219, 954, 904, 768, 701 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.35–7.29 (m, 2H), 7.26–7.18 (m, 3H), 3.80 (dd, *J* = 6.1, 6.1 Hz, 1H), 2.72–2.67 (m, 1H), 2.62–2.55 (m, 1H), 2.30–2.23 (m, 1H), 2.14–2.07 (m, 1H), 1.99–1.89 (m, 2H), 1.47–1.32 (m, 3H), 0.87 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ = 213.3, 140.3, 128.5, 128.3, 126.8, 57.4, 49.4, 41.9, 33.7, 30.2, 27.6, 26.7, 25.1; HRMS (ESI): calcd. for C₁₇H₂₅O ([M+H]⁺): 245.1900, Found: 245.1904.

5-Oxo-2-phenylcycloheptan-1-one (2i)

Colorless solid; Mp: 33–35 °C; IR (ATR): 2944, 2855, 1708, 1495, 1450, 1261, 1221, 1150, 1032, 772, 699 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.35–7.32 (m, 2H), 7.28–7.24 (m, 1H), 7.20–7.18 (m, 1H), 4.21 (ddd, *J* = 12.8, 4.4, 3.1 Hz, 1H), 4.10 (ddd, *J* = 12.9, 4.5, 4.5, 1H), 3.92 (dd, *J* = 11.5, 3.7 Hz, 1H), 3.76 (ddd, *J* = 13.0, 10.4, 2.6 Hz, 1H), 3.66 (ddd, *J* = 12.7, 10.6, 2.0 Hz, 1H), 3.00 (ddd, *J* = 15.3, 10.7, 4.5 Hz, 1H), 2.66 (ddd, *J* = 15.5, 4.5, 2.8 Hz, 1H), 2.30 (dddd, *J* = 14.9, 11.6, 10.6, 3.2 Hz, 1H), 2.09–2.04 (m, 1H); ¹³C NMR (100 MHz, 100 MHz).

CDCl₃): $\delta = 210.1, 139.5, 128.7, 128.2, 127.3, 71.9, 66.6, 57.7, 46.3, 33.9;$ HRMS (ESI): calcd. for C₁₂H₁₅O₂ ([M+H]⁺): 191.1067, Found: 191.1064.

2-(4-Fluorophenyl)cycloheptan-1-one (2j)

Yellow oil; IR (ATR): 2966, 2932, 2879, 1703, 1602, 1509, 1455, 1224, 1160, 1130, 936, 835 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.21–7.13 (m, 2H), 7.03–6.96 (m, 2H), 3.71 (dd, *J* = 11.4, 3.9 Hz, 1H), 2.68–2.59 (m, 1H), 2.57–2.49 (m, 1H), 2.14–1.86 (m, 5H), 1.71–1.60 (m, 1H), 1.52–1.38 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 213.4, 161.9 (d, *J* = 244.9 Hz), 136.2 (d, *J* = 3.6 Hz), 129.5 (d, *J* = 7.5 Hz), 115.4 (d, *J* = 21.5 Hz), 57.8, 42.9, 32.4, 29.9, 28.8, 25.1; HRMS (ESI): calcd. for C₁₃H₁₅FNaO ([M+Na]⁺): 229.0999, Found: 229.0981.

2-(3-Chlorophenyl)cycloheptan-1-one (2k)

Colorless oil; IR (ATR): 2930, 2856, 1703, 1596, 1572, 1478, 1455, 1430, 1160, 1129, 1082, 937, 871, 691 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.30–7.19 (m, 3H), 7.10–7.07 (m, 1H), 3.70 (dd, *J* = 11.4, 3.9 Hz, 1H), 2.68–2.62 (m, 1H), 2.57–2.53 (m, 1H), 2.13–1.88 (m, 5H), 1.69–1.60 (m, 1H), 1.51–1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 212.8, 142.5, 134.3, 129.8, 128.2, 127.1, 126.3, 58.3, 43.0, 32.1, 29.9, 29.0, 25.1; HRMS (ESI): calcd. for C₁₃H₁₆ClO ([M+H]⁺): 223.0884, Found: 223.0874.

