Catalytic Imine-Imine Cross-Coupling Reactions

Masatoshi Matsumoto, Masashi Harada, Yasuhiro Yamashita, and Shu Kobayashi*

Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Electronic Supplementary Information

Contents

- 1. Supplementary tables and schemes (Tables S1, S2, Schemes S1, S2)
- 2. Experimental section

1. Supplementary tables and schemes

 Table S1
 Optimization of reaction conditions

	N ^{DPP}	N ^{Flu} Base (5 r	catalyst nol%)		Ph
Ph	Pi	2	0°C	Ph	≺N _{≥Elu}
	1a	2a		3a	a
Entry	Base	Solvent	Time (h)	Yield $(\%)^a$	syn/anti ^b
1	KO ^t Bu– 18-crown-6	THF	24	60	60/40
2	KO ^t Bu– 18-crown-6	CH ₂ Cl ₂	24	18	50/50
3	KO ^t Bu– 18-crown-6	Et ₂ O	24	39	67/33
4	KO ^t Bu– 18-crown-6	$Et_2O/CH_2Cl_2(4/1)$	24	90	99/1
5	DBU	$Et_2O/CH_2Cl_2(4/1)$	18	67	94/6
6	KOPh	$Et_2O/CH_2Cl_2(4/1)$	18	86	94/6
7	KOCH ₂ CF ₃	$Et_2O/CH_2Cl_2(4/1)$	18	97	>99/1

^{*a*} Isolated yield. ^{*b*} Determined by ¹H NMR analysis.

Scheme S1 Possible deprotonation

Scheme S2

Epimerization

	Ph P	Base catalyst (5 mol%) toluene, 20 °C	DPP NH Ph Ph Na 3aa	Flu
Entry	Base	Time (h)	Yield $(\%)^a$	syn/anti ^b
1	KO ^t Bu, 18-crown-6	18	80	7/93
2	KO ^t Bu, 18-crown-6	0.5	73 ^c	58/42
3	KOCH ₂ CF ₃	18	92	3/97
4	KOPh	18	96	75/25
5	DBU	18	53 ^c	94/6

Table S2Effect of bases on diastereoselectivity

^a Isolated yield. ^b Determined by ¹H NMR analysis. ^c NMR yield.

2. Experimental section

General:

¹H and ¹³C NMR spectra were recorded on JEOL JNM-ECX400, JNM-ECA500, and JNM-ECX600 spectrometers in CDCl₃ unless otherwise noted. CDCl₃ served as internal standard ($\delta = 7.24$ for ¹H NMR, $\delta = 77.0$ for ¹³C NMR), H₃PO₄ served as external standard ($\delta = 0$ for ³¹P NMR). IR spectra were recorded with a JASCO FT/IR-4200 spectrometer. High-resolution mass spectrometry was recorded with a JEOL JMS-T100TD (DART[®]). Column chromatography was conducted on Silica gel 60N (spherical, neutral, Kanto Chem. Co., Inc.) or Iatrobeads 6RS-8060 (MITSUBISHI **CHEMICAL** MEDIENCE CORPORATION), and preparative thin-layer chromatography was carried out using a plate with Wakogel B-5F. Commercially available aldehydes were purchased from Tokyo Chemical Industry Co., Ltd. (TCI) and purified by distillation. Toluene, THF, CH₂Cl₂ and Et₂O were purchased from Wako Pure Chemical Industries, Ltd. as dry solvents, and dried further over molecular sieves or purified by distillation in the presence of benzophenone and sodium. KO'Bu and 18-crown-6 were supplied from Wako Pure Chemical Industries, Ltd. 1,1,3,3-Tetramethylguanidine (TMG), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) were purchased from Tokyo chemical industry co., Ltd. KOCH₂CF₃ was prepared from CF₃CH₂OH and KH (purchased from Kanto chemical co., Inc.). tert-Butylglyoxylate was prepared in the similar way to the literature method.¹ 9H-9-Fluorenylamine was prepared based on the reported method.²

General procedure for preparation of aromatic fluorenyl imines 2:

In a 100 mL flask, 9*H*-9-fluorenylamine (1.00 g, 5.52 mmol) and an aromatic aldehyde (5.80 mmol) were mixed in anhydrous CH_2Cl_2 (50 mL) in the presence of well dried MS 4A (5.0 g), and the mixture was stirred overnight at room temperature. The mixture was filtrated through Celite pad, and the remained solid was washed with

 CH_2Cl_2 (20 mL). The filtrate was concentrated *in vacuo* to remove all volatile materials on a rotary evaporator. The crude mixture obtained was purified by recrystallization (toluene/CH₂Cl₂/hexane).

The following compounds were prepared as described above.

N-9-Fluorenylbenzaldehyde imine (2a): m.p.: 139 °C (dec.); IR (KBr): 3060, 3030,

2842, 1631, 1578, 1475, 1449, 1386, 1286, 1168, 1043, 845, 761, 742, 729, 695 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.78 (s, 1H), 7.81 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.76 (d, *J* = 7.4Hz, 2H), 7.41– 7.28 (m, 9H), 5.43 (s, 1H); ¹³C NMR (CDCl₃ 150.92 MHz): δ 163.4, 144.8, 141.1, 136.1, 131.0, 128.6, 128.5, 128.43, 127.42,

125.3, 120.1, 74.7; HRMS (ESI): Exact mass calcd for $C_{20}H_{16}N [M+H]^+$ 270.12827, Found 270.12712.

N-9-Fluorenyl-*p*-tolaldehyde imine (2b): m.p.: 123 °C (dec.); IR (KBr): 3433, 3037,

3019, 2870, 2846, 1610, 1448, 1376, 1271, 1174, 1033, 843, 814, 738 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.75 (s, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 7.7 Hz, 2H), 7.42–7.22 (m, 8H), 5.40 (s, 1H), 2.39 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 163.4, 144.9, 141.3, 141.0, 133.5, 129.3, 128.5, 128.4, 127.4, 125.2, 120.0, 74.7, 21.5; HRMS (ESI):

Exact mass calcd for $C_{21}H_{18}N[M+H]^+$ 284.14392, Found 284.14251.

N-9-Fluorenyl-m-tolaldehyde imine (2c): m.p.: 133 °C (dec.); IR (KBr): 3042, 3021,

2915, 2864, 2829, 1634, 1604, 1582, 1450, 1374, 1278, 1166, 1046, 982, 797, 782 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.73 (s, 1H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.66 (s, 1H), 7.54 (d, J = 7.5 Hz, 1H), 7.39–7.21 (m, 8H), 5.37 (s, 1H), 2.32 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 163.8, 144.8, 141.0, 138.4,

135.9, 131.8, 128.6, 128.5, 128.42, 128.41, 126.2, 125.2, 120.1, 74.8, 21.2; HRMS (ESI): Exact mass calcd for $C_{21}H_{18}N [M+H]^+$ 284.14392, Found 284.14466.

N-9-Fluorenyl-*o*-tolaldehyde imine (2d): m.p.: 126–127 °C; IR (KBr): 3017, 2963, 2883, 1626, 1598, 1476, 1449, 1395, 1379, 1370, 1285, 1228, 1043 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 9.08 (s, 1H), 7.91 (d, J = 7.7 Hz, 1H), 7.75 (d, J = 7.5 Hz, 2H),

7.41–7.17 (m, 9H), 5.40 (s, 1H), 2.57 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 162.0, 144.8, 141.0, 137.6, 134.1, 130.7, 130.5, 128.4, 127.9, 127.4, 126.2, 125.2, 120.1, 75.2, 19.4; HRMS (ESI): Exact mass calcd for C₂₁H₁₈N [M+H]⁺ 284.14392, Found 284.14366.

N-9-Fluorenyl-2-naphthaldehyde imine (2e): m.p.: 208 °C (dec.); IR (KBr): 3046,

3022, 2868, 2832, 1956, 1630, 1596, 1343, 1303, 1274, 1174, 1121, 1042, 975, 958, 828, 782 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.93 (s, 1H), 8.16 (s, 1H), 8.02 (dd, J = 8.5, 1.6 Hz, 1H), 7.90–7.82 (m, 3H), 7.77 (d, J = 7.6 Hz, 2H), 7.53–7.29 (m, 8H), 5.49 (s, 1H); ¹³C NMR (CDCl₃)

150.91 MHz): δ 163.5, 144.8, 141.1, 134.9, 133.7, 133.1, 130.2, 128.7, 128.5, 128.2, 127.9, 127.5, 127.3, 126.5, 125.3, 124.3, 120.1, 74.8; HRMS (ESI): Exact mass calcd for C₂₄H₁₈N [M+H]⁺ 320.14392, Found 320.14393.

N-9-Fluorenyl-p-fluorobenzaldehyde imine (2f): m.p.: 144 °C (dec.); IR (KBr): 3067,

3023, 2871, 1637, 1594, 1572, 1489, 1449, 1377, 1274, 1082, 1045, 1011, 824, 766, 743 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 8.72 (s, 1H), 7.76–7.73 (m, 4H), 7.42–7.24 (m, 8H), 5.42 (s, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 161.9, 144.5, 141.1, 137.0, 134.5, 129.7, 128.9, 128.5, 127.5, 125.2, 120.2,

74.5; HRMS (ESI): Exact mass calcd for $C_{20}H_{15}ClN [M+H]^+$ 304.08930, Found 304.08997.

