Supplementary Information

Metal-Free Mizoroki-Heck Type Reaction: A Radical Oxidative Coupling Reaction of 2-Chloro-Dithiane with Substituted Olefins
Wenbin Du, ${ }^{a}$ Junshan Lai, ${ }^{a}$ Lixia Tian, ${ }^{a}$ Xingang Xie, ${ }^{b}$ Xuegong She, ${ }^{b}$ Shouchu Tang*ab
${ }^{a}$ School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
${ }^{b}$ State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
Email: tangshch@1zu.edu.cn

Index of Contents

Index of Contents S1
General Considerations S2
Summary of Initial Studies on Reaction Condition Optimization S2
General Procedure for Synthesis of 1,1-Diphenylethylene Derivatives S3
General Procedure for the Cross-couplings Between 1 and Multi-substituted Alkenes S4
The Procedure for Radical Trapping Experiment. S4
References S5
Analytical Data of Products S5-S11
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S12-S35

General Considerations

Unless otherwise noted, analytical grade solvents and commercially available reagents were used as received. Substituted olefins were all prepared following literature procedures. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were generally performed on silica gel (200-300 mesh) in petroleum (bp. 60-90 ${ }^{\circ} \mathrm{C}$) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} solution on the Bruker 300 and 400 MHz instruments, The chemical shifts (δ) were given in part per million relative to internal tetramethylsilane (0 ppm for ${ }^{1} \mathrm{H}$) and $\mathrm{CDCl}_{3}\left(77.00 \mathrm{ppm}\right.$ for ${ }^{13} \mathrm{C}$). High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT instrument and accurate masses were reported for the molecular ion $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$. MS were measured on a HP-5988 spectrometer by direct inlet at 70 eV .

Summary of initial studies on reaction condition optimization

Table S1 Cross-coupling reaction between 1 and 2a under varied conditions ${ }^{\text {a }}$

entry	catalyst/mol\%	oxidant	temperature $/{ }^{\circ} \mathrm{C}$	yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{PPh}_{3}$	-e	$80^{\circ} \mathrm{C}$	trace
2	$\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{PPh}_{3}$	-	$80^{\circ} \mathrm{C}$	trace
3	$\mathrm{FeCl}_{3}(15)$	Air	rt	72
4	$\mathrm{NiCl}_{2}(10)$	Air	rt	30
5	$\mathrm{Cu}(\mathrm{OAc})_{2}$ (10)	Air	rt	24
6	$\mathrm{CuI}(10)$	Air	rt	30
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	Air	rt	35
8	MSA ${ }^{\mathrm{c}}$ (15)	Air	rt	60
9	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (15)	Air	rt	81
10	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(10)$	Air	rt	80
11	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (5)	Air	rt	81
12	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (5)	-	rt	57
13	none	Air	rt	39(69 ${ }^{\text {d }}$)
14	none	-	rt	7
15	$\mathrm{CuI}(10)$	-	rt	9
16	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	-	rt	8
17	none	DDQ	rt	15
18	none	TBHP	rt	11
19	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(5)$	DDQ	rt	30
20	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (5)	TBHP	rt	50

Table S2 Cross-coupling reaction between 1 and 2a under varied solvent ${ }^{\text {a }}$

entry	solvent	yield $^{\mathrm{b}}(\%)$	entry	solvent	yield $^{\mathrm{b}}(\%)$
1	DCM	77	5	MeOH	trace
2	DCE	81	6	MeNO_{2}	trace
3	toluene	26	7	DMF	0
4	DMSO	0	8	MeCN	trace

${ }^{\text {a }}$ Reaction conditions: $\mathbf{1}(30 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathbf{2 a}(40.5 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mol} \%)$ in 2 mL of DCE at rt for $12 \mathrm{~h} .{ }^{\mathrm{b}}$ Yield of isolated product.

General procedure for synthesis of 1,1-diphenylethylene derivatives ${ }^{\mathbf{4}, \mathbf{5}}$

$R^{1}, R^{2}=H, M e, O M e, X$
To a flame-dried 100 mL flask were sequentially added aromatic hydrocarbon (20 mmol) and $\mathrm{AlCl}_{3}(30 \mathrm{mmol})$, $\mathrm{DCE}(40 \mathrm{~mL})$, dissolved the mixture was stirred at $0{ }^{\circ} \mathrm{C}$. Then $\mathrm{CH}_{3} \mathrm{CCl}_{3}(12$ mmol) were added at $0^{\circ} \mathrm{C}$ in 10 minutes. Reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for $2-8 \mathrm{~h}$ until TLC analysis showed the reaction was completed. Reaction mixture was diluted with ethyl acetate (100 mL) and dilute hydrochloric acid solution (30 mL). The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 30 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by the flash chromatography (petroleum ether) to afford the desired product ($70 \% \sim 80 \%$ yield).

