Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information

SnSe alloy as a promising anode material for Na-ion batteries

Youngjin Kim,^a Yongil Kim,^a Yuwon Park,^a Yong Nam Jo,^b Young-Jun Kim,^b Nam-Soon Choi,^a and Kyu Tae Lee*^a

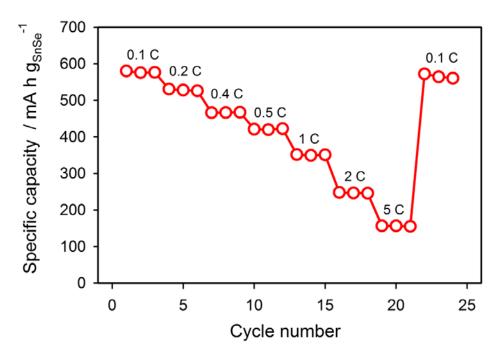
^a School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (South Korea) E-mail: ktlee@unist.ac.kr, Fax: +82-52-217-3009, Tel: +82-52-217-2930.

^bAdvanced Batteries Research Center, Korea Electronics Technology Institute (KETI), 68 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-816 (South Korea)

Experimental

1. Material preparation

Tin selenide powder (Aldrich, 99.995 %), Super P and 5 mm zirconia balls with a ball-to-powder ratio of 10:1 by weight were put into zirconia bowl. The molar ratio of SnSe and Super P powders used 7:3, respectively. Blending process was performed by planetary ball milling (Pulverisette 7) at 300 rpm for 3 hours in Ar atmosphere.


2. Material characterization

Powder X-Ray diffraction (XRD) data were recorded using a Rigaku D/MAX2500V/PC

powder diffractometer (Cu-K α radiation, $\lambda = 1.5405$ Å) operated from $2\theta = 10 \sim 80^{\circ}$ at 40 kV and 200 mA. The morphology of sample was examined in a field-emission scanning electron microscopy (FE-SEM, Hitachi, S-4800)

3. Electrochemical characterization

Slurry of 70 wt. % SnSe/C composites, 10 wt. % conducting agent (Super P), and 20 wt. % polyacrylic acid (PAA) was cast on aluminum foil. The electrodes were dried at 120° C on a vacuum oven overnight. The mass loading of the electrodes is ca. $1\sim2$ mg cm⁻². The electrochemical characteristics were evaluated using 2032 coin cells with a Na metal anode and 1 M NaClO₄ (Aldrich, \geq 98 %) in ethylene carbonate and diethyl carbonate (1:1 v/v, PANAX ETEC Co., Ltd., Korea) electrolyte solution with addition of 3 wt. % fluoroethylene carbonate (FEC, Soulbrain Co. Ltd.). Galvanostatic experiments were carried out between 0.0 and 2 V (vs. Na / Na⁺) at a current density of 144 mA g⁻¹ using WBCS 3000 (WonATech, Korea) under room temperature.

Figure S1. Rate performance of SnSe/C composites. $(0.1 \text{ C} = 77 \text{ mA g}^{-1})$