N-9-Fluorenyl-2-furanecarbaldehyde imine (2g): m.p.: 121 °C (dec.); IR (KBr): 3117,

3078, 3017, 2885, 2853, 1958, 1923, 1639, 1478, 1447, 1393, 1363, 1300, 1272, 1155, 1050, 1021 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 8.51 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.51 (s, 1H), 7.42–7.38 (m, 4H), 7.29 (t, *J* = 7.6 Hz, 2H), 6.83 (d, *J* = 3.5 Hz, 1H), 6.48 (m, 1H), 5.42 (s, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ

151.4, 151.3, 144.9, 144.4, 141.0, 128.4, 127.3, 125.3, 119.9, 114.5, 111.7, 74.1; HRMS (ESI): Exact mass calcd for $C_{18}H_{14}NO[M+H]^+$ 260.10754, Found 260.10639.

N-9-Fluorenyl-2-thiophenecarbaldehyde imine (2h): m.p.: 139 °C (dec.); IR (KBr): 3019, 2912, 2848, 1624, 1449, 1430, 1333, 1223, 1045, 1031 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.80 (s,

1H), 7.74 (d, J = 7.6Hz, 2H), 7.42–7.26 (m, 8H), 7.09–7.07 (m, 1H), 5.43 (s, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 156.2, 144.6, 142.2, 141.0, 130.9, 129.5, 128.4, 127.4, 127.3, 125.3, 120.1, 74.0; HRMS (ESI): Exact mass calcd for C₁₈H₁₄NS [M+H]⁺ 276.08470, Found 276.08497.

N-9-Fluorenyl-4-nitrobenzaldehyde imine (2n): m.p.: 134 °C (dec.); IR (KBr): 3437,

3035, 2831, 1639, 1600, 1519, 1449, 1340, 1279, 1048, 860, 765 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 8.82 (s, 1H), 8.25 (d, *J* =8.4 Hz, 2H), 7.96 (d, *J* = 8.3 Hz, 2H), 7.77 (d, *J* =7.6 Hz, 2H), 7.44–7.37 (m, 4H), 7.31 (td, *J* = 7.4, 0.8 Hz, 2 H), 5.51 (s, 1H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 160.7, 149.2, 144.0, 141.4, 141.1, 129.2, 128.7, 127.6, 125.2, 123.8,

120.3, 74.5; HRMS (ESI): Exact mass calcd for $C_{20}H_{15}N_2O_2 [M+H]^+$ 315.11335, Found 315.11186.

N-9-Fluorenyl-m-fluorobenzaldehyde imine (20): m.p.: 123-124 °C; IR (KBr): 3069,

3040, 3016, 2865, 1634, 1567, 1475, 1449, 1363, 1272, 1217, 1181, 1098, 1072, 1035, 970 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 8.71 (s, 1H), 7.85 (s, 1H), 7.76 (d, *J* = 7.7 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.43–7.29 (m, 8H), 5.43 (s, 1H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 161.8, 144.4, 141.1, 137.8,

134.9, 130.9, 129.8, 128.6, 128.1, 127.5, 126.8, 125.2, 120.2, 74.5; HRMS (ESI): Exact mass calcd for $C_{20}H_{15}CIN [M+H]^+$ 304.08930, Found 304.08855.

General procedure for preparation of aliphatic fluorenyl imines 2:

9H-9-fluorenylamine (0.700 g, 3.86 mmol) and well-dried anhydrous MgSO₄ (1.0 g) were placed in a flame dried 50 mL flask. Et₂O (20 mL) and an aliphatic aldehyde (4.63 mmol) were added to the flask via syringe, and the resulting mixture was stirred at room temperature for 30 min. Volatile materials were removed under reduced pressure, and then the residue was dissolved in Et₂O and passed through a short pad of latrobeads 6RS-8060 to remove remaining fluoreneamine. The crude mixture was

further purified by recrystallization (CH₂Cl₂/hexane).

The following compounds were prepared as described above unless otherwise noted. In the case of *N*-9-fluorenylisovaleraldehyde imine (**2j**), after filtration through a short pad of Iatrobeads 6RS-8060, the remaining solid was used for the reaction without further purification after complete removal of volatile solvent and aldehyde. In the case of *N*-9-fluorenylpentanealdehyde imine (**2i**), the 9-fluorenylamine (0.450 mmol (81.6 mg)) and pentanal (0.495 mmol (52.7 μ L)) were used. After filtration through a pad of Celite and removal of all volatile materials under reduced pressure, the remaining oily product was used for the reaction immediately without further purification.

N-9-fluorenylpentanealdehyde imine (2i): IR (KBr): 3066, 3041, 3020, 2956, 2928,

2858, 1659, 1450, 1377, 1302, 1100, 1030, 909 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.12 (t, *J* = 5.3 Hz, 1H), 7.68 (d, *J* = 7.6 Hz, 2H), 7.36–7.25 (m, 6H), 5.11 (s, 1H), 2.38 (td, *J* = 7.4, 5.3 Hz, 2H), 1.61–1.56 (m, 2H), 1.34–1.28 (qt, *J* = 7.4, 7.4 Hz,

2H), 0.93 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 168.2, 144.8, 141.0, 128.3, 127.3, 125.0, 120.0, 74.4, 35.9, 28.3, 22.4, 13.9; HRMS (ESI): Exact mass calcd for C₁₇H₁₈N [M+H]⁺ 250.15957, Found 250.15925.

N-9-fluorenylisovaleraldehyde imine (2j): m.p.: 62-63 °C; IR (KBr): 3064, 3040,

3018, 2952, 2929, 2865, 1655, 1464, 1448, 1382, 1305, 1154, 1018, 937 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 8.18 (t, *J* = 5.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.39–7.26 (m, 6H), 5.16 (s, 1H), 2.3 (dd, *J* = 6.9, 5.3 Hz, 2H), 2.08–1.97 (m, 1H), 1.02 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 167.6, 144.7, 140.9, 128.2,

127.3, 124.9, 119.9, 74.5, 44.9, 26.4, 22.5; HRMS (ESI): Exact mass calcd for $C_{18}H_{20}N$ $[M+H]^+$ 250.15957, Found 250.15856.

N-9-fluorenylcyclohexanecarbaldehyde imine (2k): m.p.: 72-73 °C; IR (KBr): 3064,

3040, 3020, 2925, 2852, 1654, 1447, 1374, 1303, 1280, 1099 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 8.04 (d, *J* = 5.3 Hz, 1H), 7.71 (d, *J* = 7.5 Hz, 2H), 7.37 (td, *J* = 7.3, 1.1 Hz, 2H), 7.32–7.27 (m, 4H), 5.10 (s, 1H), 2.36–2.32 (m, 1H), 1.91–1.89 (m, 2H), 1.79–1.77 (m, 2H), 1.70–1.67 (m, 1H), 1.41–1.21 (m, 5H); ¹³C NMR (CDCl₃)

124.51 MHz): δ 172.1, 144.9, 141.0, 128.2, 127.3, 124.9, 119.9, 74.4, 43.7, 29.9, 26.0,

25.4; HRMS (ESI): Exact mass calcd for $C_{20}H_{22}N$ [M+H]⁺ 276.17522, Found 276.17602.

N-9-fluorenylpivalaldehyde imine (21): m.p.: 142–143 °C; IR (KBr): 3064, 3020, 2964,

2928, 2867, 1957, 1919, 1655, 1475, 1448, 1397, 1373, 1363, 1301, 1102, 1057, 1031 cm⁻¹; ¹H NMR (CDCl₃, 600.13 MHz): δ 8.07 (s, 1H), 7.72 (d, *J* = 7.6 Hz, 2H), 7.39–7.36 (m, 2H), 7.30–7.28 (m, 4H), 5.11 (s, 1H), 1.17 (s, 9H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 175.5, 145.1, 141.0, 128.2, 127.3, 124.9, 120.0, 74.5, 36.5, 27.2; HRMS

(ESI): Exact mass calcd for $C_{18}H_{20}N [M+H]^+$ 250.15957, Found 250.15839.

General procedure for preparation of fluorenyl imines 2 derived from glyoxylate:

Under Ar atmosphere, 9*H*-9-fluorenylamine (1.00 g, 5.51 mmol), Sc(OTf)₃ (203mg 7.5 mol%) and Na₂SO₄ (400 mg) were measured in a well-dried 100 ml 2-neck round bottom flask. CH_2Cl_2 (30 ml) and glyoxylate (5.0 mmol) were added to the flask *via* syringe at room temperature, and the white suspension was immediately generated. The resulting solution was stirred at the same temperature for 1 h. The solution was diluted with another CH_2Cl_2 (30 ml) followed by filtration through filter paper, and the clear filtrate was collected. The solvent was removed under reduced pressure to obtain a crude mixture of the desired product. Recrystallization of the crude material using hexane/Et₂O was conducted to afford the pure desired product.

N-9-fluorenylethylglyoxylate imine (2m): m.p.: 65 °C (dec.). IR (neat) 3464, 2975,1742, 1448,1184,1029: ¹H NMR (CDCl₃, 495.13 MHz): δ 8.04 (s, 1H), 7.72 (d, J = 7.4 Hz, 2H), 7.41–7.37 (m, 4H), 7.29 (t, J = 7.4 Hz, 2H), 5.58 (s, 1H), 4.33 (q, J = 6.9 Hz, 2H), 1.32 (t, J = 6.9 Hz, 3H);¹³C NMR (CDCl₃ 124.51 MHz): δ 163.2, 154.9, 142.71, 141.24, 128.9, 127.6, 125.5, 120.2, 73.4, 62.0, 14.1.

