Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2014

Supporting Information

Light-driven Au(III)-promoted cleavage of triazolebearing amine derivatives and its application in the detection of ionic gold

Dajeong Yim, Hongsik Yoon, Chi-Hwa Lee, and Woo-Dong Jang*

Experimental Details

Materials and Measurements.

All commercially available reagents were reagent grade and used without further purification. Dichloromethane, n-hexane, and tetrahydrofuran (THF) were freshly distilled before each use. Following 23 kinds of metal salts were used for the metal ion selectivity test; 2: Fe(ClO₄)₃, 3: Fe(ClO₄)₂, 4: AuCl₃, 5: Hg(OAc)₂, 6: Zn(OAc)₂·2H₂O, 7: Pb(OAc)₂·3H₂O, 8: Ca(NO₃)₂·4H₂O, 9: CoCl₂·6H₂O, 10: MnSO₄·xH₂O, 11: Mg(NO₃)₂·6H₂O, 12: Cu(OAc)₂, 13: Cd(NO₃)₂·4H₂O, 14: AlCl₃, 15: CrCl₃·6H₂O, 16: AuCl, 17: AgClO₄·xH₂O, 18: NaClO₄, 19: PtCl₂, 20: PdCl₂, 21: Rh(OAc)₂, 21: Ni(NO₃)₂·6H₂O, 23: KClO₄, 24: Ba(NO₃)₂. Electronic absorption spectra were recorded on a JASCO V-660 spectrometer. Fluorescence spectra were recorded on a JASCO FP-6300 spectrometer.All steady-state measurements were carried out by using a quartz cuvette with a pathlength of 1 cm at ambient temperatures. ¹H and ¹³C NMR spectra were recorded on a Bruker Advance DPX 400 spectrometerat 25°C in CDCl₃, CD₃CN, and DMSO-d6. MALDI-TOF-MS was performed on BrukerDaltonics LRF20 with Dithranol (1,8,9-trihydroxyanthracene) as the matrix.

Synthesis

2: 4-nitrobenzaldehyde (300 mg, 1.985 mmol) and 2,4-dimethylpyrrole (420 μ L, 4.079 mmol) were mixed in a 300 mL round bottomed flask. The flask was degassed three times under high vacuum and back-filled with N₂. Dried MC (100 mL) and trifluoroacetic acid (several drops) were added and stirred for 12 h. Then, *p*-Chloranil (1 g, 4.067 mmol) was added and further stirred for 40 min at 25 °C. Et₃N (2 mL) and BF₃OEt₂ (3.2 mL, 25.33 mmol) were added, and the reaction mixture was further stirred for 1 h at 25 °C. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography (hexane/ethyl acetate, 8:1) to produce **2** as a reddish solid (91 mg, 14%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ = 8.40-8.38 (d, 2 H, J= 8.4 Hz), 7.55-7.53 (d, 2 H, J= 8.4 Hz), 6.02 (s, 2 H), 2.57 (s, 6 H), 1.36 ppm (s, 6 H); MALDI-TOF-MS: *m/z*: calcd. for C₁₉H₁₈BF₂N₃O₂: 369.17 [M]⁺; found: 369.11.

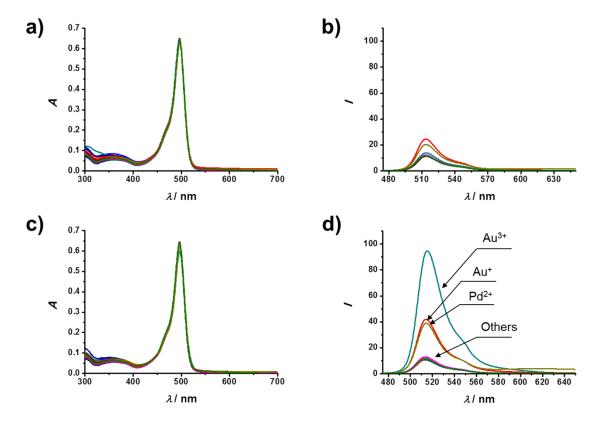
3: 0.5 M HCl (4 mL) was added to a mixture solution of **2** (150 mg, 0.4063 mmol) and Fe (423.8 mg, 8.126 mmol) in THF (8.4 mL). The reaction mixture was refluxed for 7 h, and then

quenched with a saturated aqueous solution of Na₂CO₃. The organic phase was extracted with CH₂Cl₂, and then evaporated *in vacuo*. The residue was purified by column chromatography with CH₂Cl₂ as the eluent to give **3** as an orange solid (90 mg, 65%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ = 7.00-6.98 (d, 8 H, J = 8.4 Hz), 6.77-6.75 (d, 2 H, J = 8.4 Hz), 5.97 (s, 2 H), 3.84 (s, 2 H), 2.54 (s, 6 H), 1.49 ppm (s, 6H); MALDI-TOF-MS: m/z: calcd. for C₁₉H₂₀BF₂N₃: 339.19 [M] ⁺; found: 339.37.

