Electronic Supplementary Information

Ammonium based zwitterions showing both LCST- and UCST-type phase transitions with water in a very narrow temperature range

S. Saita,^{a,b} Y. Mieno,^{a,b} Y. Kohno,^{b,†} and H. Ohno^{a,b}

^aDepartment of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan. ^bFunctional Ionic liquid Laboratories, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan. ⁺ Department of chemical and Biological Engineering, University of Colorado Boulder, CO 80309, USA.

E-mail: ohnoh@cc.tuat.ac.jp; Fax: +81 42 388 7024; Tel: +81 42 388 7024

Preparation of zwitterions

Two types of zwitterions, *N*,*N*,*N*-tripentyl-3-sulfonyl-1-propaneammonium ($N_{555}C3S$) and *N*,*N*,*N*-trihexyl-3-sulfonyl-1-propaneammonium ($N_{666}C3S$), were prepared in this paper. Trialkylamine and 1,3-propanesultone were dissolved into acetone, and the resulting solution was mixed under dry nitrogen gas atmosphere. The obtained solution was stirred for two days at 80 °C. After removal of acetone by evaporation, the residual liquid was repeatedly washed with excess amounts of anhydrous diethylether. A resultant solid was dissolved in dichloromethane, and the solution was passed through a column filled with aluminum oxide. After then, it was purified by recrystallisation from ethylacetate/methanol, and obtained white powder was dried *in vacuo* at 60°C for 24 h. Chemical structure and purity of $N_{555}C3S$ and $N_{666}C3S$ were confirmed by ¹H-NMR spectroscopy and elemental analysis.

N₅₅₅C3S: N,N,N-Tripentyl-3-sulfonyl-1-propaneammonium

 $\delta_{\rm H}$ (400 MHz; CDCl₃; δ /ppm relative to TMS): 0.93 (9H, t, *J* =7.02), 1.37 (12H), 1.70 (6H), 2.16 (2H), 2.92 (2H, t, *J* =5.83), 3.19 (6H), 3.72 (2H). Elemental analysis (%) for C₁₈H₃₉O₃NS: Found: C, 61.66; H, 11.79; N, 3.92; C/N, 15.75. Calcd: C, 61.84; H, 11.25; N, 4.01; C/N, 15.43.

N₆₆₆C3S: N,N,N-Trihexyl-3-sulfonyl-1-propaneammonium

 $\delta_{\rm H}$ (400 MHz; CDCl₃; δ /ppm relative to TMS): 0.89 (9H, t, *J* =6.57), 1.33 (18H), 1.69 (6H), 2.15 (2H), 2.93 (2H, t, *J* =5.90), 3.16 (6H), 3.75 (2H). Elemental analysis (%) for C₂₁H₄₅O₃NS: Found: C, 64.17; H, 12.17; N, 3.47; C/N, 18.49. Calcd: C, 64.40; H, 11.58; N, 3.58; C/N, 18.01.

(ZIs)		
ZI	$T_{\rm m}^{*1/\rm o}{\rm C}$	$T_{\rm d}^{*2/\rm o}{\rm C}$
N ₅₅₅ C2S	157	253
N ₆₆₆ C3S	202	250

 Table S1 Thermal properties of prepared zwitterions

 (ZIs)

^{*1}Melting temperature ^{*2}Decomposition temperature