Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Copper-Catalyzed Phosphorylation of sp² C – H Bonds

Shan Wang, Rui Guo, Gao Wang, Shan-Yong Chen*, and Xiao-Qi Yu*

SUPPORTING INFORMATION

Table of Contents

General Considerations	2
Materials	2
Synthesis of Amides	3
Optimization of Reaction Conditions	3
General Procedure for Cu(OAc) ₂ -Catalyzed Phosphorylation	6
Proposed Reaction Mechanism	7
Characterization Data for Products	8
References	15

General Considerations. Reactions were performed without special precautions in 1-dram screw-cap vials equipped with a stir bar. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. Preparative thin layer chromatography was performed on Analtech TLC plates (20 cm × 20 cm, 20 microns). ¹H, ¹³C and ³¹P NMR spectra were recorded on an Bruker Avance 400 MHz instrument in deuterated chloroform CDCl₃ using TMS or residual solvent peak as a standard. Mass spectroscopy (ESI-MS) and High Resolution Mass spectroscopy (HRMS) data were recorded on a Finnigan LCQ^{DECA} and a Bruker Daltonics Bio TOF mass spectroscopy respectively. Fluorescence emission spectra were obtained using FluoroMax-4 Spectrofluorophotometer (HORIBA Jobin Yvon) at 298 K. All solvents were dried according to the standard methods prior to use. All of the solvents were either HPLC or spectroscopic grade in the optical spectroscopic studies.

Materials. The following starting materials were obtained from commercial sources and were used without further purification: 8-aminoquinoline, benzoyl chloride, 4-(trifluoromethyl)benzoyl chloride, 4-nitrobenzoyl chloride, 4-methylbenzoic acid, 4-methoxybenzoic acid, 4-fluorobenzoic acid, 4-chlorobenzoic acid, 4-bromobenzoic acid, 4-iodobenzoic acid, 4-cyanobenzoic acid, monomethyl terephthalate, 3-methylbenzoic acid, 3-methoxybenzoic acid, 3-chlorobenzoic acid, 3-bromobenzoic acid, 3-iodobenzoic acid, 2-methylbenzoic acid, isonicotinic acid, thiophene-3-carboxylic acid, quinolin-8-ol, naphthalen-1-amine, pyridin-2-ylmethanol, picolinic acid, aniline, 2-(methylthio)aniline, diisopropyl phosphonate, diethyl phosphonate, dihexyl phosphonate, dibenzyl phosphonate, diphenyl phosphonate.

Synthesis Of Amides. All amides bearing 8-aminoquinoline moiety were prepared by the reaction of the corresponding acid chlorides with 8-aminoquinoline. All amides bearing 8-aminoquinoline moiety were prepared by the reaction of the corresponding acid chlorides with 8-aminoquinoline. 2-Methyl-N-phenylbenzamide (CAS 7055-03-0) was also prepared using the same procedure. 2-Methyl-N-(8-quinolinyl)benzamide (CAS 1182669-71-1), 3-methyl-N-(8-quinolinyl)benzamide (CAS 443638-87-7), N-(8-quinolinyl)-1-naphthamide (CAS 443735-56-6), 2-Methyl-N-(2-pyridinylmethyl)benzamide was prepared by previously reported procedure.^{[1], [2]}

General Procedure for the Preparation of Starting Amide.

To an oven-dried 100 mL three-necked flask, 3-acetylbenzoic acid (2.5 g, 15 mmol), DMF (5 drops) and DCM (30 mL) were added under a N_2 atmosphere. Oxalyl chloride (1.5 mL, 18 mmol, 1.2 equiv.) was added dropwise at 0 °C. The reaction was detected by TLC, and the solvent was then removed in vacuo. The resulting acid chloride was used immediately without further purification.

To another oven-dried 100 mL three-necked flask, 8-aminoquinoline (2.9 g, 20 mmol, 1.3 equiv.), Et₃N (4.1 mL, 30 mmol, 2 equiv.) and DCM (30 mL) were added. A solution of the acid chloride in DCM (10 mL) was added dropwise to the solution at 0 °C, and the solution was then warmed to room temperature. After stirring overnight, the reaction system was quenched with sat. aq. NaHCO₃ (30 mL) and the organic layer was separated. The aqueous layer was extracted with DCM (2 x 15 mL). The combined organic layers were washed with 1 M HCl aq. (30 mL) and brine (30 mL), dried over MgSO₄, filtered and evaporated in vacuo. The obtained crude amide was purified by column chromatography on silica gel (eluant: petroleum ether /EtOAc = 3/1) to afford the desired amide as a white solid (3.6 g, 82%).

N-(quinolin-8-yl)benzamide. (1a)

 $R_f = 0.49$ (petroleum ether /EtOAc = 5/1). White Solid. ¹H NMR (400 MHz, CDCl₃) δ 10.78 (s, 1H), 8.97 (d, J = 7.6 Hz, 1H), 8.88 (d, J = 4.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 7.6 Hz, 2H), 7.65–7.57 (m, 5H), 7.53–7.50 (m, 1H).

N-(quinolin-8-yl)-4-(trifluoromethyl)benzamide. (1h)

 $R_f 0.56$ (petroleum ether /EtOAc = 5/1). White Solid. ¹H NMR (400 MHz, CDCl₃) δ 10.83 (s, 1H), 8.95 (dd, J = 7.2, 1.6 Hz, 1H), 8.88 (dd, J = 8, 1.6 Hz, 1H), 8.26-8.21 (m, 3H), 7.85 (d, J = 8.4 Hz, 2H), 7.67 – 7.61 (m, 2H), 7.53 (dd, J = 8.4, 4.0 Hz, 1H).