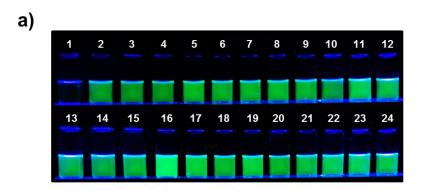
4: **3** (90 mg, 0.2653 mmol) and K₂CO₃ (366.7 mg, 2.653 mmol) were mixed in a 50 mL flask. Acetone (10 mL) and propargyl bromide (200 μ L, 2.653 mmol) were added under nitrogen. The reaction mixture was refluxed for 12 h. After being cooled to room temperature, the solvent was removed. The residue was dissolved in CH₂Cl₂ (100 mL) and the solution was washed with water (100 mL). The organic layer was evaporated in vacuo, and purified by column chromatography with hexane/CH₂Cl₂ (1:2) to produce **4** as a reddish solid (34 mg, 32%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ = 7.16-7.14 (d, 2 H, J= 8.4 Hz), 7.04-7.02 (d, 2 H, J= 8.4 Hz), 5.97 (s, 2 H), 4.18 (s, 4 H), 2.55 (s, 6 H), 2.27 (s, 2 H), 1.45 ppm (s, 6H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 155.30, 148.41, 143.45, 142.40, 132.15, 129.01, 125.88, 121.23, 116.01, 78.93, 73.09, 40.63, 14.81, 0.21 ppm; MALDI-TOF-MS: m/z: calcd. for C₂₅H₂₄BF₂N₃: 415.29[M] ⁺; found: 414.83.

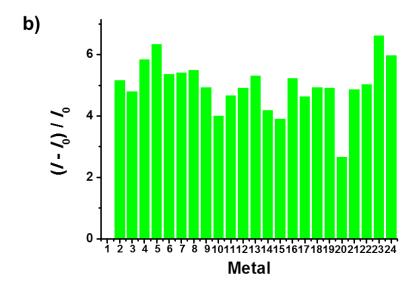
5: Aniline (200 mg, 2.148 mmol) and K_2CO_3 (1.48 g, 10.74 mmol) were mixed in a 50 mL round bottomed flask. Acetone (20 mL) and propargyl bromide (805.6 μ L, 10.74 mmol) were added under nitrogen. The reaction mixture was refluxed for 12 h. After being cooled to room temperature, the solvent was removed. The residue was dissolved in CH_2Cl_2 (100 mL) and the solution was washed with water (100 mL). The organic layer was evaporated *in vacuo*, and purified by column chromatography with hexane/ CH_2Cl_2 (6:4) to produce 5 as a white solid (381 mg, 75%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ = 7.30-7.27 (t, 2 H, J = 7.0 Hz), 6.98-6.96 (d, 2 H, J = 8.8 Hz), 6.91-6.87 (t, 1 H, J = 7.4 Hz), 4.13 (s, 4 H), 2.25 (s, 2 H).

6: Ethylamine (1 g, 0.022 mol) and triethylamine (10 mL) were mixed in a 100 mL round bottomed flask at 0 °C. Propargyl bromide (2 mL, 0.047 mol) was added slowly and stirred at 0 °C. The residue was dissolved in CH₂Cl₂ (100 mL) and the solution was washed with a saturated aqueous solution of NaOH (100 mL). The organic layer was evaporated *in vacuo* to give a yellow liquid, which was dissolved in THF without further purification.