2-[4-(4-Cyanophenyl)phenyl]cycloheptan-1-one (2m)

Colorless solid; Mp: 125–128 °C; IR (ATR): 2923, 2853, 2225, 1701, 1607, 1493, 1452, 1353, 1129, 1006, 931, 900, 800 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.70 (d, *J* = 8.2 Hz, 2H), 7.65 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.33(d, *J* = 8.1 Hz, 2H), 3.80 (dd, *J* = 11.3, 3.8 Hz, 1H), 2.74–2.66 (m, 1H), 2.60–2.56 (m,

1H), 2.18–1.95 (m, 5H), 1.73–1.43 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 213.2, 145.4, 141.3, 137.8, 132.7, 128.8, 127.7, 127.4, 119.1, 110.9, 58.4, 43.1, 32.2, 29.9, 28.9, 25.1; HRMS (ESI): calcd. for C₂₀H₂₀NO ([M+H]⁺): 290.1539, Found: 290.1532.

2-[4-(3-Methoxycarbonylphenyl)phenyl]cycloheptan-1-one (2n)

Yellow oil; IR (ATR): 2927, 2855, 1723, 1442, 1308, 1246, 1111, 841, 741, 694 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): $\delta = 8.25$ (s, 1H), 8.02–7.99 (m, 1H), 7.78–7.75 (m, 1H), 7.57 (d, J = 7.9 Hz, 2H), 7.49 (dd, J = 7.7, 7.7 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 3.96 (s, 3H), 3.78 (dd, J = 11.3, 4.0 Hz, 1H), 2.73–2.67 (m, 1H), 2.60–2.54 (m, 1H), 2.20–2.14 (m, 1H), 2.14–1.96 (m, 4H), 1.73–1.43 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 213.4$, 167.2, 141.2, 140.1, 138.8, 131.5, 130.8, 128.9, 128.5, 128.4, 128.3, 127.4, 58.5, 52.3, 43.0, 32.2, 30.0, 28.8, 25.3; HRMS (ESI): calcd. for C₂₁H₂₃O₃ ([M+H]⁺): 323.1642, Found: 323.1641.

4. Preparation of the chiral substrate 1b

As indicated below, (+)-1b was synthesized via Shi epoxidation.⁷

To the chiral 2-phenyl-1-oxaspiro[2.5]octane (0.32 mmol) in MeCN (3.0 mL) was added PPTS (0.64 mmol, 2.0 eqiv) and LiBr (1.6 mmol, 5.0 equiv) at room temperature, and the resulting mixture was stirred at room temperature for three days. After quenched with H₂O, the reaction mixture was extracted with EtOAc three times. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (EtOAc/hexane) to yield the chiral bromohydrin as colorless oil, whose enantiomeric excess was determined by chiral HPLC analysis. Then, silylation afford chiral (+)-**1b**, and its spectrum was identical with the racemic **1b**. The optical rotation was $[\alpha]^{24}_{D}$ (*c* 0.47, CHCl₃) +40.3 (for 59% ee)

5. The appearance of reaction mixture with substrate 1b

 $10 \min$

30 sec

5 min

15 min (All SM was consumed)

The transition of their appearances also supports the idea that iodine bromide was generated during the reaction *in situ*.

6. Preparation of iodoimidazolium salt

Iodoimidazolium triflate 4 was synthesized from 1-dodecylimidazole⁸.

$$\begin{array}{c|c} \text{Dodecyl} & & & & \\ \hline \text{Dodecyl} & & & \\ \hline \text{Dodecyl} & & \\ \hline \text{HF}; & & \\ \hline \text{I}_2 & & \\ \hline \text{Dodecyl} & & \\ \hline \text{N} & & \\ \hline \text{HeOTf} & & \\ \hline \text{Dodecyl} & & \\ \hline \text{CH}_2\text{Cl}_2 & & \\ \hline \text{CH}_2\text{Cl}_2 & & \\ \hline \text{MeOTf} & & \\ \hline \text{MeOTf} & & \\ \hline \text{Dodecyl} & & \\ \hline \text{N} & & \\ \hline \text{MeOTf} & & \\ \hline \text{N} & & \\ \hline \text{MeOTf} & & \\ \hline \text{N} & & \\ \hline \text{N} & & \\ \hline \text{MeOTf} & & \\ \hline \text{N} & & \\ \hline \text{N} & & \\ \hline \text{N} & & \\ \hline \text{MeOTf} & & \\ \hline \text{N} & & \\ \hline \text{M} & & \\ \hline \text{N} & & \\ \hline \ \text{N} & & \\ \hline \ \text{N} & & \\ \hline \ \text{N} & & \\ \hline$$

To the solution of 1-dodecylimidazole (18.0 mmol) in THF (50 mL) was added *n*-BuLi solution in hexane (21.6 mmol, 1.2 equiv) dropwise over 10 min at -78 °C. The resulting solution was stirred at -78 °C for 2

hours, and then iodone (1.0 equiv) at -78 °C. The solution was allowed to warm up to room temperature, and kept stirred overnight. The reaction mixture was quenched with saturated aqueous Na₂S₂O₃ solution, and the product was extracted with CHCl₃ three times. The combined organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was filtered through silica gel with hexane to yield the corresponding 1-dodecyl-2-iodoimidazole as yellow oil (65%).