HRMS (ESI): Exact mass calcd for $C_{18}H_{20}N[M+H]^+$ 266.11756, Found 266.11810.

N-9-fluorenyl*tert*-butylglyoxylate imine (2p): m.p.: 73 °C (dec.). IR (neat): 3464, 2975, 1742, 1448, 1184, 1029: ¹H NMR (CDCl₃, 495.13 MHz): δ 7.92 (s, 1H), 7.72 (d, J = 7.4 Hz, 2H), 7.42–7.38 (m, 4H), 7.31 (t, J = 7.4 Hz, 2H), 5.60 (s, 1H), 1.52 (s, 9H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 162.1, 156.0, 142.9, 141.1, 128.8, 127.5, 125.6, 120.2, 82.8, 73.1, 27.9. HRMS (ESI): Exact mass calcd for C₁₈H₂₀N [M+H]⁺ 294.14886, Found 294.14940.

General procedure for catalytic imine-imine cross-coupling reaction:

Under Ar atmosphere, fluorenyl substrate **2** (0.30 mmol) and KOCH₂CF₃ (0.015 mmol) were placed in a flame-dried test tube with a sleeve stopper. Dry Et₂O (1.2 mL) was added to the test tube via syringe, and the resulting mixture was stirred at room temperature for 10 min, and then kept at 20 °C. DPP–imine **1** (0.36 mmol) in dichloromethane (0.3 mL) was added to the mixture at the same temperature, and the whole was stirred for another 18 hours under Ar. The reaction was quenched with a saturated aqueous NH₄Cl solution, and the mixture was extracted with dichloromethane (10 mL x 3). The organic layers were combined and dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was obtained. The crude product was purified by column chromatography on silica gel (hexane-acetone) to afford the desired adduct **3**.

The following compounds were prepared as described above unless otherwise noted. In the cases of using 18-crown-6 or phenol derivatives as additives, an additive and a base (0.015 mmol each) were combined in a flame dried test tube with a sleeve stopper. Dry Et_2O (0.5 mL) was added to the test tube via syringe, and the resulting mixture was stirred at room temperature for 10 min. The mixture was transferred to the test tube with suspension of the fluorenyl substrate (0.3 mmol) in Et_2O (0.5 mL) via cannula, and the test tube was washed with Et_2O (0.2 mL). After stirring at room

temperature for 10 min, DPP-imine (1) (0.36 mmol) in dichloromethane (0.3 mL) was added to the mixture at 20 °C, and the whole was stirred for another 18 h under Ar.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1,2-diphenylethyl)-*P*,*P*-diphenylph osphinic amide (3aa-*syn*)³: ¹H NMR (CDCl₃, 600.17 MHz): δ 7.87 (d, *J* = 7.4 Hz, 1H),

7.73–7.70 (m, 2 H), 7.51 (d, J = 7.6 Hz, 2H), 7.44–7.19 (m, 19H), 7.16 (t, J = 7.7 Hz, 2H), 7.09 (t, J = 7.3 Hz, 1H), 7.02 (t, J = 7.8 Hz, 1H), 5.71 (s, 1H), 5.07 (dd, J = 10.3, 8.0 Hz, 1H), 4.61 (ddd, J = 9.8, 7.5, 2.4 Hz, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 165.2, 144.1 142.9, 141.9, 141.5, 138.4, 134.37,

133.50, 132.55, 132.46, 132.43, 132.36, 131.71, 131.7, 131.6, 131.5, 128.8, 128.6, 128.5, 128.4, 128.3, 128.2, 127.8, 127.7, 127.4, 127.2, 122.8, 120.4, 119.6, 70.3 ($J_{PC} = 7.6 \text{ Hz}$), 62.8; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.7.

N-((1*RS*,2*SR*)-2-((9*H*-fluoren-9-ylidene)amino)-1,2-diphenylethyl)-*P*,*P*-diphenylph osphinic amide (3aa-*anti*): m.p.: 160 °C (dec.); IR (KBr): 3386, 3173, 3059, 3028,

2900, 1645, 1601, 1450, 1438, 1174, 1123, 1112 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.97 (d, *J* =7.4 Hz, 1H), 7.75 (dd, *J* =12.1, 7.6 Hz, 4H), 7.54–7.53 (m, 3H), 7.42–7.24 (m, 9H), 7.16–7.05 (m, 9H), 6.97–6.95 (m, 2H), 6.00 (d, *J* =3.8 Hz, 1H), 4.74 (ddd, *J* = 10.5, 10.5, 3.8 Hz, 1H), 4.14 (dd, *J* = 10.9,

7.7 Hz, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 165.6, 143.8, 141.3, 140.6, 139.9 (J_{PC} = 5.6 Hz), 138.7, 133.4, 133.0, 132.5 (J_{PC} = 9.9 Hz), 132.1, 131.8 (J_{PC} = 9.6 Hz), 131.61, 131.56, 131.4, 131.2, 131.1, 128.33, 128.29 (J_{PC} = 88.3 Hz), 128.27, 128.25, 128.19, 128.13, 128.09, 127.3 (J_{PC} = 39.4 Hz), 126.9 (J_{PC} = 21.5 Hz), 122.6, 120.0, 199.3, 70.3 (J_{PC} = 2.8Hz), 61.7; ³¹P NMR (CDCl₃, 242.95 Hz): δ 24.1; HRMS (ESI): Exact mass calcd for C₃₉H₃₂N₂OP [M+H]⁺ 575.22523, Found 575.22781.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-phenyl-1-(*p*-tolyl)ethyl)-*P*,*P*-diph enylphosphinic amide (3ba-syn): m.p.: 145–146 °C; IR (KBr): 3356, 3058, 2917, 1650,

1600, 1513, 1492, 1449, 1439, 1394, 1304, 1235, 1189, 1121, 1028, 975, 905 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.87 (d, J = 7.2 Hz, 1H), 7.75–7.71 (m, 2H), 7.49 (d, J = 7.4 Hz, 2H), 7.43–7.19 (m, 17H), 7.15 (d, J = 7.7 Hz, 2H), 7.01 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (dd, J = 7.5 Hz, 2H), 5.70 (s, 1H), 5.02 (

10.1, 7.8 Hz, 1H), 4.57 (dd, J = 10.2, 7.1 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.8, 143.9, 141.8, 141.3, 139.8, 138.7, 138.5, 138.2, 136.4, 134.3, 133.5, 132.6, 132.3 ($J_{PC} = 9.2$ Hz), 132.2 ($J_{PC} = 9.3$ Hz), 131.8, 131.40, 131.36, 131.3, 131.2, 128.4, 128.24, 128.16, 128.07, 128.0, 127.6, 127.5, 127.4, 127.1, 122.6, 120.1, 119.3, 70.2 ($J_{PC} = 7.7$ Hz), 62.4, 21.0; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.5; HRMS (ESI): Exact mass calcd for C₄₀H₃₄N₂OP [M+H]⁺ 589.24088, Found 589.23939.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-phenyl-1-(*m*-tolyl)ethyl)-*P*,*P*-diph enylphosphinic amide (3ca-syn): m.p.: 160 °C (dec.); IR (KBr): 3346, 3058, 3023,

1656, 1606, 1491, 1449, 1440, 1398, 1306, 1236, 1214, 1157, 1121, 1027, 973 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.81 (d, *J* = 7.4 Hz, 1H), 7.64 (dd, *J* = 11.9, 7.6 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.37–7.12 (m, 17H), 7.03–6.93 (m, 4H), 6.82 (d, *J* = 7.4 Hz, 1H), 5.61 (s, 1H), 4.99 (dd, *J* = 10.4, 8.1 Hz, 1H), 4.49 (ddd, *J* = 9.7, 7.7, 2.0 Hz, 1H), 2.11 (s, 3H); ¹³C NMR

(CDCl₃ 150.91 MHz): δ 164.9, 143.9, 142.6, 141.7, 171.2, 138.2, 137.3, 134.1, 133.3, 132.5, 132.3 ($J_{PC} = 9.6$ Hz), 132.2 ($J_{PC} = 9.6$ Hz), 131.5, 131.4, 131.3, 131.2, 130.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.94, 127.89, 127.7, 127.6, 127.5, 127.4, 124.3, 122.6, 120.1, 119.4, 70.1 ($J_{PC} = 8.0$ Hz), 62.6, 21.4; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.9; HRMS (ESI): Exact mass calcd for C₄₀H₃₄N₂OP [M+H]⁺ 589.24088, Found 589.23885.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-phenyl-1-(*o*-tolyl)ethyl)-*P*,*P*-diph enylphosphinic amide (3da-*syn*): m.p.: 74–76 °C; IR (KBr): 3358, 3057, 1648, 1600,

1491, 1449, 1438, 1406, 1303, 1195, 1122, 1073 cm⁻¹. ¹H NMR (CDCl₃, 600.17 MHz): δ 7.88 (d, *J* = 7.5 Hz, 1H), 7.73–7.69 (m, 2H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.42–7.19 (m, 17H), 7.09–6.99 (m, 4H), 6.88 (d, *J* = 7.3 Hz, 1H), 5.70 (s, 1H), 5.02 (dd, *J* =10.3, 8.0 Hz, 1H), 4.58 (ddd, *J* =10.1, 7.6, 2.0 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 165.0, 143.8,