1_{Et}: CuSO₄·5H₂O (560.8 mg, 2.246 mmol) and sodium ascorbate (445 mg, 2.25 mmol) were

added to a mixture of **6** (272 mg, 2.246 mmol) and methyl 4-(azidomethyl)benzoate (1.28 g, 6.738 mmol) in 10 mL THF/H₂O (1:1). The reaction mixture was stirred for 7 h at 50 °C, and then the organic layer was separated. After evaporation of the solvent under reduced pressure, the residue was purified using column chromatography with 50% CH₂Cl₂/ethyl acetate as the eluent to give **1**_{Et} as a white powder (678 mg, 60%). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ = 8.04-8.02 (d, 4 H, J = 8.4 Hz), 7.55 (s, 2 H), 7.31-7.29 (d, 4 H, J = 8 Hz), 5.57 (s, 4 H), 3.92 (s, 6 H), 3.72 (s, 4 H), 2.54-2.52 (q, 4 H, J = 7.2 Hz), 1.14-1.11 ppm (t, 3 H, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.41, 144.99, 139.78, 130.39, 130.30, 127.72, 123.35, 53.54, 52.29, 47.49, 47.12, 12.39 ppm; MALDI-TOF-MS: m/z: calcd. for C₂₆H₂₉N₇O₄: 503.23 [M] ⁺; found 501.72.


1_{Ph}: CuSO₄·5H₂O (560.8 mg, 2.246 mmol) and sodium ascorbate (445 mg, 2.246 mmol) were added to a mixture of **5** (380 mg, 2.246 mmol) and methyl 4-(azidomethyl)benzoate (1.28 g, 6.738 mmol) in 10 mL THF/H₂O (1:1). The reaction mixture was stirred for 7 h at 50 °C, and then the organic layer was separated. After evaporation of the solvent under reduced pressure, the residue was purified using column chromatography with 50% CH₂Cl₂/ethyl acetate as the eluent to give **1**_{Ph} as a white powder (1.05 g, 85%). ¹H NMR (400 MHz, DMSO-*d*6, 25 °C) δ = 7.96 (s, 2 H), 7.88-7.86 (d, 4 H, J= 8.4 Hz), 7.29-7.27 (d, 4 H, J= 8.4 Hz), 7.11-7.07 (t, 2 H, J= 7.8 Hz), 6.82-6.80 (d, 2 H, J= 8 Hz), 6.62-6.59 (t, 1 H, J= 7.2 Hz), 5.58 (s, 4 H), 4.60 (s, 4 H), 3.81 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ = 166.57, 147.94, 146.17, 139.72, 130.61, 130.48, 129.48, 127.77, 122.36, 118.16, 113.91, 53.73, 52.46, 47.04 ppm; MALDI-TOF-MS: m/z: calcd. for C₃₀H₂₉N₇O₄: 551.23 [M] +; found 552.46.


1_{BODIPY}: CuSO₄·5H₂O (60 mg, 0.2402 mmol) and sodium ascorbate (48 mg, 0.2402 mmol) were added to a mixture of **4** (100 mg, 0.2402 mmol) and methyl 4-(azidomethyl)benzoate (200 mg, 0.9608 mmol) in 10 mL THF/H₂O (1:1). The reaction mixture was stirred for 7 h at 50 °C, and then the organic layer was separated. After evaporation of the solvent under reduced pressure, the residue was purified using column chromatography with 50% CH₂Cl₂/ethyl acetate as the eluent to give **1**_{BODIPY} as an orange powder (65.2 mg, 34%). ¹H NMR (400 MHz, CD₃CN, 25°C) δ = 7.94-7.92 (d, 4 H, J = 8.4 Hz), 7.58 (s, 2 H), 7.27-7.25 (d, 4 H, J = 8.4 Hz), 7.04-7.02 (d, 2 H, J = 8.8 Hz), 6.99-6.96 (d, 2 H, J = 8.8 Hz), 6.02 (s, 2 H), 5.54 (s, 4 H), 4.71 (s, 4 H), 3.84 (s, 6 H), 2.46 (s, 6 H), 1.29 ppm (s, 6 H); ¹³C NMR (100 MHz, CD₃CN, 25 °C) δ = 167.56, 156.14, 149.85, 146.52, 144.86, 142.36, 133.18, 131.50,

131.16, 130.10, 129.99, 129.10, 124.45, 124.07, 122.31, 115.28, 54.24, 53.17, 47.64, 15.13 ppm; MALDI-TOF-MS: m/z: calcd. for $C_{43}H_{42}BF_2N_9O_4$: 797.66 [M] +; found 798.79.