4-cyano-N-(quinolin-8-yl)benzamide. (1j)

 $R_{f} 0.32$ (petroleum ether /EtOAc = 5/1). White Solid. ¹H NMR (400 MHz, CDCl₃) δ 10.82 (s, 1H), 8.94-8.88 (m, 2H), 8.26-8.20 (m, 3H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.67 - 7.61 (m, 2H), 7.54 (dd, *J* = 8.4, 4.0 Hz, 1H).

N-(quinolin-8-yl)isonicotinamide. (1r)

R_f 0.26 (petroleum ether /EtOAc = 1/1). White Solid. ¹H NMR (400 MHz, CDCl₃) δ 10.85 (s, 1H), 8.95-8.89 (m, 4H), 8.25 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.94 (dd, *J* = 4.4, 1.6 Hz, 2H), 7.67 – 7.61 (m, 2H), 7.54 (dd, *J* = 8.0, 4.0 Hz, 1H).

N-(quinolin-8-yl)thiophene-3-carboxamide. (1s)

R_f 0.46 (petroleum ether /EtOAc = 5/1).White Solid. ¹H NMR (400 MHz, CDCl₃) δ 10.58 (s, 1H), 8.92 – 8.87 (m, 2H), 8.23-8.18 (m, 2H), 7.72 (dd, *J* = 4.8, 1.2 Hz, 1H), 7.64 – 7.49 (m, 2H), 7.46(dd, *J* = 6.0, 3.2 Hz, 2H).

Optimization Of Reaction Conditions.

General procedure for reactions using NMO oxidant (Table S1, Table S2, Table S3 (entry 1), Table S4): a 1-dram vial equipped with a stir bar was charged with N-(quinolin-8-yl)benzamide (50 mg, 0.2 mmol, 1 equiv), catalyst (20 mol%), Ag₂CO₃ (1 equiv, 55 mg),Inside the glove box, NMO (N-methylmorpholine N-oxide) (47 mg, 0.4 mmol, 2 equiv) was added to the vial. Outside the glove box, solvent (0.8 mL) and diisopropyl phosphonate (66 uL, 0.4 mmol, 2 equiv) were added to the resulting mixture. The resulting mixture was heated with stirring at 55 °C for 12h. After completion, the reaction mixture was cooled down to room temperature. The mixture was washed with ethyl acetate or CH_2Cl_2 (2 × 25 mL), and the combined extracts were washed with H_2O (15.0 mL) and brine (15.0 mL).

General procedure for reactions with other oxidant (entries 2-10, table S3): 1-dram vial equipped with a stir bar was charged with N-(quinolin-8-yl)benzamide (50 mg, 0.2 mmol, 1 equiv), catalyst (20 mol%), Ag_2CO_3 (1 equiv, 55 mg), solvent (0.8 mL) and diisopropyl phosphonate (66 uL, 0.4 mmol, 2 equiv). The resulting mixture was heated with stirring at 55 °C for 12h. After completion, the reaction mixture was cooled down to room temperature. The mixture was washed with ethyl acetate (2 × 25 mL), and the combined extracts were washed with H₂O (15.0 mL) and brine (15.0 mL).

Table S1 Optimization of Cu catalysts.^[a]

$R^{1} \xrightarrow{[I]}{\mathbb{H}} \qquad $			
1	2a	Ö 3	
Entry	Catalyst	Yield (%) ^[b]	
1	CuCl	20	
2	$CuCl_2$	29	
3	CuCN	10	
4	CuI	16	
5	CuBr	27	
6	CuAcAc	18	
7	Cu(NO ₃) ₂ ·3H ₂ O	13	
8	Cu(OAc) ₂	30	
9[c]	Cu(OAc) ₂	21	
10 ^[d]	Cu(OAc) ₂	13	
11[e]	$Cu(OAc)_2$	Trace	

[a] Reaction conditions: amide (0.2 mmol), catalyst (20 mol%), NMO (2 equiv), Ag_2CO_3 (2 equiv), 4A MS
(100mg), NMP (0.8 mL) and diisopropyl phosphonate (2 equiv), 120 °C, 12 h. [b] Isolated yield. [c] Cu(OAc) ₂ (10
mol%, 3.6 mg). [d] Cu(OAc) ₂ (50 mol%, 14.4 mg). [e] Cu(OAc) ₂ (1 equiv, 28.8 mg).

Table S2 Optimization of reaction temperature.^[a]

	+ $HP(OiPr)_2$ $Cu(OAc)_2$ (20 mol%) NMO (2 equiv), Ag ₂ CO ₃ NMP, 4Å MS, 12 h	
1	2a	0 3
Entry	Temperature (°C)	Yield(%) ^[b]
1	10	N.R
2	20	Trace
3	30	14
4	40	33
5	50	59
6	55	59
7	60	58
8	70	43
9	80	43
10	90	41
11	120	30
12	140	23
13 ^c	55	70

[a] Reaction conditions: amide (0.2 mmol), Cu(OAc)₂ (20 mol%), NMO (2 equiv), Ag₂CO₃ (2 equiv), 4Å MS (100mg), NMP (0.8 mL) and diisopropyl phosphonate (2 equiv), 12 h. [b] Isolated yield. [c] The mixture was stirred at 15 °C for 30 min before diisopropyl phosphonate was added. The reaction was transferred and carried out under 55 °C immediately.