141.7, 141.1, 140.6, 138.0, 133.8, 133.7, 133.0, 132.3, 132.2, 132.2, 132.1, 131.5, 131.4, 131.3, 131.2, 131.1, 129.7, 128.5, 128.3, 128.14, 128.06, 127.8, 127.7, 127.4, 127.3, 127.2, 126.7, 125.8, 122.5, 120.1, 119.3, 68.2 ($J_{PC} = 7.1$ Hz), 58.2, 19.1; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.9; HRMS (ESI): Exact mass calcd for C₄₀H₃₄N₂OP [M+H]⁺ 589.24088, Found 589.24321.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-*p*-methoxyphenyl-2-phenylethyl)-*P*,*P*-diphenylphosphinic amide (3ea-syn): m.p.: 98–100 °C; IR (KBr): 3425, 1648,

1609, 1512, 1449, 1439, 1249, 1179, 1122 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.87 (d, J = 7.7 Hz, 1H), 7.75–7.71 (m, 2H), 7.52 (d, J = 7.7 Hz, 2H), 7.44–7.18 (m, 19H), 7.04–7.01 (m, 1H), 6.71–6.69 (m, 2H), 5.68 (s, 1H), 5.05–5.02 (m, 1H), 4.55 (ddd, J = 9.4, 7.0, 2.4 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.9, 158.5, 143.9, 141.7,

141.2, 138.1, 135.0, 134.2, 133.3, 132.3 ($J_{PC} = 9.4 \text{ Hz}$), 312.2 ($J_{PC} = 9.5 \text{ Hz}$), 131.5, 131.4, 131.3, 131.2, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.6, 127.5, 127.4, 122.6, 120.2, 119.4, 113.4, 112.6, 112.2, 70.2 ($J_{PC} = 8.6 \text{ Hz}$), 62.0, 55.1; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.5; HRMS (ESI): Exact mass calcd for C₄₀H₃₄N₂O₂P [M+H]⁺ 605.23579, Found 605.23484.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-*p*-bromophenyl-2-phenylethyl)-*P*, *P*-diphenylphosphinic amide (3fa-*syn*)³: ¹H NMR (CDCl₃, 600.17 MHz): δ 7.84 (d, *J*

= 7.4 Hz, 1H), 7.74–7.71 (m, 2H), 7.48 (d, J = 7.6 Hz, 2H), 7.44–7.17 (m, 21H), 7.00 (t, J = 7.5 Hz, 1H), 5.66 (s, 1H), 5.05 (dd, J = 10.2, 8.1 Hz, 1H), 4.57 (ddd, J = 9.8, 7.2, 2.3 Hz, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 165.3, 143.9, 141.7, 141.2 (J_{PC} = 3.4 Hz), 137.9, 133.9, 133.1, 132.2 (J_{PC} = 9.8 Hz), 132.0 (J_{PC} = 9.4 Hz), 131.6, 131.4, 131.3, 131.0, 128.9, 128.6, 128.4,

128.3, 128.2, 128.1, 128.0, 127.6, 127.5, 127.4, 122.4, 120.9, 120.2, 119.4, 69.8 (*J*_{PC} = 7.8 Hz), 62.0; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.7.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-(2-furyl)-2-phenylethyl)-*P*,*P*-diph enylphosphinic amide (3ga-syn)³: ¹H NMR (CDCl₃, 495.13 MHz): δ 7.82–7.76 (m,

3H), 7.53–7.15 (m, 20H), 7.06 (t, J = 7.7 Hz, 1H), 6.47 (d, J = 2.4 Hz, 1H), 6.16–6.15 (m, 1H), 6.02 (s, 1H), 4.83 (dd, J = 10.4, 7.4 Hz, 1H), 4.65–4.61 (m, 1H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 164.7, 155.0, 143.8, 141.2, 141.1, 141.1, 138.1, 134.0, 133.0, 132.3 ($J_{PC} = 9.5$ Hz), 132.0 ($J_{PC} = 8.5$ Hz), 131.5, 131.4, 131.3, 131.23, 131.17, 130.8, 138.5, 128.3, 1

128.2, 128.1, 128.0, 127.6, 127.5, 122.6, 120.1, 119.3, 110.4, 108.2, 66.8 ($J_{PC} = 7.0 \text{ Hz}$), 56.9; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.6.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-phenyl-1-(3-pyridyl)ethyl)-*P*,*P*-di phenylphosphinic amide (3ha-syn): m.p.: 160 °C (dec.); IR (KBr): 3309, 3056, 1647,

1599, 1450, 1439, 1402, 1308, 1196, 1120, 1028, 974, 914 cm⁻¹; ¹H NMR (CDCl₃, 399.78 MHz): δ 8.35 (s, 1H), 8.27 (d, J = 4.8 Hz, 1H), 7.76 (d, J = 7.4 Hz, 1H), 7.66–7.61 (m, 3H), 7.41–7.02 (m, 20H), 6.93 (t, J = 7.7 Hz, 1H), 5.61 (s, 1H), 4.96 (dd, J =10.2, 8.1 Hz, 1H), 4.57 (ddd, J = 9.6, 7.3, 2.3 Hz, 1H); ¹³C

NMR (CDCl₃ 150.91 MHz): δ 165.6, 148.5 (J_{PC} = 26.2 Hz), 143.9, 141.3, 140.8, 138.0, 137.9, 135.1, 133.7, 132.8, 132.1 (J_{PC} = 10.1 Hz), 132.0 (J_{PC} = 10.1 Hz), 131.7, 131.5, 131.0, 128.7, 128.42, 128.37, 128.32, 128.29, 128.24, 128.0, 127.8, 127.5, 127.5, 123.0, 122.5, 120.2, 119.4, 69.7 (J_{PC} = 7.4 Hz), 60.3; ³¹P NMR (CDCl₃, 200.43 Hz): δ 21.9; HRMS (ESI): Exact mass calcd for C₃₈H₃₁N₃OP [M+H]⁺ 576.22047, Found 576.22167. *N*-((1*R*,2*R*)-2-((9*H*-fluoren-9-ylidene)amino)-1-cyclohexyl-2-phenylethyl)-*P*,*P*-diphe

nylphosphinic amide (3ia-syn)³: ¹H NMR (CDCl₃, 600.17 MHz): δ 7.94–7.86 (m,

2H), .7.79 (d, J = 7.4 Hz, 1H), 7.61–7.57 (m, 2H), 7.46–7.28 (m, 13H), 7.23–7.13 (m, 4H), 7.09 (td, J = 7.7, 0.8 Hz, 1H), 5.75 (s, 1H), 4.87 (dd, J = 10.6 Hz, 1H), 3.31–3.28 (m, 1H), 1.93 (m, 1H), 1.77–1.53 (m, 5H), 1.21–1.02 (m, 5H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.0, 144.0, 143.2, 141.3,

138.2, 135.3, 134.4, 132.6 ($J_{PC} = 9.4$ Hz), 132.1 ($J_{PC} = 9.4$ Hz), 131.5, 131.4, 131.3, 130.9, 128.5, 128.3, 128.2, 128.0 ($J_{PC} = 12.6$ Hz), 127.4, 127.3, 127.0, 122.6, 120.3, 119.4, 64.8 ($J_{PC} = 8.2$ Hz), 64.0, 44.5, 30.3, 29.2, 26.7, 26.4; ³¹P NMR (CDCl₃, 242.95 Hz): δ 20.4.

N-((1*RS*,2*RS*)-1-((9*H*-fluoren-9-ylidene)amino)-4-methyl-1-phenylpentan-2-yl)-*P*,*P*diphenylphosphinic amide (3ja-syn)³: ¹H NMR (CDCl₃, 600.17 MHz): δ 7.87–7.82

(m, 3H), 7.61–7.54 (m, 3H), 7.46–7.19 (m, 16H), 7.12 (t, J = 7.6 Hz, 1H), 5.64 (s, 1H), 4.32–4.29 (m, 1H), 3.47–3.41 (m, 1H), 1.81–1.67 (m, 3H), 0.83 (d, J = 6.3 Hz, 3H), 0.72 (d, J = 6.2 Hz, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.7, 143.9, 142.4, 141.2, 138.2, 134.6, 133.7, 132.5 (d, $J_{PC} =$ 9.0 Hz),

132.2 (d, $J_{PC} = 9.2$ Hz), 131.5, 131.4, 131.3, 131.1, 128.4, 128.4, 128.3, 128.2, 128.2, 128.1, 127.7, 127.5, 127.1, 122.6, 120.3, 119.4, 65.9 (d, $J_{PC} = 8.1$ Hz), 56.9, 45.5, 24.6, 23.1, 22.2; ³¹P NMR (CDCl₃, 242.95 Hz): δ 23.2.