1-Dodecyl-2-iodoimidazole

Yellow oil; IR (ATR): 2922, 2852, 1735, 1507, 1461, 1425, 1375, 1336, 1267, 1127, 1095, 908, 770, 732, 658 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.06 (s, 1H), 7.01 (s, 1H), 3.86 (t, *J* = 7.3 Hz, 2H), 1.77–1.68 (m, 2H), 1.31–1.20 (m, 18H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 132.5, 122.9, 90.1, 49.6, 32.0, 30.7, 29.7, 29.6, 29.5, 29.4, 29.1, 26.5, 22.7, 14.2 (one carbon peak is missing due to overlapping); HRMS (ESI): calcd. for C₁₅H₂₈IN₂ ([M+H]⁺): 363.1292, Found: 363.1286.

To the solution of iodoimidazole (0.72 mmol) in CH_2Cl_2 (7 mL) under argon atmosphere was added methyl triflate (1.5 mmol, 2.0 equiv) at room temperature. The resulting mixture was stirred at room temperature until consumption of the starting material, as monitored by TLC (hexane/EtOAc 9:1). The solvent was evaporated *in vacuo*, and then the residue was washed with Et₂O and hexane to afforded iodoimidazolium triflate **4** as colorless solid (59%).

1-Dodecyl-2-iodo-3-methyliodoimidazolium triflate (4)

Colorless solid; Mp: 89–92 °C; IR (ATR): 2918, 2853, 1546, 1501, 1471, 1444, 1257, 1220, 1159, 1033, 779, 686, 674 cm⁻¹; ¹H NMR (CDCl₃, 500MHz): δ = 7.82 (s, 1H), 7.67 (s, 1H), 4.17 (t, *J* = 7.5 Hz, 2H), 3.95 (s, 3H), 1.90–1.75 (m, 2H), 1.34–1.21 (m, 20H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 127.3, 125.6, 120.6 (q, *J* = 320.3 Hz), 97.2, 53.2, 40.0, 32.0, 29.9, 29.7, 29.6, 29.4, 29.4, 29.1, 26.3, 22.8, 14.2; HRMS (ESI): calcd. for C₁₆H₃₀IN₂ ([M–OTf⁻]⁺): 377.1448, Found: 377.1441.

7. Maximum values of electrostatic potential energy

^a MP2/6-31+G(d,p)-LANL2DZdp level ^b MP2/6-311+G(d,p) level

The electrostatic potential energy surface was calculated using the Gaussian 09^9 suite of programs. The molecular geometry was optimized at 1) the MP2/6-31+G (d,p) level of theory^{10,11} for all atoms except bromine and iodine, for which the double- ζ LANL2DZ basis set and effective core potential were used,¹²⁻¹⁴ or 2) MP2/6-311+G (d,p) level of theory, where extrabasis was set for bromine and iodine atoms.¹⁵ The maximum values of electrostatic potential energy surface (Isovalue: MO = 0.02, density = 0.0004) were indicated above. Blue colors represent positive potential (the darker the color the more positive), green, yellow, and red represent an increasing negative potential (in that order). Here σ -holes on iodine atoms in the listed molecules can be seen.

8. Calculated energetic properties of XB-donors and Cartesian coordinates of calculated structures

		=	
XB-donor	Energy (Hartrees)	LUMO Energy (Hartrees)	HOMO Energy (Hartrees)
I ₂	-22.54810012	-0.03025	-0.36287
NBS	-372.12868251	0.04363	-0.40166
C ₆ F ₅ I	-737.25675902	0.03656	-0.36726
<i>n</i> -C ₈ F ₁₇ I	-2008.68242112	0.02716	-0.40988
IBr	-2581.28281663	-0.02283	-0.38130
NIS	-370.33104682	0.02673	-0.37573
[Me ₂ Imid] ⁺ [OTf] ⁻	-1274.78793727	0.03192	-0.35801
NISac	-956.92158627	0.01622	-0.37688