Table S3 Optimization of solvents.[a]

	$ \begin{array}{c} & & O \\ & & & \\ & & HP(O/Pr)_2 \end{array} \xrightarrow{ \begin{array}{c} Cu(OAc)_2 (20 \text{ mol}\%) \\ & \underline{NMO (2 \text{ equiv}), Ag_2CO_3} \\ & & \underline{solvent, 4A MS, 12 h} \end{array} } R^{1} \\ \end{array} $	
1	2a	Ö 3
Entry	Solvent (0.8 mL)	Yield (%) ^[b]
1	H ₂ O	N.R
2	EA	50
3	CHCl ₃	41
4	THF	57
5	dimethyl sulfoxide (DMSO)	78
6	CH ₃ CN	56
7	1,2-dichloroethane (DCE)	26
8	N,N-dimethylformamide (DMF)	71
9	N,N-dimethylacetamide (DMA)	66
10	toluene	26
11	benzene	39
12	1,4-dioxane	47
13	<i>tert</i> -Butanol	39

[a] Reaction conditions: amide (0.2 mmol), Cu(OAc)₂ (20 mol%), NMO (2 equiv), Ag₂CO₃ (2 equiv), 4Å MS (100mg), solvent (0.8 mL) and diisopropyl phosphonate (2 equiv), 55 °C, 12 h. The mixture was stirred at 15 °C for 30 min before diisopropyl phosphonate was added. The reaction was transferred and carried out under 55 °C immediately. [b] Isolated yield.

General Procedure For Cu(OAc)₂-**Catalyzed Phosphorylation.** A 1-dram vial equipped with a stir bar was charged with N-(quinolin-8-yl)benzamide (50 mg, 0.2 mmol, 1 equiv), Cu(OAc)₂ (20 mol%), Ag₂CO₃ (1 equiv, 55 mg),Inside the glove box, NMO (N-methylmorpholine N-oxide) (47 mg, 0.4 mmol, 2 equiv) was added to the vial. Outside the glove box, DMSO (0.8 mL) were added to the resulting mixture. The mixture was stirred at 15 °C for 30 min before diisopropyl phosphonate (66 uL, 0.4 mmol, 2 equiv) was added. The reaction was transferred and carried out under 55 °C immediately. The vial was heated with stirring at 55 °C for 12h. After completion, the reaction mixture was cooled down to room temperature. The mixture was washed with CH₂Cl₂ (2 × 25 mL), and the combined extracts were washed with H₂O (15.0 mL) and brine (15.0 mL). Purification by column chromatography or preparative thin layer chromatography provided the desired product.

Proposed Reaction Mechanism.

Scheme S1 Proposed reaction mechanism.

The catalytic cycle was proposed in Scheme S1. Coordination of the amide 1a to the copper center gives the copper complex 6 followed by ligand exchange with the concomitant generation of HOAc, which undergoes cyclometalation to give the complex 7. The oxidative addition of diisopropyl phosphonate gives 8, which experiences reductive elimination and protonation to give the phosphorylation product 3a and CuOAc. Then, copper (II) was regenerated upon the oxidation of Ag₂CO₃.

Characterization Data for Products

diisopropyl (2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3a)

R_f = 0.37 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 8.97 (dd, J = 7.4, 1.2 Hz, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.2, 1.6 Hz, 1H), 8.15 - 8.09 (m, 1H), 7.78 - 7.70 (m, 1H), 7.69 - 7.64 (m, 1H), 7.63 - 7.53 (m, 3H), 7.48 - 7.45 (m, 1H), 4.80 - 4.75 (m, 2H), 1.26 (d, J = 6.0 Hz, 6H), 1.18 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.47 (d, J = 4.5 Hz), 148.2, 140.85 (d, J = 9.3 Hz), 138.75, 136.3, 134.75, 133.47 (d, J = 9.3), 132.28 (d, J = 2.8 Hz), 129.49 (d, J = 14.1 Hz), 128.60 (d, J = 12.9 Hz), 128.30, 128.03, 127.40, 126.43, 121.97, 121.61, 117.22, 71.52 (d, J = 6.0 Hz), 23.82 (d, J = 4.3 Hz) 23.75 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.39. HRMS (ESI+): Calculated for C₂₂H₂₅N₂O₄P [M+H]⁺413.1630, Found 413.1629.

diisopropyl (5-methyl-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3b)

R_f = 0.43 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.93 (d, J = 7.4 Hz, 1H), 8.81 - 8.71 (m, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 14.8 Hz, 1H), 7.64 - 7.55 (m, 3H), 7.46 - 7.44 (m, 2H), 4.79 - 4.72 (m, 2H), 2.48 (s, 3H), 1.25 (d, J = 6.0 Hz, 6H), 1.15 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.61 (d, J = 4.3 Hz), 148.15, 139.74 (d, J = 14.1 Hz), 138.72, 138.06 (d, J = 9.3 Hz), 136.24, 134.77, 134.00 (d, J = 9.54 Hz), 132.85 (d, J = 3.1 Hz), 128.69 (d, J = 13.5 Hz), 127.99, 127.36, 126.06, 121.84, 121.55, 117.15, 71.46 (d, J = 6.0 Hz), 23.75 (d, J = 3.7 Hz), 23.71 (d, J = 4.3 Hz), 21.26.³¹P NMR (162 MHz, CDCl₃) δ 14.93. HRMS (ESI+): Calculated for C₂₃H₂₇N₂O⁴P [M+H]⁺427.1787, Found 427.1783.