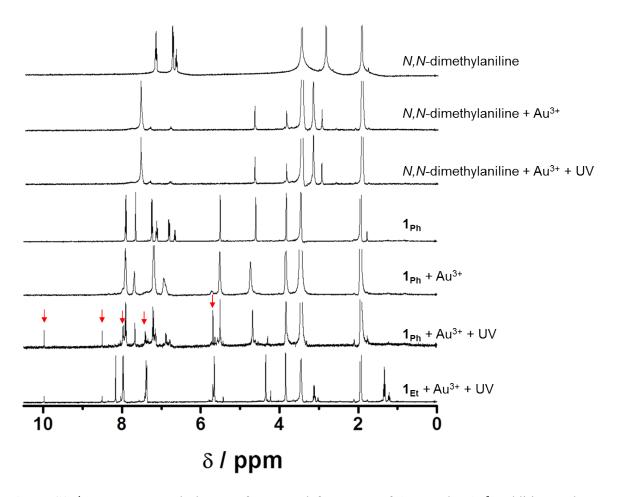


Figure S1. UV-Vis and Fluorescence response of $\mathbf{1}_{BODIPY}$ (10 μ M) to various metal cation (2 eq) additions in MeCN/H₂O (1:1 v/v); a), b) before light irradiation; c), d) after light irradiation (365 nm).

Figure S2. Fluorescence changes of $\mathbf{1}_{BODIPY}$ (10 μ M) by the addition of Au^{3+} ion (2 eq) with 2 min of UV irradiation (365 nm) in MeCN/H₂O (1:1 v/v) containing various other metal ions (2 eq). a) fluorescence images, b) emission intensity changes at 515 nm upon excitation at 460 nm.

Figure S3. ¹H NMR spectral change of structural fragments of 1_{BODIPY} by Au³⁺ addition and UV irradiation (365 nm). Red arrow indicates a new set of proton signals generated by UV irradiation.

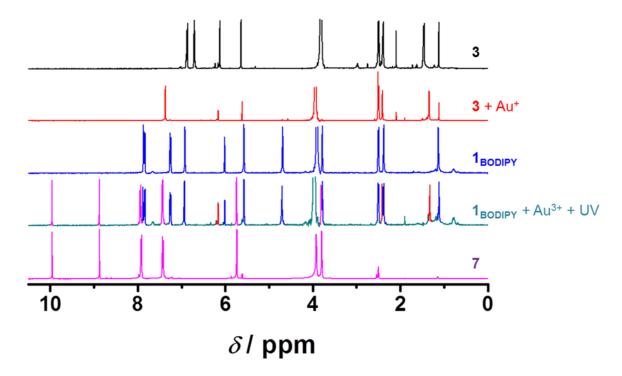


Figure S4. 1 H NMR spectra of 3, $\mathbf{1}_{BODIPY}$, and 7 in DMSO/D $_2$ O (5:1 v/v) with different conditions.

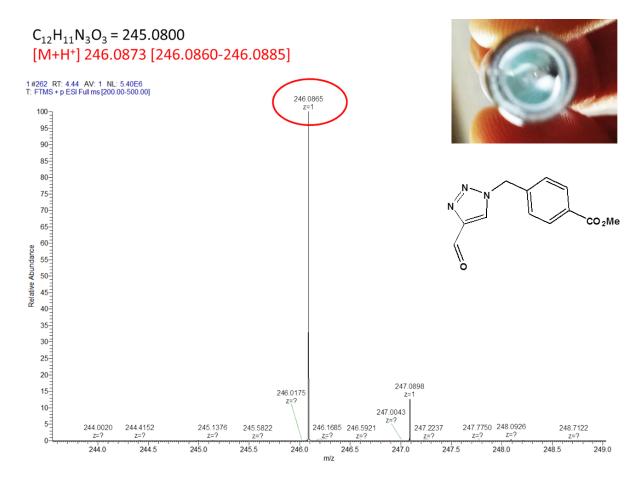


Figure S5. High resolution mass spectrum of 7 and an image of Tollen's test for aldehyde.

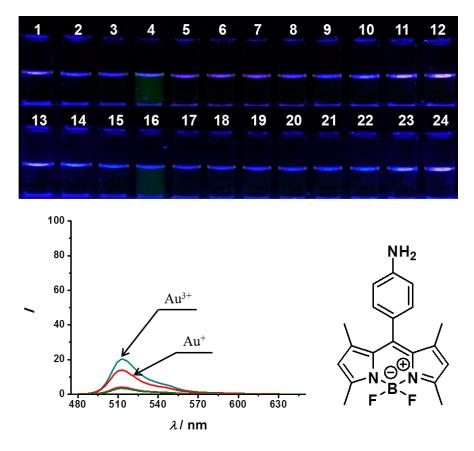
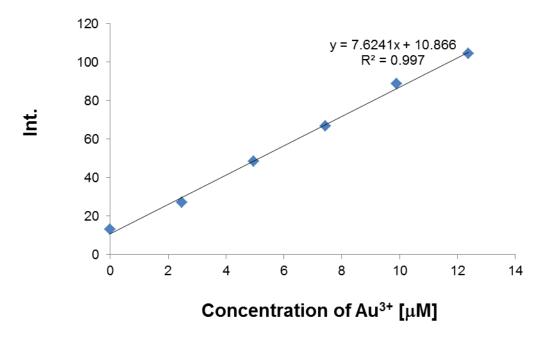
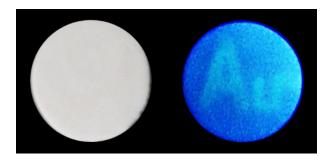