N-((1*RS*,2*RS*)-1-((9*H*-fluoren-9-ylidene)amino)-1-phenylhexan-2-yl)-*P*,*P*-diphenylp hosphinic amide (3ka-syn): m.p.: 79 °C (dec.); IR (KBr): 3058, 2954, 2927, 2869,

1648, 1601, 1450, 1439, 1401, 1304, 1193, 1122, 1110, 795 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.97–7.91 (m, 3H), 7.68–7.60 (m, 3H), 7.52–7.26 (m, 16H), 7.20–7.18 (m, 1H), 5.80 (s, 1H), 4.42 (dd, *J* = 11.0, 6.8 Hz, 1H), 3.49–3.46 (m, 1H), 2.04–1.88 (m, 2H), 1.51–1.48 (m, 1H), 1.36–1.24 (m, 3H),

0.87 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.6, 143.6, 141.1, 138.1, 134.5, 133.7, 132.4 ($J_{PC} = 9.2$ Hz), 132.2, 131.9 ($J_{PC} = 8.9$ Hz), 131.3 ($J_{PC} = 5.2$ Hz), 131.14, 131.12, 131.0, 128.3, 128.2, 128.1 ($J_{PC} = 5.7$ Hz), 128.05, 128.02, 127.6, 127.4, 127.0, 122.5, 120.1, 119.3, 65.6 ($J_{PC} = 8.1$ Hz), 58.8, 35.8, 28.4, 22.4, 13.9; ³¹P NMR (CDCl₃, 242.95 Hz): δ 20.4; HRMS (ESI): Exact mass calcd for C₃₇H₃₆N₂OP [M+H]⁺ 555.25653, Found 555.25620.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-phenyl-2-(*p*-tolyl)ethyl)-*P*,*P*-diph envlphosphinic amide (3ab-syn)³: ¹H NMR (CDCl₃, 600.17 MHz): δ 7.88 (d, *J* = 7.4

Hz, 1H), 7.74 (dd, J = 11.8, 7.6 Hz, 2H), 7.50 (d, J = 7.4 Hz, 2H), 7.45–7.17 (m, 20 H), 7.10 (t, J = 7.3 Hz, 1H), 7.01 (t, J = 7.7 Hz, 1H), 5.65 (s, 1H), 5.16 (t, J = 9.5 Hz, 1H), 4.57 (ddd, J = 9.9, 7.7, 2.3 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.9, 143.8, 142.9, 141.0, 138.7, 138.1, 137.0, 134.0,

133.1, 132.3 ($J_{PC} = 9.3 \text{ Hz}$), 132.1 ($J_{PC} = 9.4 \text{ Hz}$), 131.6, 131.4, 131.3, 131.1, 129.2, 128.3 ($J_{PC} = 7.9 \text{ Hz}$), 128.2 ($J_{PC} = 6.4 \text{ Hz}$), 128.1, 128.00, 127.95, 127.5, 127.4, 127.2, 127.0, 122.5, 120.1, 119.4, 69.9 ($J_{PC} = 8.1 \text{ Hz}$), 62.5, 21.2; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.9.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-phenyl-2-(*m*-tolyl)ethyl)-*P*,*P*-diph enylphosphinic amide (3ac-syn): m.p.: 164–166 °C; IR (KBr): 3345, 3058, 1649, 1606,

1450, 1439, 1401, 1304, 1236, 1200, 1120, 1072 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.88–7.86 (m, 1H), 7.77–7.74 (m, 2H), 7.46–7.16 (m, 22H), 7.09–7.06 (m, 1H), 7.01–6.98 (m, 1H), 5.67 (s, 1H), 5.16–5.12 (m, 1H), 4.60–4.56 (m, 1H), 2.39 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.8, 143.8, 142.8,

141.7, 141.2, 138.1, 134.2, 133.4, 132.3 ($J_{PC} = 9.5 \text{ Hz}$), 132.1 ($J_{PC} = 9.5 \text{ Hz}$), 131.4, 131.3, 131.2, 131.1, 128.4, 128.3, 128.2, 128.2, 128.1, 128.1, 128.0, 127.9, 127.4, 127.1,

126.9, 124.6, 122.5, 120.1, 119.3, 70.1 ($J_{PC} = 7.5 \text{ Hz}$), 62.6, 21.5; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.5; HRMS (ESI): Exact mass calcd for C₄₀H₃₄N₂OP [M+H]⁺ 589.24088, Found 589.24140.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-phenyl-2-(*o*-tolyl)ethyl)-*P*,*P*-diph enylphosphinic amide (3ad-*syn*): m.p.: 185 °C (dec.); IR (KBr): 3355, 3058, 1648,

1603, 1450, 1439, 1402, 1304, 1244, 1199, 1120 cm⁻¹. ¹H NMR (CDCl₃, 600.17 MHz): δ 7.89 (d, J = 7.4 Hz, 1H), 7.80– 7.77 (m, 2H), 7.49–7.08 (m, 23H), 6.97 (t, J =7.8 Hz, 1H), 5.68 (s, 1H), 5.37 (dd, J = 10.8, 8.5 Hz, 1H), 4.50 (dd, J = 10.8, 6.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 164.9.

143.9, 143.5, 141.2, 140.2, 138.1, 134.6, 132.4 ($J_{PC} = 9.8 \text{ Hz}$), 132.1 ($J_{PC} = 9.7 \text{ Hz}$), 131.5, 131.4, 131.3, 131.2, 131.0, 128.4, 128.3, 128.22, 128.16, 128.08, 127.9, 127.8, 127.5, 127.0, 126.7, 126.5, 126.0, 122.5, 120.2, 119.4, 67.1 ($J_{PC} = 8.3 \text{ Hz}$), 59.1, 19.3; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.2; HRMS (ESI): Exact mass calcd for C₄₀H₃₄N₂OP [M+H]⁺ 589.24088, Found 589.23918.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-(2-naphthyl)-1-phenylethyl)-*P*,*P*diphenylphosphinic amide (3ae-syn): m.p.: 114 °C (dec.); IR (KBr): 3366, 3057, 1648,

1602, 1450, 1439, 1400, 1303, 1197, 1122, 1070 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.94 (d, J = 7.4 Hz, 1H), 7.89– 7.60 (m, 4H), 7.68–7.64 (m, 2H), 7.56–7.10 (m, 20H), 6.97– 6.92 (m, 3H), 5.86 (s, 1H), 5.15 (dd, J = 10.4, 6.4 Hz, 1H), 4.69 (ddd, J = 9.6, 7.4, 3.2 Hz, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 165.3, 143.9, 142.8, 141.3, 139.1, 138.1, 134.0, 133.4,

133.2, 132.9, 132.14, 132.12, 132.07, 131.5, 131.4, 131.1, 128.4 ($J_{PC} = 7.2 \text{ Hz}$), 128.3, 128.2, 128.1, 128.0, 127.9, 127.7, 127.5, 127.2, 127.0, 126.3, 126.0, 125.7, 122.7, 120.2, 119.4, 70.2 ($J_{PC} = 8.0 \text{ Hz}$), 62.4; ³¹P NMR (CDCl₃, 242.95 Hz): δ 21.9; HRMS (ESI): Exact mass calcd for C₄₃H₃₄N₂OP [M+H]⁺ 625.24088, Found 625.24051.

N-((1RS,2RS)-2-((9H-fluoren-9-ylidene)amino)-2-(4-chlorophenyl)-1-phenylethyl)-

P,*P*-diphenylphosphinic amide (3af-syn)³: ¹H NMR (CDCl₃, 495.13 MHz): δ 7.99 (d, *J* = 7.4 Hz, 1H), 7.88–7.84 (m, 2H), 7.58–7.22 (m, 23H), 7.11 (t, *J* =7.7 Hz, 1H), 5.88 (s, 1H), 5.10 (dd, *J* = 10.4, 8.2 Hz, 1H), 4.77 (ddd, *J* = 10.0, 7.5, 2.6 Hz, 1H);

¹³C NMR (CDCl₃ 124.51 MHz): δ 165.0, 143.7, 142.0, 131.0, 139.7, 137.8, 133.6, 133.0, 132.5, 131.9, 131.8, 131.4, 131.3, 130.8, 128.8, 128.5, 128.19, 128.17, 128.1, 128.0, 127.9, 127.8, 127.2, 127.03, 126.97, 122.3, 120.1, 119.3, 69.1 ($J_{PC} = 7.5$ Hz), 62.1; ³¹P NMR (CDCl₃, 242.95 Hz): δ 24.4.

N-((1*RS*,2*SR*)-2-((9*H*-fluoren-9-ylidene)amino)-2-(4-chlorophenyl)-1-phenylethyl)-*P*,*P*-diphenylphosphinic amide (3af-*anti*): m.p.: 185 °C (dec.); IR (KBr): 3176, 3059,

1644, 1606, 1489, 1449, 1438, 1178, 1124, 1110 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.86 (d, J = 7.4 Hz, 1h), 7.64 (dd, J = 12.1, 7.6 Hz, 4H), 7.45–6.93 (m, 20H), 6.81 (d, J = 8.2 Hz, 2H), 5.92 (d, J = 3.8 Hz, 1H), 4.61 (td, J = 10.7, 3.6 Hz, 1H), 4.06 (dd, J = 11.0, 7.8 Hz, 1H); ¹³C NMR (CDCl₃ 150.91

MHz): δ 165.9, 143.8, 141.3, 139.4 ($J_{PC} = 5.6$ Hz), 138.5, 133.3, 132.6, 132.4, 132.4, 131.6, 131.6, 131.5, 131.3, 130.9, 128.7, 128.6, 128.32, 128.27, 128.23, 128.20, 128.15, 128.1, 128.0, 127.3, 127.0, 122.6, 120.1, 119.4, 69.4, 61.5; ³¹P NMR (CDCl₃, 242.95 Hz): δ 24.5; HRMS (ESI): Exact mass calcd for C₃₉H₃₁ClN₂OP [M+H]⁺ 609.18625, Found 609.18381.