diisopropyl (5-methoxy-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3c)

R_f = 0.36 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.92 (d, J = 7.2 Hz, 1H), 8.79 (dd, J = 4.0, 1.6 Hz, 1H), 8.19 (dd, J = 8.4, 1.2 Hz, 1H), 7.69 (dd, J = 8.4, 6.0 Hz, 1H), 7.65 - 7.55 (m, 3H), 7.47 - 7.44 (m, 1H), 7.16 - 7.13 (m, 1H), 4.80 - 4.74 (m, 2H), 3.93 (s, 3H), 1.27 (d, J = 6.0 Hz, 6H), 1.17 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.34 (d, J = 4.3 Hz), 160.19, 160.02, 148.16, 138.78, 136.23, 134.82, 133.24 (d, J = 8.6 Hz), 130.63 (d, J = 15.2 Hz), 128.01, 127.35, 121.81, 121.54, 118.37 (d, J = 10.4 Hz), 117.77 (d, J = 2.9 Hz), 117.19, 71.64 (d, J = 6.1 Hz), 55.63, 23.77 (d, J = 4.6 Hz), 23.72 (d, J = 5.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.32. HRMS (ESI+): Calculated for C₂₃H₂₇N₂O₅P [M+H]⁺443.1736, Found

443.1730. diisopropyl (5-fluoro-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3d)

R_f = 0.56 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 8.93 (dd, J = 7.4, 1.4 Hz, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 7.85 - 7.69 (m, 2H), 7.67 - 7.55 (m, 2H), 7.47 (dd, J = 8.4, 4.2 Hz, 1H), 7.34 - 7.33 (m, 1H), 4.81 - 4.76 (m, 2H), 1.27 (d, J = 6.0 Hz, 6H), 1.17 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.51 (d, J = 4.1 Hz), 148.24, 138.72, 137.06 - 136.92 (m), 136.29, 134.60, 131.43 (d, J = 4.9 Hz), 131.25 - 131.03 (m), 128.1, 127.36, 122.08, 121.64, 120.61 - 120.27 (m), 119.26 (d, J = 4.1 Hz), 119.07, 117.27, 71.98 (d, J = 4.9 Hz), 23.77 (d, J = 4.1 Hz), 23.71 (d, J = 4.5 Hz) ³¹P NMR (162 MHz, CDCl₃) δ 12.28. HRMS (ESI+): Calculated for C₂₂H₂₄FN₂O₄P [M+H]⁺431.1536, Found 431.1533.

diisopropyl (5-chloro-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3e)

R_f = 0.61 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.92 (dd, J = 7.2, 1.6 Hz, 1H), 8.79 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 8.09 (dd, J = 14.6, 2.0 Hz, 1H), 7.68 (dd, J = 8.2, 5.4 Hz, 1H), 7.65 - 7.55 (m, 3H), 7.47 (dd, J = 8.4, 4.2 Hz, 1H), 4.80 - 4.75 (m, 2H), 1.27 (d, J = 6.0 Hz, 6H), 1.18 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.41 (d, J = 4.4 Hz), 148.25, 139.01 (d, J = 8.5 H), 138.67, 136.28, 134.52, 133.31 (d, J = 10.3 Hz), 130.59, 130.20 (d, J = 14.3 Hz), 138.73, 127.99, 127.34, 122.13, 121.65, 117.24, 71.99 (d, J = 6.0 Hz), 23.76 (d, J = 4.5 Hz), 23.71 (d, J = 5.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 12.34. HRMS (ESI+): Calculated for C₂₂H₂₄ClN₂O₄P [M+H]⁺447.1240, Found 447.1239.

diisopropyl (5-bromo-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3f)

 R_f = 0.60 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 8.92 (dd, *J* = 7.2, 1.6 Hz, 1H), 8.79 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.25 (dd, *J* = 14.4, 2.0 Hz, 1H), 8.19 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.78 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.65 - 7.52 (m, 3H), 7.47 (dd, *J* = 8.4, 4.2 Hz, 1H), 4.80 - 4.75 (m, 2H), 1.27 (d, *J* = 6.0 Hz, 6H), 1.17 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.44 (d, *J* = 4.3 Hz), 148.25, 139.44 (d, *J* = 8.7 Hz), 138.66, 136.28, 136.13 (d, *J* = 10.2 Hz), 135.23 (d, *J* = 2.8 Hz), 134.50, 130.79, 130.29 (d, *J* = 13.9 Hz), 128.86, 127.99, 127.33, 122.14, 121.65, 117.22, 72.00 (d, *J* = 6.0 Hz), 23.76 (d, *J* = 4.3 Hz), 23.71 (d, *J* = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 12.08. HRMS (ESI+): Calculated for C₂₂H₂₄BrN₂O₄P [M+H]⁺491.0735, Found

491.0736. diisopropyl (5-iodo-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3g)

