Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information for

Bioinspired Polymer-Bound Mn-porphyrins with Artificial Active Center of Catalase

Riku Kubota, Shoichiro Asayama* and Hiroyoshi Kawakami* E-mail: asayama-shoichiro@tmu.ac.jp kawakami-hiroyoshi@tmu.ac.jp

Department of Applied Chemistry, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo 192-0397, Japan.

Experimental Section

Chemicals

Manganese(III)-5,10,15,20-tetrakis(N-methylpyridinum-4-yl) porphyrin (MnM4Py₄P), and Manganese(III)-5,10,15,20-tetrakis(1,3-dimethylimidazolium-2-yl) porphyrin (MnMIm₄P) were synthesized according to the previous report.^{1,2,5} Both complexes were obtained as chloride salts. Carboxymethyl poly (1-vinylimidazole) (CM-PVIm) and poly (1-vinylimidazole) (PVIm) was synthesized and characterized according to our previous report.^{3,4} Content of the carboxyl group in CM-PVIm is approximately 30%. Hydrogen peroxide (H₂O₂, 35~37%) and polyacrylic acid (PAA) with Mn (number average molecular weight) of 25,000 were purchased from Kanto Chemical Co., Inc.

Scheme S1. Chemical structure of MnMIm₄P.

Determination of Binding Constant

Binding constant between MnM4Py₄P and CM-PVIm was determined by Scatchard plot. 1mM CM-PVIm and MnM4Py₄P with various concentrations (0.25~1.0 mM) were mixed and stirred in 50 mM phosphate buffer (pH 7.4) for three days. After the mixing, the unbound MnM4Py₄P was removed by ultra filtration (25°C, 10,000g, 60min) and quantified by UV/vis spectroscopy using molar absorption coefficient at 462 nm reported previously (ε =129000 cm⁻¹ M⁻¹).¹ The bound MnM4Py₄P was calculated from the difference between the concentration of initial MnM4Py₄P and that of unbound MnM4Py₄P. Scatchard plot was prepared according to the following formula:

$r/Cu=nK_b-K_br$

where K_b :binding constant, n:number of binding sites, r: number of bound substrate, Cu: concentration of unbound substrate. K_b was determined from the slope of the plot of r/Cu versus r.

Measurement of Catalase Activity

Catalase activity (k_{CAT}) was measured by electrochemically monitoring the evolved molecular oxygen ($2H_2O_2 \rightarrow 2H_2O + O_2$) with Clark-type oxygen electrode. To 900µL solution of each concentration of Mn-porphyrin/CM-PVIm complex in 50 mM phosphate buffer (pH 7.4), was added a 100 μ L of 10 mM H₂O₂ in Milli-Q water. The monitoring was started after the addition of the H₂O₂ solution. Observed-rate constant (k_{obs}) at each concentration of the complex was determined as a rate of O₂ production in initial ten seconds. From the slope of k_{obs} as a function of the complex concentration, k_{CAT} value was determined.

Stopped-flow kinetic analysis

Stopped-flow kinetic analysis was performed on SX.18MV stopped-flow reaction analyzer (Applied Photophysics) with 1 cm path length. Reaction temperature was maintained at $25\pm0.1^{\circ}$ C with thermostat water bath. MnM4Py₄P/CM-PVIm₁₀₀₀₀ complex was rapidly mixed with aqueous solution of H₂O₂ (volume ratio was MnM4Py₄P/CM-PVIm₁₀₀₀₀:H₂O₂aq=20/1(v/v)). Time-resolved UV/vis spectra were recorded from 400 nm to 500 nm with 400 scans in 1 second.

Fig. S1 Scatchard plot by MnM4Py₄P and CM-PVIm₁₀₀₀₀.

Fig. S2 UV/vis spectrum of 2.5 μ M MnM4Py₄P in 50 mM phosphate buffer (pH 7.4) before mixing with CM-PVIm₁₀₀₀₀. Soret band was observed at 462 nm (ϵ =129000 M⁻¹cm⁻¹).

Fig. S3 UV/vis spectrum of 2.5 μ M MnM4Py₄P after three days mixing with CM-PVIm₁₀₀₀₀ in 50

mM phosphate buffer (pH 7.4). The spectrum was measured under conditions where $MnM4Py_4P$ was stoichiometrically bound to CM-PVIm. Soret band was observed at 462 nm.

Fig. S4 Scatchard plot by MnM4Py₄P and PAA₂₅₀₀₀. From the slope of the plot, K_b was determined to be 3.5×10^4 M⁻¹.

Fig. S5 Time-course of O₂ production from 1 mM H_2O_2 in the presence of MnM4Py₄P/PAA₂₅₀₀₀ complex in 50 mM phosphate buffer (pH 7.4). The O₂ production was monitored at 1,3,6 μ M per MnM4Py₄P.

Fig. S6 Time-course of O₂ production from 1 mM H_2O_2 catalyzed by MnM4Py₄P/PVIm₁₀₀₀₀ complex in 50 mM phosphate buffer (pH 7.4). Amount of O₂ production was increased with increasing concentration of the complex. k_{CAT} value was estimated to be 40~50 M⁻¹s⁻¹.

Fig. S7 Time-course of O_2 production from 1 mM H_2O_2 catalyzed by MnMIm₄P/CM-PVIm₁₀₀₀₀ complex in 50 mM phosphate buffer (pH 7.4).

Fig. S8 Plot of k_{obs} as a function of MnMIm₄P/CM-PVIm₁₀₀₀₀ complex.

Fig. S9 Scatchard plot by MnM4Py₄P and CM-PVIm₃₀₀₀.

Fig. S10 Time-course of O_2 production from 1 mM H_2O_2 catalyzed by MnM4Py₄P/CM-PVIm₃₀₀₀ complex in 50 mM phosphate buffer (pH 7.4).

Fig. S11 Plot of k_{obs} as a function of MnM4Py₄P/CM-PVIm₃₀₀₀ complex.

Fig. S12 Time-course of O_2 production from 1 mM H_2O_2 catalyzed by MnMIm₄P/CM-PVIm₃₀₀₀ complex in 50 mM phosphate buffer (pH 7.4).

Fig. S13 Plot of k_{obs} as a function of MnMIm₄P/CM-PVIm₃₀₀₀ complex.

References

1 I. Batinic-Haberle, L. Benov, I. Spasojevic, I. Fridovich, J. Biol. Chem., 1998, 273, 24521~24528.

- 2 D. H. Tjahjono, T. Akutsu, N. Yoshioka, H. Inoue, *Biochem. Biophys. Acta*, 1999, 1472, 333~343.
- 3 S. Asayama, K. Seno, H. Kawakami, Chem. Lett., 2013, 42, 358~360.
- 4 S. Asayama, T. Hakamatani, H. Kawakami, Bioconjugate Chem., 2010, 21, 646~652.
- 5 N. Jin, D. E. Lahaye, J. T. Groves, Inorg. Chem., 2010, 49, 11516~11524.