Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

A chameleon catalyst for nonheme iron-promoted olefin oxidation Shyam R. Iyer,[#] Maedeh Moshref Javadi,[#] Yan Feng,[#] Min Young Hyun,^{#,&} Williamson N. Oloo,[#] Cheal Kim,[&] and Lawrence Que, Jr.^{#,*}

[#]Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States and [&]Department of Fine Chemistry, Seoul National University of Science & Technology Seoul 139-743, Korea

Email: larryque@umn.edu

The catalytic experiments were conducted according to published procedures.¹

Table S1: Competition experiments for the oxidation of olefin pairs by 2α , 2β , 3α and 3β with 10 eq of H₂O₂ in the absence and in the presence of 2000 eq. AcOH.

Competition experiments (D/E)					
Catalyst	Acid	A vs C		F vs C	
	(eq)	Α	С	F	С
2α	0	0.5/0.0	0.8/4.8	0.3/0.0	0.2/5.4
	2000	0.0/0.0	0.3/7.3	0.0/0.0	0.2/7.6
2β	0	8.0/0.0	1.0/0.5	8.9/0.0	0.0/1.0
	2000	0.0/0.0	0.4/9.6	0.0/0.0	0.4/8.9
3α	0	0.7/0.0	0.3/1.9	0.6/0.0	0.1/2.0
	2000	0.0/0.0	0.2/8.0	0.0/0.0	0.2/7.5
3β	0	5.6/0.0	0.6/1.2	6.1/0.0	1.0/1.9
	2000	0.0/0.0	0.8/7.2	0.0/0.0	0.6/6.9

A = derived from tert-butyl acrylate, C = derived from cyclooctene, and F = derived from dimethyl fumarate. All experiments were carried out at ambient temperature with 0.7 mM catalyst, 10 eq. H_2O_2 and 1000 eq. olefin. In experiments conducted in the presence of AcOH, this additive was added prior to addition of H_2O_2 .

Figure S1. AcOH concentration dependence of product yields in the (a) 2α -catalyzed oxidation of cyclooctene; (b) 3β -catalyzed oxidation of cyclooctene; (c) 3α -catalyzed oxidation of cyclooctene. All experiments were carried out at ambient temperature with 0.7 mM catalyst, 10 eq. H₂O₂ and 1000 eq. olefin. Maximum epoxide selectivity occured at >10 eq. AcOH for the 2α and 3α catalysts and at much higher AcOH equivalents for the 3β catalyst.

Figure S2. TON diol (stripes) and TON epoxide (solid) as a function of AcOH concentration in the competitive oxidation of cyclooctene (green) and *tert*-butyl acrylate (red). All experiments were carried out at ambient temperature with 0.7 mM catalyst, 10 eq. H_2O_2 and 1000 eq. olefin in MeCN.

Figure S3. (a) cyclooctene oxidation by 2β and 10 eq. H_2O_2 in the presence of 500 eq. AcOH and 0-4000 eq. H_2O ; (b) 1-octene oxidation by 2β and 10 eq H_2O_2 in the presence of 500 eq. AcOH and 0-4000 eq. H_2O . (c) Addition of 2000 eq. H_2O at particular timepoints in the catalytic oxidation of 1-octene by $2\beta/10$ eq. $H_2O_2/100$ eq. AcOH. Red bars = TON *cis*-diol; blue bars = TON epoxide. Reaction conditions: 0.7 mM 2β and 1000 eq. olefin substrate in MeCN at ambient temperature.

The results in Figure S3C indicate that the electrophilic epoxide-selective oxidant formed in the presence of AcOH can revert upon addition of H_2O to the nucleophilic diolselective oxidant. As an Fe^{III}(OOH)(AcOH) adduct is the likely precursor to the electrophilic Fe^V(O)(OAc) oxidant in cyclooctene epoxidation by 2β in the presence of AcOH (Figure 2), the corresponding nucleophilic oxidant in the absence of AcOH itself must derive from an Fe^{III}–OOH species as well for the two transformations to be connected by a rapid equilibrium.

References:

1. (a) K. Chen, M. Costas, J. H. Kim, A. K. Tipton and L. Que, *J. Am. Chem. Soc.*, 2002, 124, 3026; (b) R. Mas-Balleste and L. Que, *J. Am. Chem. Soc.*, 2007, 129, 15964.