R_f = 0.59 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 8.92 (dd, J = 7.2, 1.6 Hz, 1H), 8.79 (dd, J = 4.2, 1.6 Hz, 1H), 8.44 (dd, J = 14.0, 1.6 Hz, 1H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 8.01 - 7.99 (m, 1H), 7.61 - 7.59 (m, 2H), 7.48 - 7.43 (m, 2H), 7.34 - 7.33 (m, 1H), 4.79 - 4.74 (m, 2H), 1.27 (d, J = 6.0 Hz, 6H), 1.17 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.56 (d, J = 4.3 Hz), 148.24, 141.85 (d, J = 10.2 Hz), 141.19 (d, J = 2.6 Hz), 139.97 (d, J = 8.5 Hz), 138.66, 136.27, 134.51, 130.57, 130.15 (d, J = 3.3 Hz), 128.72, 127.99, 127.33, 122.12, 121.64, 117.22, 71.97 (d, J = 6.2 Hz), 23.74 (d, J = 4.3 Hz), 23.70 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 11.72. HRMS (ESI+): Calculated for C₂₂H₂₄IN₂O₄P [M+H]⁺ 539.0597, Found 539.0591.

diisopropyl (2-(quinolin-8-ylcarbamoyl)-5-(trifluoromethyl)phenyl)phosphonate. (3h)

R_f = 0.65 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.94 (dd, J = 7.2, 1.8 Hz, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.37 (d, J = 14.4 Hz, 1H), 8.21 (dd, J = 8.4, 1.6 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.86 (dd, J = 8.0, 4.4 Hz, 1H), 7.70 - 7.52 (m, 2H), 7.48 (dd, J = 8.4, 4.2 Hz, 1H), 4.84 - 4.75 (m, 2H), 1.27 (d, J = 6.4 Hz, 6H), 1.19 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.09 (d, J = 4.7 Hz), 148.33, 143.87 (d, J = 7.8 Hz), 138.64, 136.34, 134.38, 130.46 (d, J = 3.7 Hz), 130.36 (d, J = 3.3 Hz), 129.91, 129.31, 129.18, 129.07 - 128.99 (m), 128.02, 127.35, 122.33, 121.73, 117.31, 72.17 (d, J = 6.1 Hz), 23.78 (d, J = 3.7 Hz), 23.70 (d, J = 4.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 12.13. HRMS (ESI+): Calculated for C₂₃H₂₄F₃N₂O₄P [M+H]⁺481.1504, Found 481.1501.

diisopropyl (5-nitro-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3i)

 $R_f = 0.59$ (petroleum ether/EtOAc, 1:1). Yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 8.94 - 8.92 (m, 1H), 8.89 (s, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.48 (dd, J = 8.4, 1.6 Hz, 1H), 8.22 (dd, J = 8.4, 1.6 Hz, 1H), 7.91 (dd, J = 8.4, 4.8 Hz, 1H), 7.69 - 7.58 (m, 2H), 7.49 (dd, J = 8.4, 4.2 Hz, 1H), 4.87 - 4.78 (m, 2H), 1.28 (d, J = 6.0 Hz, 6H), 1.22 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.32 (d, J = 4.1 Hz), 148.39, 148.90 (d, J = 9.1 Hz), 138.58, 136.36, 134.17, 131.22, 130.12 (d, J = 13.5 Hz), 129.33, 128.36 (d, J = 10.9 Hz), 128.01, 127.31, 126.85 (d, J = 2.5 Hz), 122.57, 121.79, 117.37, 72.55 (d, J = 6.3 Hz), 23.79 (d, J = 4.0 Hz), 23.71 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 10.69. HRMS (ESI+): Calculated for C₂₂H₂₄N₃O₆P [M+H]⁺458.1481, Found

458.1477. diisopropyl (5-cyano-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3j)

R_f = 0.42 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.92 (dd, J = 6.4, 2.4 Hz, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.39 (dd, J = 14.0, 1.6 Hz, 1H), 8.22 (dd, J = 8.4, 1.6 Hz, 1H), 7.93 (dt, J = 8.0, 1.4 Hz, 1H), 7.84 (dd, J = 8.0, 4.4 Hz, 1H), 7.69 - 7.56 (m, 2H), 7.49 (dd, J = 8.4, 4.2 Hz, 1H), 4.82 - 4.78 (m, 2H), 1.28 (d, J = 6.0 Hz, 6H), 1.19 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.54 (d, J = 4.4 Hz), 148.37, 144.19 (d, J = 8.8 Hz), 138.59, 137.05 (d, J = 10.4 Hz), 136.38, 135.43 (d, J = 2.9 Hz), 134.21, 130.59, 129.46 (d, J = 12.7 Hz), 128.71, 128.02, 127.33, 122.52, 121.78, 117.33, 113.83 (d, J = 16.5 Hz), 72.45 (d, J = 6.1 Hz), 23.6 (d, J = 3.8 Hz), 23.72 (d, J = 4.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 10.94. HRMS (ESI+): Calculated for C₂₃H₂₄N₃O₄P [M+H]⁺438.1583, Found 438.1580.

methyl 3-(diisopropoxyphosphoryl)-4-(quinolin-8-ylcarbamoyl)benzoate. (3k)

 $R_f = 0.60$ (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 8.95 (d, J = 7.2 Hz, 1H), 8.83 - 8.67 (m, 2H), 8.31 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 8.2 Hz, 1H), 7.81 (dd, J = 7.8, 4.8 Hz, 1H), 7.70 - 7.51 (m, 2H), 7.47 (dd, J = 8.2, 4.2 Hz, 1H), 4.89 - 4.70 (m, 2H), 4.00 (s, 3H), 1.27 (d, J = 6.2 Hz, 6H), 1.20 (d, J = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.55 (d, J = 4.3 Hz), 165.67 (d, J = 1.4 Hz), 148.28, 144.44 (d, J = 9.6 Hz), 138.66, 136.31, 134.61, 134.49, 133.24 (d, J = 2.5Hz), 131.11 (d, J = 14.3 Hz), 129.11, 138,91 (d, J = 12.7 Hz), 128.01, 127.36, 122.22, 121.67, 117.30, 71.90 (d, J = 6.6 Hz), 52.51, 23.80 (d, J = 4.1 Hz), 23.71 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 12.97. HRMS (ESI+): Calculated for C₂₄H₂₇N₂O₆P [M+H]⁺471.1685, Found 471.1681.