N-((1*RS*,2*SR*)-2-((9*H*-fluoren-9-ylidene)amino)-2-(furan-2-yl)-1-phenylethyl)-*P*,*P*-d iphenylphosphinic amide (3ag-syn): m.p.: 96 °C (dec.); IR (KBr): 3365, 3058, 1713,

1647, 1600, 1450, 1439, 1406, 1305, 1194, 1123, 1071, 1007, 917 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.71–7.66 (m, 3H), 7.47 (dd, J = 12.1, 7.6 Hz, 2H), 7.49–6.96 (m, 18H), 6.88 (t, J = 7.8 Hz, 1H), 6.28 (dd, J = 3.2, 1.8 Hz, 1H), 6.10 (d, J =3.2 Hz, 1H), 5.62 (s, 1H), 5.13 (dd, J = 10.2, 8.5 Hz, 1H), 4.79–

4.75 (m, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 166.2, 152.5, 143.6, 142.3, 141.7, 141.1, 137.8, 133.8, 132.9, 132.6, 132.2, 132.12, 132.10, 132.06, 131.8, 131.6, 131.4, 131.3, 131.0, 128.22, 128.15, 128.1, 127.94, 127.88, 127.3, 127.0, 126.9, 122.5, 120.1, 199.3, 110.4, 107.9, 65.2 (d, $J_{PC} = 6.9$ Hz), 59.0; ³¹P NMR (CDCl₃, 242.95 Hz): δ 22.3; HRMS (ESI): Exact mass calcd for C₃₇H₃₀N₂O₂P [M+H]⁺ 565.20449, Found 565.20663.

N-((1*RS*,2*SR*)-2-((9*H*-fluoren-9-ylidene)amino)-1-phenyl-2-(thiophen-2-yl)ethyl)-*P*, *P*-diphenylphosphinic amide (3ah-syn): m.p.: 117–118 °C; IR (KBr): 3348, 3059, 1648, 1599, 1450, 1439, 1397, 1303, 1193, 1122, 1071 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.75 (d, *J* = 7.5 Hz, 1H), 7.72–7.68 (m, 2H), 7.46–6.94 (m, 23H), 5.93 (s, 1H),

4.94 (dd, *J* = 10.3, 8.1 Hz, 1H), 4.59 (ddd, *J* = 10.2, 7.4, 2.6 Hz, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 143.9, 143.8, 141.9, 141.2, 138.0, 133.7, 132.9, 132.7, 132.3, 132.2, 132.1, 131.8, 131.6, 131.5, 131.4, 131.4, 131.2, 128.4, 128.3, 128.24, 128.19, 128.15, 128.1, 127.9, 127.5, 127.3, 127.1, 126.6, 124.7, 124.9,

124.3, 122.7, 120.2, 119.4, 66.3 ($J_{PC} = 6.9 \text{ Hz}$), 62.7; ³¹P NMR (CDCl₃, 242.95 Hz): δ 22.3; HRMS (ESI): Exact mass calcd for C₃₇H₃₀N₂OPS [M+H]⁺ 581.18165, Found 581.17962.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-phenylhexyl)-*P*,*P*-diphenylphosp hinic amide (3ai-*syn*): m.p.: 61–63 °C (dec.); IR (KBr): 3347, 3058, 2954, 2928, 2858,

1647, 1602, 1449, 1439, 1402, 1304, 1199, 1122, 1110, 1069 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.97–7.93 (m, 2H), 7.79–7.73 (m, 3H), 7.52–7.02 (m, 18H), 5.24 (dd, *J* = 9.5, 8.4 Hz, 1H), 4.59–4.53 (m, 2H), 2.31–2.27 (m, 1H), 1.76–1.71 (m, 1H), 1.56–1.35 (m, 4H), 0.92 (t, *J* = 6.9 Hz, 3H); ¹³C NMR

(CDCl₃ 124.51 MHz): δ 162.1, 144.0, 143.7, 140.7, 138.2, 134.2, 133.1, 132.5 ($J_{PC} =$ 9.7 Hz), 132.1, 131.9 ($J_{PC} =$ 9.3 Hz), 131.6, 131.5, 131.4, 131.1, 130.9, 128.8, 128.4 ($J_{PC} =$ 12.6 Hz), 128.1 ($J_{PC} =$ 11.5 Hz), 128.0, 127.8, 127.7, 126.7, 126.6 ($J_{PC} =$ 3.7 Hz), 122.3, 120.2, 119.2, 66.5 ($J_{PC} =$ 3.8 Hz), 57.2, 33.0, 28.8, 22.7, 14.1; ³¹P NMR (CDCl₃, 200.43 Hz): δ 23.1; HRMS (ESI): Exact mass calcd for C₃₇H₃₆N₂OP [M+H]⁺ 555.25658, Found 555.25764.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-4-methyl-1-phenylpentyl)-*P*,*P*-diph enylphosphinic amide (3aj-syn): m.p.: 181 °C (dec.); IR (KBr): 3259, 3060, 2954,

1656, 1606, 1450, 1439, 1403, 1302, 1123, 1070 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.95–7.92 (m, 2H), 7.74–7.71 (m, 3H), 7.58–7.24 (m, 12H), 7.15–7.04 (m, 6H), 5.20 (t, *J* =9.3 Hz, 1H), 4.77–4.75 (m, 1H), 4.55 (t, *J* = 10.2 Hz, 1H), 2.18–2.13 (m, 1H), 1.92–1.86 (m, 1H), 1.60–1.55 (m, 1H),

1.05 (d, J = 6.7 Hz, 3H), 0.98 (d, J = 6.5, 3H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 161.8, 144.1, 143.8, 140.8, 138.3, 134.2, 133.4, 133.1, 132.5 ($J_{PC} = 8.2$ Hz), 132.2, 131.9 ($J_{PC} = 8.2$ Hz), 131.61, 131.57, 131.4, 131.1, 130.9, 128.5 ($J_{PC} = 11.4$ Hz), 128.2, 128.1, 128.0, 127.8, 126.7, 126.6, 122.3, 120.2, 119.2, 64.0 ($J_{PC} = 4.4$ Hz), 57.1, 41.4, 24.9, 21.9; ³¹P NMR (CDCl₃, 242.95 Hz): δ 23.2; HRMS (ESI): Exact mass calcd for

 $C_{37}H_{36}N_2OP [M+H]^+$ 555.25658, Found 555.25661.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-cyclohexyl-1-phenylethyl)-*P*,*P*-di phenylphosphinic amide (3ak-syn): m.p.: 82–84 °C; IR (KBr): 3379, 3058, 2926,

2850, 1648, 1609, 1449, 1439, 1400, 1302, 1205, 1123, 1069 cm⁻¹; ¹H NMR (CDCl3, 600.17 MHz): δ 7.94–7.91 (m, 2H), 7.76–7.72 (m, 3H), 7.51–7.21 (m, 12H), 7.05–6.92 (m, 6H), 5.10 (dd, *J* = 9.1, 8.6 Hz, 1H), 4.75 (dd, *J* = 10.7, 9.4 Hz, 1H), 4.43 (d, *J* = 8.6 Hz, 1H), 2.28–2.19 (m, 2H), 1.84–0.84 (m,

9H); ¹³C NMR (CDCl₃ 151.91 MHz): δ 162.6, 143.8, 143.7, 140.7, 138.2, 134.2, 133.3, 133.1, 132.4 ($J_{PC} = 9.6$ Hz), 132.2, 132.0 ($J_{PC} = 9.3$ Hz), 131.6, 131.4, 130.8 ($J_{PC} = 13.8$ Hz), 128.4 ($J_{PC} = 12.6$ Hz), 128.1 ($J_{PC} = 8.7$ Hz), 128.0, 127.8, 127.5, 126.6, 126.5, 126.5, 122.4, 120.0, 119.1, 71.1 ($J_{PC} = 3.7$ Hz), 56.2, 40.0, 30.5, 29.8, 26.4, 26.2, 26.1; ³¹P NMR (CDCl₃, 242.95 Hz): δ 23.0; HRMS (ESI): Exact mass calcd for C₃₉H₃₈N₂OP [M+H]⁺ 581.27218, Found 581.27127.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-3,3-dimethyl-1-phenylbutyl)-*P*,*P*-di phenylphosphinic amide (3al-*syn*): m.p.: 82–84 °C; IR (KBr): 3367, 3058, 2960, 2866,

1656, 1449, 1439, 1399, 1201, 1122, 1110, 1070 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 7.71 (dd, *J* = 7.5, 5.4 Hz, 2H), 7.64–7.21 (m, 17H), 7.15 (t, *J* = 7.5 Hz, 2H), 7.07–7.06 (m, 2H), 6.85 (d, *J* = 7.9 Hz, 1H), 4.68–4.59 (m, 2H), 1.04 (s, 9H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 170.2, 146.7, 145.2, 140.7,

140.4, 139.6, 133.4, 132.8, 132.3, 132.1 (d, $J_{PC} = 9.6$ Hz), 131.9 ($J_{PC} = 9.6$ Hz), 131.8, 131.3 (d, $J_{PC} = 14.4$ Hz), 129.2, 128.5, 128.1, 128.0, 127.9 ($J_{PC} = 13.7$ Hz), 127.0, 126.9, 126.8, 126.6, 125.9, 119.7 ($J_{PC} = 35.2$ Hz), 79.1 ($J_{PC} = 8.8$ Hz), 63.4, 36.7, 26.5; ³¹P NMR (CDCl₃, 242.95 Hz): δ 22.6; HRMS (ESI): Exact mass calcd for C₃₇H₃₆N₂OP [M+H]⁺ 555.25658, Found 555.25746.

