Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

# **Electronic Supporting Information**

# Proton reduction by molecular catalysts in water under demanding atmospheres

David W. Wakerley, Manuela A. Gross and Erwin Reisner\*

Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

E-mail: reisner@ch.cam.ac.uk

| Contents              |         |
|-----------------------|---------|
| Experimental Section  | page S2 |
| Supporting Figures    | page S3 |
| Supporting Tables     | page S6 |
| Supporting References | page S7 |

## **Experimental Section**

**Reagents.** All chemical reagents were obtained from commercial suppliers at the highest available purity for analytical measurements. All solvents were HPLC grade and Millipore water was used in all electrochemical analysis.  $[Ni(P^{Ph}_2N^{PhCH2P(O)(OH)2}_2)_2]Br_2 \cdot HBr$  (NiP)<sup>1</sup> and (Et<sub>3</sub>NH)[Co<sup>III</sup>Cl(dimethylglyoximato)<sub>2</sub>(pyridyl-4-hydrophosphonate)] (CoP)<sup>2</sup> were synthesised as described previously. Buffer solutions were acidified to the desired pH using dilute H<sub>2</sub>SO<sub>4</sub>.

**General Electrochemistry.** Electrochemistry was carried out with a potentiostat (Ivium/ PalmSens) in a three-electrode cell configuration. All solutions were purged for at least 10 min and measurements were taken at room temperature in buffered electrolyte solutions of triethanolamine (TEOA) and Na<sub>2</sub>SO<sub>4</sub> (0.1 M each, pH 7) or trisodium citrate (0.1 M, pH 4.5). Potentials were converted to NHE according to the relationship E (*vs.* NHE) = E (*vs.* Ag/AgCl(KCl<sub>sat</sub>)) + 0.197 V.<sup>3</sup>

**Cyclic Voltammetry.** Cyclic voltammograms (CVs) were recorded at 100 mV s<sup>-1</sup> using a 3 mm diameter glassy carbon disk working, a Pt-mesh counter and Ag/AgCl(KCl<sub>sat</sub>) reference electrode (BASi) in a single compartment cell. Each voltammogram was started at 0.7 V vs. NHE and the second consecutive scan is presented in all figures.

**Controlled Potential Electrolysis (CPE).** CPE was performed in a 3-electrode cell configuration during vigorous stirring. CPE of **NiP** and **CoP** was performed with a glassy carbon rod (1.96 cm<sup>2</sup>) working electrode, a Pt-mesh counter contained in a fritted-glass compartment and a Ag/AgCl reference electrode using 2.5 mL of solution in an air-tight cell (5.4 mL headspace) containing 0.5 mM of catalyst. CPE with a Pt working electrode (1 mm diameter) was undertaken using a single compartment cell with no catalyst in solution and a Pt-mesh counter and a Ag/AgCl reference electrode. H<sub>2</sub> was quantified by gas chromatography and each experiment was carried out at least three times. The standard deviation ( $\sigma$ ) was calculated according to Eq. 1 and the Faradaic efficiency according to Eq. 2:

$$\sigma = \sqrt{\frac{\Sigma(x-\tilde{x})^2}{(n-1)}}$$
(Eq. 1)

FE (%)=
$$\frac{H_2 \text{ (mol)} \times 2 \times F \text{ (C mol}^{-1})}{\text{Charge Passed Through WE (C)}} \times 100$$
 (Eq. 2)

Gas Chromatographic Analysis. Gas chromatography was carried out on an Agilent 7890A gas chromatograph with a 5 Å molecular sieve column at 45 °C and N<sub>2</sub> carrier gas with a flow rate of approximately 3 mL min<sup>-1</sup>. Methane (2% CH<sub>4</sub> in N<sub>2</sub>) was used as an external standard.

**Spectroelectrochemistry.** IR and UV/visible-spectroelectrochemistry was carried out using a cell designed by the authors of Ref 4. The cell contained Pt mesh working and counter electrodes with a Ag/Ag<sup>+</sup> reference electrode. Spectra were taken using solutions of [CoCl(dmgH)<sub>2</sub>(4-methoxypyridine)]<sup>5</sup> (5 mM for IR; 0.25 mM for UV-visible spectra) or **NiP** (1.25 mM for IR; 0.25 mM for UV-visible spectra) with tetrabutyl ammonium bromide (0.3

M) in MeOH, which was saturated with CO. IR spectra were recorded on a Thermo Scientific Nicolet iS50 FT-IR spectrometer and UV-visible spectra were recorded on a Varian Cary 50 UV-visible spectrometer. In each experiment the working electrode was held at a defined potential until the current stabilised (typically 60 s) and an IR spectrum was recorded. This was repeated in 50 mV intervals over a range of potentials.<sup>6</sup>



#### **Supporting Figures**

**Figure S1.** H<sub>2</sub> inhibition study (100% H<sub>2</sub> *vs.* 100% N<sub>2</sub> atmosphere) on a glassy carbon working electrode at 100 mV s<sup>-1</sup> with (a) **NiP** (1 mM) in citrate buffer (0.1 M, pH 4.5) and (b) **CoP** (1 mM) in TEOA/Na<sub>2</sub>SO<sub>4</sub> (0.1 M each, pH 7).