diisopropyl (4-methyl-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (31)

R_f = 0.55 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.95 (d, J = 7.4 Hz, 1H), 8.84 - 8.76 (m, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.99 (dd, J = 13.8, 7.8 Hz, 1H), 7.69 - 7.50 (m, 3H), 7.50 - 7.43 (m, 1H), 7.39 (d, J = 7.8 Hz, 1H), 4.78 - 4.70 (m, 2H), 2.46 (s, 3H), 1.25 (d, J = 6.0 Hz, 6H), 1.15 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.64 (d, J = 4.4 Hz), 148.15, 142.96 (d, J = 3.0 Hz), 140.80 (d, J = 9.7 Hz), 138.74, 136.23, 134.74, 133.60 (d, J = 9.7 Hz), 130.10 (d, J = 4.7 Hz), 129.27 (d, J = 13.4 Hz), 127.99, 127.37, 123.12, 121.87, 121.55, 117.22, 71.29 (d, J = 6.1 Hz), 23.76 (d, J = 4.3 Hz), 23.72 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 15.04. HRMS (ESI+): Calculated for C₂₃H₂₇N₂O⁴P [M+H]⁺ 427.1787, Found 427.1783.

diisopropyl (4-methoxy-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3m)

R_f = 0.44 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 9.00 - 8.89 (m, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.4, 1.4 Hz, 1H), 8.04 (dd, J = 13.6, 8.6 Hz, 1H), 7.63 - 7.57 (m, 2H), 7.47 (dd, J = 8.4, 4.2 Hz, 1H), 7.24 - 7.23 (m, 1H), 7.08 (dt, J = 8.6, 2.6 Hz, 1H), 4.76 - 4.71 (m, 2H), 3.91 (s, 3H), 1.25 (d, J = 6.0 Hz, 6H), 1.15 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.17(d, J = 4.1 Hz), 162.48 (d, J = 3.3 Hz), 148.21, 142.73 (d, J = 11.1 Hz), 138.19, 136.25, 135.64 (d, J = 11.0 Hz), 134.70, 128.03, 127.37, 121.98, 121.58, 119.63, 117.30, 115.05 (d, J = 16.0 Hz), 114.11 (d, J = 13.9 Hz), 71.21 (d, J = 6.0 Hz), 55.54, 23.78 (d, J = 3.0 Hz), 23.73 (d, J = 3.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 15.17. HRMS (ESI+): Calculated for C₂₃H₂₇N₂O₅P [M+H]⁺443.1736, Found 443.1735.

diisopropyl (4-chloro-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3n)

R_f = 0.68 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.93 (dd, J = 7.2, 1.6 Hz, 1H), 8.80 (dd, J = 4.2, 1.6 Hz, 1H), 8.21 (dd, J = 8.2, 1.6 Hz, 1H), 8.05 (dd, J = 13.6, 8.2 Hz, 1H), 7.71 (dd, J = 4.2, 2.0 Hz, 1H), 7.65 - 7.52 (m, 3H), 7.48 (dd, J = 8.2, 4.2 Hz, 1H), 4.79 - 4.74 (m, 2H), 1.26 (d, J = 6.0 Hz, 6H), 1.16 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.89 (d, J = 4.5 Hz), 148.27, 142.30 (d, J = 10.6 Hz), 138.78 (d, J = 4.0 Hz), 138.69, 136.30, 134.98 (d, J = 10.3 Hz), 134.48, 129.62 (d, J = 13.8 Hz), 128.85 (d, J = 12.7 Hz), 128.02, 127.35, 124.99, 122.22, 121.68, 117.33, 71.81 (d, J = 6.4 Hz), 23.76 (d, J = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 13.31. HRMS (ESI+): Calculated for C₂₂H₂₄ClN₂O₄P [M+H]⁺ 447.1240, Found 447.1238.

diisopropyl (4-bromo-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (30)

R_f = 0.69 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 8.92 (dd, J = 7.2, 1.6 Hz, 1H), 8.81 (dd, J = 4.2, 1.6 Hz, 1H), 8.21 (dd, J = 8.2, 1.6 Hz, 1H), 7.97 (dd, J = 13.6, 8.2 Hz, 1H), 7.87 (dd, J = 4.2, 1.8 Hz, 1H), 7.75 - 7.74 (m, 1H), 7.62 - 7.60 (m, 2H), 7.48 (dd, J = 8.2, 4.2 Hz, 1H), 4.78 - 4.73 (m, 2H), 1.26 (d, J = 6.0 Hz, 6H), 1.16 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.77 (d, J = 4.3 Hz), 148.27, 142.29 (d, J = 10.0 Hz), 138.68 Hz, 136.31, 134.99 (d, J = 10.3 Hz), 134.47, 132.61 (d, J = 14.6 Hz), 131.68 (d, J = 13.4 Hz), 128.02, 127.35, 127.20 (d, J = 3.7 Hz), 125.46, 122.21, 121.67, 117.32, 71.82 (d, J = 6.1 Hz), 23.76 (d, J = 3.8 Hz), 23.72 (d, J = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 13.46. HRMS (ESI+): Calculated for C₂₂H₂₄BrN₂O₄P [M+Na]⁺ 513.0555, Found 513.0490.