(2SR,3RS)-2-((9H-fluoren-9-ylidene)amino)-3-((diphenylphosphoryl)amino)-3-phe nylpropanic acid ethyl ester (3am-syn): m.p.: 125 °C; IR (neat.): 3339, 1729, 1660

1275,1201,1102, 919; ¹H NMR (CDCl₃, 495.13 MHz): δ . 7.84-7.78 (m, 4H), 7.55 (d, J = 5.9 Hz, 1H), 7.49-7.45 (m, 2H), 7.42-7.25 (m, 12H), 7.20-7.18 (m, J = 5.9 Hz, 2H), 7.15-7.11 (m, 2H), 5.25-5.21 (m, 2H), 5.04-5.00 (m, 1H), 4.33-4.29 (m, 1H), 4.26-4.20 (m, 1H), 1.20 (t, J = 5.9 Hz, 3H); ¹³C NMR (CDCl₃ 150.92 MHz): δ .169.6, 166.9, 144.0, 142.0, 141.3, 138.0, 134.7, 133.5, 133.2, 132.6, 132.5, 132.1, 132.0, 131.8, 131.6, 131.5, 129.1, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.0, 127.2, 127.2, 126.8, 126.5, 124.3, 123.0, 120.5, 120.3, 119.4, 69.8 (J_{PC} =4.9), 61.9, 57.8, 14.1; ³¹P NMR (CDCl₃, 242.95 Hz): δ . 22.9; HRMS (ESI): Exact mass calcd for C₃₆H₃₂N₂O₃P [M+H]⁺ 571.21451, Found 571.21436.

N-((1*RS*,2*SR*)-2-((9*H*-fluoren-9-ylidene)amino)-2-(4-nitrophenyl)-1-phenylethyl)-*P*, *P*-diphenylphosphinic amide (3an-*anti*): m.p.: 125 °C (dec.); IR (KBr): 3367, 3059,

1648, 1601, 1520, 1450, 1438, 1344, 1190, 1123, 1108, 1069, 1029, 927 cm⁻¹; ¹H NMR (CDCl₃, 495.13 MHz): δ 7.97–7.91 (m, 3H), 7.73 (m, 4H), 7.60–7.07 (m, 20H), 6.20 (s, 1H), 4.78–4.72 (m, 1H), 4.20–4.16 (m, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 166.6, 148.3, 146.6, 143.9, 141.3, 138.7 ($J_{PC} = 5.7$ Hz), 138.2, 133.1, 132.4 ($J_{PC} = 9.6$ Hz), 131.80, 131.76, 131.7,

131.5, 131.5, 131.4, 130.7, 128.4, 128.3, 128.2, 128.1, 127.7, 127.4, 127.3, 123.2, 122.6, 120.2, 119.4, 69.3, 61.4; ³¹P NMR (CDCl₃, 242.95 Hz): δ 28.9; HRMS (ESI): Exact mass calcd for C₃₉H₃₁N₃O₃P [M+H]⁺ 620.21030, Found 620.20837.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-2-(3-chlorophenyl)-1-phenylethyl)-*P*,*P*-diphenylphosphinic amide (3ao-*syn*): m.p.: 175 °C (dec.); IR (KBr): 3342, 3059,

1648, 1595, 1450, 1439, 1400, 1200, 1121 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.87 (d, *J* =7.4 Hz, 1H), 7.74 (dd, *J* = 11.3, 7.6 Hz, 2H), 7.52 (t, *J* = 6.8 Hz, 1H), 7.47–7.10 (m, 22H), 7.04 (t, *J* = 7.6 Hz, 1H), 5.69 (s, 1H), 5.02 (dd, *J* = 10.6, 7.7 Hz, 1H), 4.56–4.53 (m, 1H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 165.4, 144.0, 143.7, 142.4, 141.3, 137.9, 134.5, 132.23, 132.17,

132.1, 131.7, 131.5, 131.4, 131.1, 129.8, 128.4 ($J_{PC} = 9.1$ Hz), 128.3 ($J_{PC} = 5.9$ Hz), 128.2, 128.1, 128.0, 127.7, 127.1, 125.8, 122.7, 120.3, 119.5, 69.4 ($J_{PC} = 7.3$ Hz), 62.4; ³¹P NMR (CDCl₃, 242.95 Hz): δ 22.0; HRMS (ESI): Exact mass calcd for C₃₉H₃₁ClN₂OP [M+H]⁺ 609.18625, Found 609.18349.

N-((1*RS*,2*RS*)-2-((9*H*-fluoren-9-ylidene)amino)-1-cyclohexyl-4-methylpentyl)-*P*,*P*-d iphenylphosphinic amide (3ij-*syn*): m.p.: 76–79 °C; IR (KBr): 3348, 3058, 2926, 2850, 1716, 1647, 1606, 1448, 1404, 1302, 1203 1122 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 8.00–7.93 (m, 4H), 7.90 (d. *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 7.5

Hz, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.52–7.25 (m, 10H), 4.99 (t, J = 10.5 Hz, 1H), 4.82 (dd, J = 10.3, 4.5 Hz, 1H), 3.37–3.33 (m, 1H), 2.00 (ddd, J = 14.1, 10.4, 3.8 Hz, 1H), 1.74–1.50 (m, 7H), 1.20–0.81 (m, 12H); ¹³C NMR (CDCl₃ 150.91 MHz): δ 160.2, 143.9, 140.7, 138.5, 134.8, 134.4, 133.9, 133.6, 132.14, 132.08,

132.0, 131.6, 131.4, 131.3, 131.2, 130.8, 128.3, 128.2, 128.1, 126.7, 122.2, 120.4, 119.0, 58.1 ($J_{PC} = 4.6$ Hz), 56.4, 44.4, 41.3, 30.5, 28.9, 26.5, 26.6, 23.7, 21.2; ³¹P NMR (CDCl₃, 242.95 Hz): δ 22.3; HRMS (ESI): Exact mass calcd for C₃₇H₄₂N₂OP [M+H]⁺ 561.30348, Found 561.30184.

General procedure for catalytic asymmetric imine-imine cross-coupling reactions of fluorenyl glyoxylate imines with Boc-imines:

Under Ar atmosphere, the fluorenyl 'Bu-glyoxylate imine 2p (58.6 mg, 0.200 mmol) was dissolved in anhydrous toluene (2 mL) in a well-dried 10 mL reaction tube, and the reaction tube was cooled at -60 °C. A chiral guanidine (8.0 mg, 0.020 mmol, 10 mol%) in toluene (1.0 mL) was then added dropwise, and the mixture was stirred at -60 °C. A solution Boc-imine (49.2 mg, 0.240 mmol, 1.2 eq.) in toluene (1.0 mL) was added to the mixture, and the whole was stirred at -60 °C for 18 h. The reaction was quenched by a sat. NH₄Cl aqueous solution (1.0 mL), and the aqueous phase was extracted with CH₂Cl₂ (3 × 5.0 mL). The combined organic layers were then dried over Na₂SO₄ and concentrated under reduced pressure. Finally, the crude material was purified by column chromatography on silica gel using a mixed solvent (hexane/Et₂O) to give the corresponding cross-coupling product **6**.

(2*S*,3*R*)-3-*tert*-Butoxycarbonylamino-2-(fluoren-9-ylideneamino)-3-phenyl-propio nic acid *tert*-butyl ester (6)⁴: m.p.: 181-182 °C; IR (neat): 3322, 2974, 2885, 2542,

2256, 1926, 1759, 1660, 1451, 1381, 1328, 1274, 1090, 1050, 881, 803, 686; ¹H NMR (CDCl₃, 495.13 MHz): δ 7.88 (d, *J* = 7.4 Hz, 1H), 7.57 (d, *J* = 7.4 Hz, 1H), 7.50–7.27 (m, 7H), 7.24-7.20 (m, 2H), 7.18-7.11 (m, 2H), 6.36 (d, *J* = 7.9 Hz, 1H), 5.63 (d, *J* = 7.9 Hz, 1H), 5.19 (s, 1H), 1.37 (s, 9H), 1.33 (s,

9H); ¹³C NMR (CDCl₃ 124.51 MHz): δ 168.3, 166. 8, 155.2, 144.0, 141.1, 138.0, 131.7, 131.7, 131.4, 128.6, 128.4, 128.2, 127.8, 127.1, 127.0, 126.5, 123.1, 120.4, 119.3, 82.7, 79.3, 68.9, 56.7, 28.37, 27.89; HRMS (ESI): Exact mass calcd for C₃₁H₃₄N₂O₄ [M+H]⁺

499.25968, Found 499.25780; HPLC Column AD–H, eluent Hex/IPA = 4/1, flow rate 1.0 mL/min; rac 5.5 min. 28.8 min. (major), 7.2 min. 11.0 min. (minor). $[\alpha]_D^{24} = -139$ (c 0.200, CH₂Cl₂).