Table S1. Calculated energetic properties of XB-donors optimized with MP2/6-31+G(d,p)-LANL2DZdp

Table S2. Calculated energetic properties of XB-donors optimized with MP2/6-311+G(d,p)

XB-donor	Energy (Hartrees)	LUMO Energy (Hartrees)	HOMO Energy (Hartrees)
I ₂	-13834.15714418	0.06888	-0.01592
NBS	-2931.82942975	0.05397	-0.40466
C ₆ F ₅ I	-7643.41597608	0.03820	-0.36577
<i>n</i> -C ₈ F ₁₇ I	-8915.56047554	0.02879	-0.41219
IBr	-9489.71939993	-0.00963	-0.37953
NIS	-7276.26980044	0.03037	-0.37505
[Me ₂ Imid] ⁺ [OTf] ⁻	-8180.99118170	0.03084	-0.35713
NISac	-7862.94280262	0.02191	-0.37656

Cartesian coordinates for all the calculated structures (optimized with MP2/6-31+G(d,p)-LANL2DZdp)

 \mathbf{I}_2

01

Ι	0.00000000	0.00000000	1.35027600
Ι	0.00000000	0.00000000	-1.35027600

С	2.37102100	0.76654900	0.00037300
С	2.37102100	-0.76654900	0.00037300
Н	2.84852900	1.19772000	-0.87918300
Н	2.84818200	1.19771300	0.88012400
Н	2.84852900	-1.19772000	-0.87918300
Н	2.84818200	-1.19771300	0.88012400
С	0.91112200	-1.18757900	0.00008500
С	0.91112200	1.18757900	0.00008500
Ν	0.15706000	0.00000000	0.00019900
0	0.45131200	2.31553800	-0.00007900
0	0.45131200	-2.31553800	-0.00007900
Br	-1.68855900	0.00000000	-0.00021500

 C_6F_5I

NBS 0 1

01

С	0.22130300	0.00001900	-0.00074700
С	-0.50015100	-1.19657000	0.00030100
С	-0.50018000	1.19659200	0.00031100
С	-1.89356400	-1.20598700	-0.00051400
С	-1.89361000	1.20597300	-0.00051900
С	-2.59153300	-0.00001600	0.00038500
F	0.13792200	-2.38393000	0.00014500
F	-2.56777400	-2.36997200	-0.00007000
F	-3.93541000	-0.00004600	0.00026000
F	-2.56781100	2.36996300	-0.00008100
F	0.13786700	2.38396500	0.00015400
Ι	2.30383500	0.00000200	0.00002000

n-	C _s F	7
	~ <u>a</u> -	L/-

01			
С	-0.46973000	5.68353300	0.00000000
С	0.41028900	4.40613900	0.00000000
С	-0.37474000	3.06611600	0.00000000
С	0.51801300	1.78991800	0.00000000
С	-0.27614200	0.44827000	0.00000000
С	0.61801700 -	-0.82896500	0.00000000
С	-0.17195500 -	-2.17075700	0.00000000
С	0.70986500 -	-3.44814800	0.00000000
Ι	-0.50043700 -3	5.23029200	0.00000000
F	1.50521400 -	3.44263600	1.09843700
F	1.50521400 -	3.44263600	-1.09843700
F	-0.95722400 -	2.20681300	1.10858800
F	-0.95722400 -	2.20681300	-1.10858800
F	1.40428700 -	0.79934500	1.10782200
F	1.40428700 -	0.79934500	-1.10782200
F	-1.06240300	0.41989600	1.10776200
F	-1.06240300	0.41989600	-1.10776200
F	1.30371100	1.82512700	1.10789800
F	1.30371100	1.82512700	-1.10789800
F	-1.16263200	3.04656800	-1.10786700
F	-1.16263200	3.04656800	1.10786700
F	1.19415100	4.46594700	-1.10787800
F	1.19415100	4.46594700	1.10787800
F	-1.24648500	5.73378100	-1.09446200
F	0.34737000	6.75148700	0.00000000
F	-1.24648500	5.73378100	1.09446200

IBr

01

Ι	0.00000000	0.00000000	0.99419600
Br	0.00000000	0.00000000	-1.50549700
NIS			
0 1			
С	-0.00048100	2.76903900	0.76584000
С	-0.00048100	2.76903900	-0.76584000
Н	-0.88002200	3.24498300	1.19887400
Н	0.87892900	3.24524200	1.19886000
Н	-0.88002200	3.24498300	-1.19887400
Н	0.87892900	3.24524200	-1.19886000
С	-0.00025600	1.30676000	-1.18231800
С	-0.00025600	1.30676000	1.18231800
Ν	0.00004000	0.54578300	0.00000000
Ι	0.00028000	-1.49781100	0.00000000
0	-0.00025600	0.85459200	2.31470200
0	-0.00025600	0.85459200	-2.31470200