diisopropyl (4-iodo-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3p)

R_f = 0.55 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 8.92 (dd, J = 7.2, 1.6 Hz, 1H), 8.80 (dd, J = 4.4, 1.6 Hz, 1H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 8.06 (dd, J = 4.4, 1.6 Hz, 1H), 7.95 - 7.93 (m, 1H), 7.80 (dd, J = 13.6, 8.0 Hz, 1H), 7.69 - 7.54 (m, 2H), 7.48 (dd, J = 8.4, 4.2 Hz, 1H), 4.78 - 4.73 (m, 2H), 1.25 (d, J = 6.0 Hz, 6H), 1.16 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.65 (d, J = 4.2 Hz), 148.25, 142.00 (d, J = 9.5 Hz), 138.66 (d, J = 1.3 Hz), 138.50, 137.37 (d, J = 13.2 Hz), 136.28, 134.69 (d, J = 10.1 Hz), 134.47, 128.00, 127.85, 127.35, 125.96, 122.18, 121.65, 117.28, 71.81 (d, J = 5.7 Hz), 23.76 (d, J = 0.3 Hz), 23.72 (d, J = 7.1 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 13.79. HRMS (ESI+): Calculated for C₂₂H₂₄IN₂O₄P [M+H]⁺ 539.0597, Found 539.0539.

diisopropyl (3-methyl-2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (3q)

R_f = 0.44 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 9.04 (dd, J = 7.4, 1.4 Hz, 1H), 8.77 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.2, 1.6 Hz, 1H), 7.94-7.89 (m, 1H), 7.65-7.56 (m, 2H), 7.47-7.44 (m, 3H), 4.74-4.69 (m, 2H), 2.49 (s, 3H), 1.22 (d, J = 6.0 Hz, 6H), 1.13 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.95 (d, J = 4.9 Hz), 148.07, 138.56, 136.27, 136.14, 134.71, 134.36 (d, J = 4.1 Hz), 130.68 (d, J = 9.8 Hz), 128.68 (d, J = 13.9 Hz), 128.02, 127.98, 127.48, 126.17, 121.78, 121.57, 116.94, 71.26 (d, J = 5.7 Hz), 23.72 (d, J = 3.3 Hz), 23.68 (d, J = 4.5 Hz), 19.55. ³¹P NMR (162 MHz, CDCl₃) δ 14.87. HRMS (ESI+): Calculated for C₂₃H₂₇N₂O⁴P [M+H]⁺427.1787, Found 427.1783.

diisopropyl (4-(quinolin-8-ylcarbamoyl)pyridin-3-yl)phosphonate. (3r)

R_f = 0.20 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 9.25 (d, J = 7.2 Hz, 1H), 9.02 - 8.87 (m, 2H), 8.81 (dd, J = 4.0, 1.6 Hz, 1H), 8.21 (dd, J = 8.4, 1.6 Hz, 1H), 7.69 - 7.56 (m, 3H), 7.49 (dd, J = 8.4, 4.4 Hz, 1H), 4.86 - 4.77 (m, 2H), 1.28 (d, J = 6.0 Hz, 6H), 1.22 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.01 (d, J = 4.7 Hz), 153.72 (d, J = 11.9 Hz), 153.46, 148.39, 147.55 (d, J = 7.9 Hz), 138.61, 136.33, 134.16, 128.00, 127.29, 123.46, 122.54, 122.20 (d, J = 10.1 Hz), 121.76, 117.42, 72.15 (d, J = 6.2 Hz), 23.81 (d, J = 4.0 Hz), 23.73 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 11.46. HRMS (ESI+): Calculated for C₂₁H₂₄N₃O₄P [M+H]⁺414.1583, Found 414.1581.

diisopropyl (3-(quinolin-8-ylcarbamoyl)thiophen-2-yl)phosphonate. (3s)

R_f = 0.45 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.61 (s, 1H), 8.93 - 8.83 (m, 2H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 7.67 (t, J = 5.2 Hz, 1H), 7.65 - 7.55 (m, 3H), 7.48 (dd, J = 8.4, 4.2 Hz, 1H), 4.88 - 4.80 (m, 2H), 1.33 (d, J = 6.0 Hz, 6H), 1.30 (d, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.02 (d, J = 2.9 Hz), 148.43, 143,94 (d, J = 11.1 Hz), 139.17, 136.21, 134.50, 131.83 (d, J = 7.8 Hz), 130.63, 130.46, 128.12, 127.19, 122.34, 121.61, 118.04, 72.40 (d, J = 5.7 Hz), 23.94 (d, J = 4.1 Hz), 23.69 (d, J = 5.3 Hz). ³¹P NMR (162 MHz, CDCl₃, ppm) δ 7.17. HRMS (ESI+): Calculated for C₂₀H₂₃N₂O₄PS [M+H]⁺419.1194, Found 419.1194.

diisopropyl (2-(quinolin-8-ylcarbamoyl)cyclohex-1-en-1-yl)phosphonate. (3t)