Figure S6. Fluorescence response of 3 (10 μ M) to various metal ions (2 eq) in MeCN/H₂O (1:1 v/v).

Figure S7. Linear correlation between fluorescence intensity of $\mathbf{1}_{BODIPY}$ and Au^{3+} concentration. The fluorescence emission intensity was measure after 2 min of UV irradiation.

Figure S8. Fluorescence pattern obtained by $\mathbf{1}_{BODIPY}$ and AuCl₃ solution. To get the fluorescence pattern a filter paper was dipped into the solution of $\mathbf{1}_{BODIPY}$ and then AuCl₃ solution was thinly coated onto the surface of filter paper. Finally, the paper was covered with photomask and exposure to UV-handy lamp (365 nm) for 1 min.

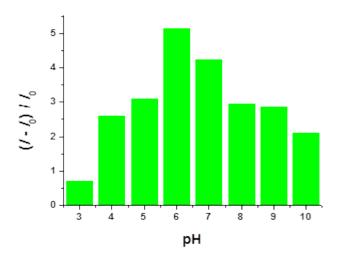
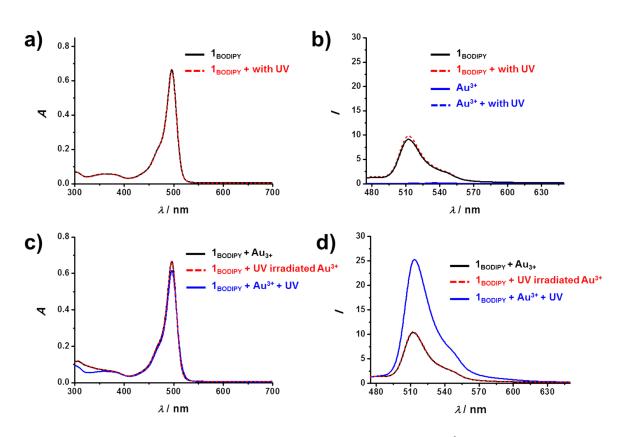



Figure S9. pH dependent fluorescence changes of $\mathbf{1}_{BODIPY}$ (10 μ M) to Au³⁺ ion (2 eq) in MeCN/0.01 M PBS buffer (1:1 v/v, pH 3-10), $\lambda_{ex} = 460$ nm, $\lambda_{em} = 515$ nm.

Figure S10. The influence of UV irradiation on $\mathbf{1}_{BODIPY}$ (10 μM) and Au^{3+} (20 μM) in MeCN/H₂O (1:1 v/v). a) Absorption and b) emission spectra of $\mathbf{1}_{BODIPY}$ without addition of Au^{3+} , c) absorption and d) emission spectra of $\mathbf{1}_{BODIPY}$ with Au^{3+} , where red dashed line is the result of mixing $\mathbf{1}_{BODIPY}$ with UV-irradiated Au^{3+} . UV-irradiation was carried out using UV-handy lamp (365 nm) for 2 min.

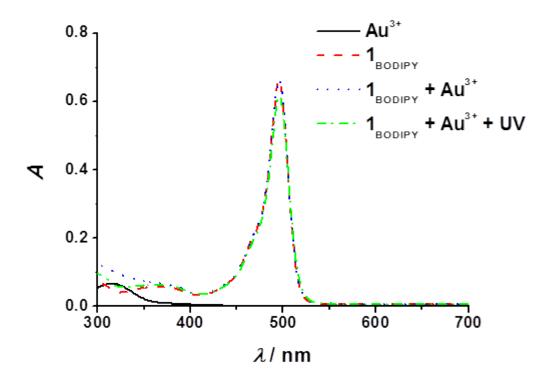


Figure S11. UV-Vis absorption spectra of $Au^{3+}(20~\mu M)$, $\mathbf{1}_{BODIPY}$ (10 μM), and Au^{3+} containing $\mathbf{1}_{BODIPY}$ (10 μM) in MeCN/H₂O (1:1 v/v).