[Me₂Imid]⁺[OTf]⁻

01			
С	0.62611800	2.58297000	-0.78020000
Н	0.14061800	3.23372000	-1.48448600
С	0.83990300	2.71669000	0.56765500
Н	0.57962900	3.51021000	1.24511800
N	1.42870100	1.55606300	1.00517700
N	1.07849800	1.33805100	-1.14090600
С	1.55203000	0.70813800	-0.04141700
Ι	2.34689800	-1.17735900	0.01757600

С	0.95107000	0.74519600	-2.47604600
Н	0.36820200	-0.16885100	-2.38303100
Н	1.94118600	0.55715600	-2.88530000
Н	0.41153900	1.45811300	-3.09083600
Н	0.74312200	0.55271300	2.68406600
С	1.58392800	1.18801400	2.41198700
Н	1.57469700	2.10438600	2.99457400
Н	2.53151800	0.67560000	2.55190100
S	-1.70498800	0.09867100	-0.15583100
0	-1.18917300	0.51652200	1.17649100
0	-1.98176300	1.21356600	-1.09460100
С	-3.37564800	-0.59442500	0.22664100
F	-4.16697000	0.34476700	0.78810000
F	-3.27993500	-1.63015700	1.08827600
F	-3.98180400	-1.03723200	-0.89475000
0	-0.97315300	-1.04714700	-0.75770100

NISac

01			
С	0.32334500	1.30311700	-0.05417300
Ι	-2.49026800	0.21909100	0.00336700
0	0.08105200	-1.86701300	1.34281600
0	-0.10490100	2.44729100	0.02795900
С	1.94250100	-0.49515700	-0.00568400
С	1.75186000	0.88608500	-0.02059100
С	2.85085100	1.74441700	-0.00854900
Н	2.69860300	2.81631000	-0.02091800
С	4.12934900	1.17820700	0.01497000
Н	4.99952700	1.82234700	0.02470300
С	4.30444400	-0.21479700	0.02189700

Н	5.30503900	-0.62823500	0.03615300
С	3.20429500	-1.08027500	0.00790400
Н	3.32980300	-2.15562800	0.01179100
S	0.38941600	-1.34887400	0.00890300
0	0.22249600	-2.19247700	-1.17250200
Ν	-0.45835600	0.15476300	-0.24192400

9. Detection of MS signal of IBr

10. References

- 1) L. Li, P. Cai, Q. Guo, S. Xue, Org. Lett., 2008, 73, 3516.
- 2) T. Kuribayashi, H. Kubota, T. Fukuda, R. Takano, T. Tsuji, K. Sasaki and N. Tanaka, PCT Int. Appl.

WO2009131129 A1, 2009

- 3) V. L. Rendina, H. Z. Kaplan, J. S. Kingsbury, Synthesis, 2012, 44, 686.
- 4) D. Leung and E. V. Anslyn, Org. Lett., 2011, 13, 2298.
- 5) T. Miyoshi, T. Miyakawa, M. Ueda and O. Miyata, Angew. Chem. Int. Ed., 2010, 50, 928.
- 6) F. D. King and S. Caddick, Org. Biomol. Chem., 2012, 10, 3244.
- 7) Z-X. Wang, Y. Tu, M. Frohn, J-R. Zhang and Y. Shi, J. Am. Chem. Soc., 1997, 119, 11224.
- 8) M. Lee, Z. Niu, D. V. Schoonover, C. Slebodnick and H. W. Gibson, Tetrahedron, 2010, 66, 7077.
- Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.
- 10) (a) C. Møller and M. S. Plesset, *Phys. Rev.* 1934, 46, 618. (b) M. Head-Gordon, J. A. Pople and M. J. Frisch, *Chem. Phys. Lett.* 1988, 153, 503.
- W. J. Hehre, L. Radom, P. V. R. Schleyer and J. A. Pople, *Ab Initio Molecular Orbital Theory*, Wiley, New York, 1986.
- 12) J. P. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
- 13) C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T. M. Gilbert and L. S. Sunderlin, J. Phys. Chem. A 2001, 105, 8111.
- https://bse.pnl.gov/bse/portal. K. L. Schuchardt, B. T. Didier, T. Eisethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, *J. Chem. Inf. Model.* 2007, 47, 1045.
- https://bse.pnl.gov/bse/portal. M.N. Glukhovstev, A. pross, M.P. McGrath, L. Radom, J. Chem. Phys. 1995, 103, 1878.