**Figure S2**. The effect of  $O_2$  on the Co<sup>III</sup>/Co<sup>II</sup> redox wave of **CoP** (1 mM) in TEOA/Na<sub>2</sub>SO<sub>4</sub> (0.1 M each, pH 7) at 100 mV s<sup>-1</sup> on a glassy carbon working electrode.



**Figure S3.** *I-t* trace from a Pt working electrode in 0.1 M citrate buffer at pH 4.5 held at –0.4 V vs. NHE in 100% CO and a subsequent electrolysis under 100% N<sub>2</sub>.



**Figure S4.** *I-t* traces and  $H_2$  produced by **CoP** (1 mM) in 100% CO (top) and subsequently after purging with 100% N<sub>2</sub> (bottom). Experiments were carried out on a glassy carbon rod held at -0.7 V *vs.* NHE in TEOA/Na<sub>2</sub>SO<sub>4</sub> buffer (0.1 M each, pH 7).



**Figure S5.** Infra-red spectra of  $[CoCl(dimethylglyoximato)_2(4-methoxypyridine)]$  (5 mM) in the presence of tetrabutylammonium bromide (0.3 M) in MeOH under an atmosphere of CO or N<sub>2</sub> at -0.8 V *vs.* Ag/Ag<sup>+</sup>.



**Figure S6.** UV-visible spectroelectrochemical spectra of **NiP** (0.25 mM) in the presence of tetrabutylammonium bromide (0.3 M) in MeOH under an atmosphere of CO at varying potentials.

**Table S1.** H<sub>2</sub> produced and Faradaic efficiency of **NiP** (0.5 mM in 0.1 M citrate buffer at pH 4.5) and **CoP** (0.5 mM in 0.1 M TEOA/Na<sub>2</sub>SO<sub>4</sub> at pH 7) from CPE at -0.4 V (**NiP** for 60 min) and -0.7 V (**CoP** for 15 min) *vs.* NHE.

|                |                       | NiP                  |        |             |           |                      | СоР    |      |
|----------------|-----------------------|----------------------|--------|-------------|-----------|----------------------|--------|------|
| Atmosphere     | H <sub>2</sub> / μmol | $\sigma$ / $\mu$ mol | FE / % | $\sigma$ /% | H₂ / µmol | $\sigma$ / $\mu$ mol | FE / % | σ/%  |
| N <sub>2</sub> | 1.05                  | 0.29                 | 72.21  | 16.17       | 1.15      | 0.13                 | 66.72  | 3.42 |
| O <sub>2</sub> | 0.04                  | 0.05                 | 1.62   | 1.99        | 0.26      | 0.06                 | 10.07  | 2.04 |
| СО             | 0.76                  | 0.06                 | 76.09  | 12.00       | 0.03      | 0.00                 | 3.56   | 0.53 |

Table S2. H<sub>2</sub> produced by a Pt disk (1 mm) electrode (0.1 M citrate buffer at pH 4.5) from CPE at -0.4 V vs. NHE for 15 min.

|                                       | Pt        |                      |  |
|---------------------------------------|-----------|----------------------|--|
| Atmosphere                            | H₂ / μmol | $\sigma$ / $\mu$ mol |  |
| N <sub>2</sub>                        | 0.45      | 0.03                 |  |
| со                                    | 0.03      | 0.00                 |  |
| N <sub>2</sub> after CO<br>experiment | 0.00      | 0.00                 |  |

### **Supporting References**

- 1. M. A. Gross, A. Reynal, J. R. Durrant, and E. Reisner, *J. Am. Chem. Soc.*, 2014, **136**, 356–366.
- 2. F. Lakadamyali and E. Reisner, *Chem. Commun.*, 2011, **47**, 1695–1697.
- 3. A. Bard and L. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, Wiley, 2<sup>nd</sup> edn., 2001.
- 4. M. Krejčik, M. Daněk, and F. Hartl, J. Electroanal. Chem., 1991, **317**, 179–187.
- 5. D. W. Wakerley and E. Reisner, *Phys. Chem. Chem. Phys.*, 2014, **16**, 5739–5746.
- 6. F. P. A. Johnson, M. W. George, F. Hartl, and J. J. Turner, *Organometallics*, 1996, **15**, 3374–3387.

End of ESI