R_f = 0.39 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.88 (dd, J = 7.2, 1.2 Hz, 1H), 8.83 (dd, J = 4.2, 1.6 Hz, 1H), 8.18 (dd, J = 8.4, 1.6 Hz, 1H), 7.64 - 7.51 (m, 2H), 7.46 (dd, J = 8.4, 4.2 Hz, 1H), 4.71 - 4.63 (m, 2H), 2.59 (s, 2H), 2.42 (s, 2H), 1.77 (s, 4H), 1.27 (d, J = 6.2 Hz, 6H), 1.17 (d, J = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.08 (d, J = 11.5 Hz), 148.03, 138.62, 134.77, 132.45 (d, J = 8.2 Hz), 127.9, 127.45, 125.65, 121.61, 121.47, 117.00, 70.63 (d, J = 6.6 Hz), 29.12 (d, J = 14.7), 25.89 (d, J = 8.2 Hz), 23.85 (d, J = 3.7 Hz), 23.79 (d, J = 5.2 Hz), 21.62 (d, J = 8.2 Hz), 21.40. ³¹P NMR (162 MHz, CDCl₃) δ 14.09. HRMS (ESI+): Calculated for C22H29N2O4P [M+H]⁺417.1943, Found 417.1940.

diethyl (2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (4b)

R_f = 0.26 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.23 (s, 1H), 8.98 (dd, J = 7.4, 1.6 Hz, 1H), 8.79 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.2, 1.6 Hz, 1H), 8.14 - 8.08 (m, 1H), 7.80 - 7.72 (m, 1H), 7.71-7.67 (m, 1H), 7.66 - 7.55 (m, 3H), 7.48 - 7.45 (m, 1H), 4.18 - 4.05 (m, 4H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.36 (d, J = 4.9 Hz), 148.20, 140.95 (d, J = 9.0 Hz), 138.65, 136.28, 134.70, 133.85 (d, J = 9.7 Hz), 132.59 (d, J = 2.9 Hz), 129.60 (d, J = 14.1 Hz), 128.48 (d, J = 12.7 Hz), 128.03, 127.40, 124.91, 122.01, 121.63, 116.97, 62.65 (d, J = 5.7 Hz), 16.12 (d, J = 6.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.56. HRMS (ESI+): Calculated for C₂₀H₂₁N₂O₄P [M+H]⁺ 385.1317, Found 385.1315.

dihexyl (2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (4c)

R_f = 0.65 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ10.21 (s, 1H), 8.98 (dd, J = 7.2, 1.2 Hz, 1H), 8.78 (dd, J = 4.2, 1.6 Hz, 1H), 8.20 (dd, J = 8.2, 1.6 Hz, 1H), 8.1 - 8.06 (m, 1H), 7.79 - 7.72 (m, 1H), 7.68 (dd, J = 10.6, 4.4 Hz, 1H), 7.64 - 7.53 (m, 3H), 7.47 (dd, J = 8.3, 4.2 Hz, 1H), 4.04 (q, J = 6.8 Hz, 4H), 1.59 - 1.53 (m, 4H), 1.25 - 1.11 (m, 12H), 0.81 (t, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.31 (d, J = 4.5 Hz), 148.17, 140.91 (d, J = 9.4 Hz), 138.65, 136.24, 134.71, 133.83 (d, J = 9.2 Hz), 132.50 (d, J = 2.8 Hz), 129.55 (d, J = 14.1 Hz), 128.41 (d, J = 13.0 Hz), 128.03, 127.36, 125.01, 121.96, 121.57, 117.02, 66.72 (d, J = 6.1 Hz), 31.23, 30.27 (d, J = 6.1 Hz), 25.03, 22.35, 13.88. ³¹P NMR (162 MHz, CDCl₃) δ 16.67. HRMS (ESI+): Calculated for C₂₈H₃₇N₂O₄P [M+H]⁺497.2569, Found 497.2566.

dibenzyl (2-(quinolin-8-ylcarbamoyl)phenyl)phosphonate. (4e)

R_f = 0.51 (petroleum ether/EtOAc, 1:1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 10.20 (s, 1H), 8.91 - 8.81 (m, 1H), 8.61 (dd, J = 4.2, 1.6 Hz, 1H), 8.17 (dd, J = 8.4, 1.6 Hz, 1H), 8.07 (dd, J = 14.4, 7.6 Hz, 1H), 7.80 - 7.73 (m, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.59 - 7.55 (m, 2H), 7.41 (dd, J = 8.4, 4.2 Hz, 1H), 7.36 - 7.29 (m, 2H), 7.24 - 7.19 (m, 4H), 7.19 - 7.13 (m, 5H), 5.05 (dt, J = 6.8, 3.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.17 (d, J = 4.5 Hz), 148.17, 140.97 (d, J = 9.7 Hz), 138.56, 136.14, 135.96 (d, J = 6.6 Hz), 134.53, 133.91 (d, J = 9.1 Hz), 132.68 (d, J = 2.8 Hz), 129.66 (d, J = 14.4 Hz), 128.50 (d, J = 2.4 Hz), 128.39, 128.31, 128.18, 128.03, 127.91, 127.34, 121.96, 121.53, 117.06, 68.43 (d, J = 5.8 Hz). ³¹P NMR (162 MHz, CDCl₃, ppm) δ 17.47. HRMS (ESI+): Calculated for C₃₀H₂₅N₂O₄P [M+H]⁺ 509.1630, Found 509.1626.

References.

F.-R. Gou, X.-C. Wang, P.-F. Huo, H.-P. Bi, Z.-H. Guan, Y.-M. Liang, *Org. Lett.* 2009, *11*, 5726.
S. Inoue, H. Shiota, Y. Fukumoto, N. Chatani, *J. Am. Chem. Soc.* 2009, *131*, 6898.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 ppm

ppm