11. Copies of ¹H and ¹³C NMR charts

[1-(a-Bromobenzyl)cyclohexyl]oxytrimethylsilane (1b)

Figure S4. ¹³C NMR of **1b**

 $[1-(\alpha - Bromobenzyl) cyclopentyl] oxy(\textit{tert-butyl}) dimethylsilane~(1e)$

Figure S6. ¹³C NMR of **1e**

 $[1-(\,\alpha\text{-}Bromobenzyl) cycloheptyl] oxy(\textit{tert-butyl}) dimethylsilane~(1f)$

150

50

100

РРМ

0

[3-(a-Bromobenzyl)pentyl]oxy(tert-butyl)dimethylsilane (1g)

Figure S10. ¹³C NMR of **1g**

 $[1-(\,\alpha\text{-}Bromobenzyl)\text{-}4\text{-}tert\text{-}butylcyclohexyl]oxytrimethylsilane\ (1h)$

Figure S12. ¹³C NMR of **1h**

[1-(\alpha-Bromobenzyl)-4-oxocyclohexyl]oxy(*tert*-butyl)dimethyl silane (1i)

Figure S14. ¹³C NMR of **1i**

 $[1-(\,\alpha\text{-}Brom\text{-}4\text{-}fluorobenzyl) cyclohexyl] oxy(\textit{tert-butyl}) dimethylsilane~(1j)$

Figure S16. ¹³C NMR of **1**j

 $[1-(\alpha-Bromo-3-chlorobenzyl) cycloheptyl] oxy(\textit{tert-butyl}) dimethylsilane~(1k)$

Figure S18. ¹³C NMR of **1k**

 $[1-(\,\alpha\text{-}Brom\text{-}4\text{-}brom\text{-}benzyl) cyclohexyl] oxy(\textit{tert-butyl}) dimethyl silane~(1l)$

Figure S20. ¹³C NMR of **11**

[1-[4-(4-cyanophenyl)benzyl]cyclohexyl]oxy(tert-butyl)dimethylsilane (S-1m)

Figure S22. ¹³C NMR of **S-1m**

[1-[4-(3-methoxycarbonylphenyl) benzyl] cyclohexyl] oxy(tert-butyl) dimethylsilane~(S-1n)

 $[1-[\alpha-Bromo-4-(4-cyanophenyl)benzyl]cyclohexyl]oxy(\textit{tert-butyl})dimethylsilane~(1m)$

Figure S26. ¹³C NMR of **1m**

(2-Bromo-1-phenylcyclohexyl)oxytrimethylsilane (10)

Figure S30. ¹³C NMR of **10**

(2-Bromo-1,1-diphenylethyl)oxytrimethylsilane (1p)

Figure S32. ¹³C NMR of **1p**

 $[1-(\alpha-Chlorobenzyl)cyclohexyl]oxytrimethylsilane (1d)$

Figure S34. ¹³C NMR of **1d**

Figure S36. ¹H NMR of **2e**

Figure S38. ¹H NMR of 2g

Figure S40. ¹³C NMR of **2h**

Figure S44. ¹³C NMR of **2**j

2-(3-chlorophenyl)cycloheptan-1-one (2k)

50

Figure S48. ¹H NMR of **2m**

Figure S50. ¹H NMR of **2n**

Figure S51. ¹³C NMR of **2n**

Figure S53. ¹H NMR of the titled compound

Figure S54. ¹³C NMR of the titled compound

Figure S56. ¹³C NMR of **4**

12. Copies of HPLC charts

2014/05/30 22:18:35 1 / 1

Figure S57. HPLC chart of (±)-2-phenyl-1-oxaspiro[2.5]octane.

S53

2014/05/30 22:21:11 1 / 1

Figure S58. HPLC chart of the chiral 2-phenyl-1-oxaspiro[2.5]octane.

2014/05/30 22:23:39 1 / 1

==== Shimadzu LCsolution Analysis Report ====

Figure S59. HPLC chart of the chiral 1c.

Figure S60. HPLC chart of (±)-2a.

Figure S61. HPLC chart of the chiral 2a.