Hydrolysis of compound 6

The coupling product **6** (1.12 g, 2.24 mmol) was added to a solution of 1.0 M aq. HCl and Et₂O (4/1). The mixture was stirred for 30 min at room temperature and then diluted with water. The aqueous phase was washed with Et₂O three times and basicified with sat. NaHCO₃, and the aqueous phase was extracted with Et₂O. The organic layers were combined and dried over Na₂SO₄. Filtration and evaporation under reduced pressure afforded free amine 7 (0.487 g, 1.45 mmol, 65% yield).

Syn-2-amino-3-tert-Butoxycarbonylamino propanoic acid tert-butyl ester (7)

IR (neat): 3428, 2975, 1711, 1640, 1492, 1367, 1251, 1162, ¹H NMR (CDCl₃, 600.17 MHz): δ 7.28-7.19 (d, *J* = 7.2 Hz, 1H), 5.66 (s, 1H), 5.11 (s, 1H), 3.71 (s, 1H), 1.38 (s, 9H), 1.32 (s, 9H); ¹³C NMR (CDCl₃ 150.92 MHz): δ 171.5, 155.1, 140.4, 128.5, 127.3,

126.5, 82.1, 79.3, 58.9, 56.2, 28.3, 27.9; HRMS (ESI): Exact mass calcd for $C_{18}H_{30}N_2O_4 [M+H]^+$ 337.21273, Found 337.21106.

Synthesis of monobactam

A solution of **7** (250 mg, 0.740 mmol) in MeOH (4 mL) and conc. HCl (1 mL) was stirred at room temperature for 2 h, then diluted with H₂O (10 mL), and the aqueous phase was washed with Et₂O (10 mL \times 3). The aqueous layers were combined, and evaporated under reduced pressure to afford the corresponding hydrochloric acid salt **8** (178 mg, quantitative yield). The diamine HCl salt **8** (70.0 mg, 0.230 mmol) was directly dissolved in THF, and the solution was kept at -60 °C. LDA in THF was added to this solution dropwise at the same temperature. After 24 h stirring, the reaction was quenched by a sat. NaHCO₃ aqueous solution. The crude mixture was extracted with CH₂Cl₂, then dried with Na₂SO₄. The residue was isolated by column chromatography on silica gel using a mixture of CH₂Cl₂/Et₂O to give the corresponding cyclized product **9** (27.2 mg, 0.167 mmol, 75% yield).

(3*S*,4*R*)-3-amino-4-phenylazetidin-2-one (9): m.p.: 172-175 °C; IR (neat): 3347, 2974, 1275, 1090, 1050, 881; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.50 (m, 5H), 6.25 (br, 1H), 4.62 (d, *J* = 5.4, 1H), 4.05 (d, *J* = 5.5, 1H), 1.60 (br, 2H); H₂N[×] Ph ¹³C NMR (CDCl₃ 150.92 MHz): δ 176.5, 128.8. 127.8, 126.8, 125.7, 84.9, 75.0; HRMS (ESI): Exact mass calcd for C₉H₁₀N₂O [M+H]⁺ 163.08714, Found 163.08700; [α]_D²⁴ = -45.1 (c 0.200, CH₂Cl₂).

Mechanism

NMR study of the anion formation from 2a

N-Fluorenyl imine **2a** (5.00 mg, 0.019 mmol) and KHMDS (4.00 mg, 0.020 mmol) were placed in a NMR tube (WILMAD screw-cap NMR tube). THF- d_8 (0.500 mL) was then added via a syringe at ambient temperature, and the resulting mixture was examined by ¹H NMR analysis (JEOL JNM-ECX600 spectrometers). The spectrum of **10** was obtained.

Anion 10:

¹H NMR (CDCl₃, 600.17 MHz): δ 8.54 (s, 1H), 7.89 (d, *J* = 7.8 Hz, 4H) 7.67 (d, *J* = 7.8 Hz, 2H), 7.18 (t, *J* = 7.8 Hz, 2H), 7.10 (t, *J* = 7.2 Hz, 2H), 6.85 (t, *J* = 7.2 Hz, 1H), 6.75 (d, *J* = 7.2 Hz, 2H),.

NMR study of the anion formation from 11

Aminoalkane substrate 11 (5.00 mg, 0.019 mmol) and KHMDS (4.00 mg, 0.020

mmol) were placed in a NMR tube (WILMAD screw-cap NMR tube). THF- d_8 (0.500 mL) was then added via a syringe at ambient temperature, and the resulting mixture was examined by ¹H NMR analysis (JEOL JNM-ECX600 spectrometers). The spectrum of **10** was obtained.

Benzylation of 11

Under Ar atmosphere, aminoalkane **11** (53.9 mg, 0.200 mmol) and KO^{*t*}Bu (22.4 mg, 0.020 mmol) were placed in a flame-dried test tube with a sleeve stopper. To the test tube was added anhydrous THF (1.00 mL) and benzyl bromide (28.7 μ L, 0.240 mmol) via a syringe. The resulting mixture was stirred at room temperature for 1 hour. The reaction was quenched with saturated aqueous NH₄Cl solution, and the mixture was extracted with dichloromethane (10 mL x 3). The organic layers were combined and dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was obtained. The crude product was then recrystallized from toluene to afford the product **12** (63.3 mg) in 88% yield.

E-9-benzylideneamino-9-benzylfluorene (12):

m.p.: 96-99 °C; IR (KBr): 3130, 2769, 1632, 1324, 1197,1170, 984: ¹H NMR (CDCl₃, 600.17 MHz): δ 7.93 (s, 1H), 7.70 (d, *J* = 4.8 Hz, 2H) 7.60 (d, *J* = 7.2 Hz, 2H), 7.37–7.30 (5H, m), 7.25–7.21 (4H, m), 7.09–7.03 (3H, m), 6.95 (d, *J* = 7.2 Hz, 2H), 3.52 (s, 2H); ¹³C NMR (CDCl₃ 150.92 MHz): δ 157.5, 147.4, 140.0, 137.2, 136.6,

130.9, 130.5, 128.4, 128.3, 128.0, 127.2, 127.0, 126.1, 125.6, 120.0, 77.4, 47.1. HRMS (DART): Exact mass calcd for $C_{27}H_{22}N$ [M+H]: 360.17522, Found: 360.17561.

Catalytic 1,4-addition reaction of 11 with Chalcone

Under Ar atmosphere, chalcone (50.0 mg, 0.240 mmol), aminoalkane **11** (53.9 mg, 0.20 mmol) and KOCH₂CF₃ (2.76 mg, 0.0200 mmol) were placed in a flame-dried test tube with a sleeve stopper. To the test tube was added anhydrous Et₂O (1.50 mL) via a syringe, and the resulting mixture was stirred at -60 °C for 14 hours. The reaction was quenched with saturated aqueous NH₄Cl solution, and the mixture was extracted with dichloromethane (10 mL x 3). The organic layers were combined and dried over anhydrous Na₂SO₄. After filtration and concentration under reduced pressure, the crude product was obtained. The crude product was purified by column chromatography on silica gel (hexane/acetone=4/1) to afford the desired 1,4-adduct (94.6 mg) in 99% yield with >99/1 *syn/anti* selectivity.

(3RS,4RS)-4-((9H-fluoren-9-ylidene)amino)-1,3,4-triphenylbutan-1-one (13):

m.p.: 59–61 °C; IR (KBr): 1102, 1180, 1266, 1303, 1339, 1371, 1449, 1493, 1599, 1647, 1683, 3028, 3061 cm⁻¹; ¹H NMR (CDCl₃, 600.17 MHz): δ 7.67 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 7.2 Hz, 2H) 7.33 (d, J = 7.8 Hz, 1H,), 7.18–6.74 (19H, m), 5.44 (d, J = 6.6 Hz, 1H), 3.90–3.87 (m, 1H), 3.45–3.34 (m, 2H); ¹³C

NMR (CDCl₃ 150.92 MHz): δ 199.0, 163.0, 143.8, 142.4, 142.2, 140.9, 140.8, 138.6, 137.1, 132.5, 131.3, 131.0, 130.8, 128.8, 128.6, 128.23, 128.16, 128.04, 127.97, 127.8, 127.5, 127.4, 126.8, 126.4, 122.6, 120.1, 119.2, 69.5, 50.9, 40.4; HRMS (DART): Exact mass calcd for C₃₅H₂₈NO [M+H]: 478.21709 , Found: 478.21485.

¹ Fukuyama, T.; Nunes, J. J. J. Am. Chem. Soc. **1988**, 110, 5196.

² ^a Zhang, Y.; Lu, Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429. ^b Takamura, M.; Hamashima,

Y.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem. Int. Ed. 2000, 39, 1650.

³ Chen, Y. J.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3244.

⁴ Kobayashi, S.; Yazaki, R.; Seki, K.; Yamashita, Y. Angew. Chem. Int. Ed. Engl. 2008, 47, 5613.

???A 254	nm			
Peak#	Ret. Time	Area	Height	Area%
1	5.595	23171576	1575599	51.894
2	7.230	141550	5049	0.317
3	11.093	204580	8534	0.458
4	28.806	21134435	129290	47.331
Total		44652142	1718472	100.000

Non-racemic (6)

SPD_M20	A Ch1 254nm	Peak Table		
Peak#	Ret. Time	Area	Height	Area%
1	4.944	107804	14482	1.069
2	29.074	9973886	89047	98.931
Total		10081691	103530	100.000