1). To a flame-dried 100 mL flask were sequentially added aromatic hydrocarbon (60 mmol) and phenylacetyl chloride (20 mmol), DCE (40 mL), dissolved the mixture was stirred at $0^{\circ} \mathrm{C}$. Then $\mathrm{AlCl}_{3}(30 \mathrm{mmol})$ were added. Reaction mixture was stirred at rt for $6-12 \mathrm{~h}$ until TLC analysis showed the reaction was completed. Reaction mixture was diluted with ethyl acetate (100 $\mathrm{mL})$ and dilute hydrochloric acid solution $(30 \mathrm{~mL})$. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 30 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by the flash chromatography (petroleum ether) to afford the desired benzophenone derivatives products.
2). To a flame-dried 100 mL flask were added benzophenone derivatives (10 mmol) and THF $(40 \mathrm{~mL})$, dissolved the mixture was stirred at rt . Then Wittig $(12 \mathrm{mmol})$ and $\mathrm{NaH}(15 \mathrm{mmol})$ were sequentially added. Reaction mixture was stirred at rt for $12-24 \mathrm{~h}$ until TLC analysis showed the reaction was completed. Reaction mixture was diluted with ethyl acetate (100 mL) and dilute hydrochloric acid solution $(30 \mathrm{~mL})$. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 30$ mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by the flash chromatography (petroleum ether) to afford the desired products.

General procedure for the cross-coupling between 1 and Multi-substituted

Alkenes

General $\mathbf{B F}_{3} \cdot \mathbf{E t}_{2} \mathbf{O}$ as catalyst procedure: To a flame-dried 10 mL flask were sequentially added 1,3-dithiane (0.25 mmol) and NCS $(0.3 \mathrm{mmol})$, DCE $(2 \mathrm{~mL})$, after dissolved the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 40 mins. ${ }^{6}$ Then alkenes $(0.225 \mathrm{mmol})$ and boron trifluoride-diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)(0.0125 \mathrm{mmol})$ were added at reaction temperature. Reaction mixture was stirred at room temperature for $8-24$ h until TLC analysis showed the reaction was completed. Reaction mixture was diluted with ethyl acetate $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was re-extracted with ethyl acetate $(3 \times 3 \mathrm{~mL})$. The combined organic extracts were washed with brine (10 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by the flash chromatography to afford the desired product.

General no catalyst procedure: To a flame-dried 10 mL flask were sequentially added 1,3dithiane (0.25 mmol) and NCS (0.3 mmol), DCE (2 mL), after dissolved the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 40 mins. Then alkenes $(0.225 \mathrm{mmol})$ were added at reaction temperature. Reaction mixture was stirred in Open system at room temperature for 48 h until TLC analysis showed the reaction was completed. Reaction mixture was diluted with ethyl acetate (10 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was re-extracted with ethyl acetate $(3 \times 3$ $\mathrm{mL})$. The combined organic extracts were washed with brine $(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and purified by the flash chromatography to afford the desired product.

The procedure for radical trapping experiment.

To a flame-dried 10 mL flask were sequentially added 1,3 -dithiane ($30 \mathrm{mg}, 0.25 \mathrm{mmol}$) and NCS ($40 \mathrm{mg}, 0.3 \mathrm{mmol}$), DCE (2 mL), after dissolved the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 40 min . Then TEMPO ($124 \mathrm{mg}, 0.65 \mathrm{mmol}$), 1,1-diphenylethylene ($40.5 \mathrm{mg}, 0.225 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(1.78 \mathrm{mg}, 0.0125 \mathrm{mmol})$ were added. Reaction mixture was stirred at rt for 12 h . Then reaction mixture was diluted with ethyl acetate $(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The organic layer was separated, and the aqueous phase was re-extracted with ethyl acetate $(3 \times 3 \mathrm{~mL})$. The combined organic
extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

References

1. G. T. Crisp, Chem. Soc. Rev., 1998, 27, 427-436.
2. Y. Zhang, C. Li, J. Am. Chem. Soc., 2006, 128, 4242.
3. (a) Q. Yu, N. Zhang, J. Huang, S. Lu, Y. Zhu, X. Yu, K. Zhao, Chemistry. 2013, 19, 11184; (b) J. Wang, C. Liu, J. Yuan, A. Lei, Chem. Commun., 2014, 50, 4736; (c) Z. Li, L. Cao, C. Li, Angew.Chem., 2007, 119, 6625.
4. B. Jayachandran, et al. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicanal Chemistry., 2000,39B (12), 954-957.
5. K. Parvanak, Boroujeni, Chinese Chemical Letters., 2010, 21(12), 1395-1398.
6. (a) K. Arai, M. Oki, Bull. Chem. Soc. Jpn. 1976, 49, 553; (b) K. Arai, M. Oki, Tetrahedron Lett., 1975, 2183.

Analytical Data of Products

The compound of $\mathbf{4 a}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a white solid in 69% yield. $\mathrm{R}_{f}=0.37$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). Mp. $147{ }^{\circ} \mathrm{C}-149$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=7.41-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.02(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{q}, J=3.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.05-1.77(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ 144.6, 141.1, 138.5, 129.4, 128.2, 128.0, 127.8, 127.7, 123.9, 45.1, 29.7, 24.6. IR (KBr) $\mathbf{c m}^{-1}$: 3402.5, 2941.1, 1598.0, 1425.2, 1299.8, 858.4, 765.1, 655.7. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 299.0928; found:299.0931.

The compound of $\mathbf{4 b}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a white solid in 73% yield. $\mathrm{R}_{f}=0.35$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). Mp. $162{ }^{\circ} \mathrm{C}-164$ ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.25-7.21(\mathrm{~m}, 9 \mathrm{H}), 5.98(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ 144.8, 141.4, 137.4, 135.6, 129.3, 128.9, 128.7, 127.8, 123.7, 45.3, 29.8, 24.7, 21.2. IR (KBr) cm${ }^{\mathbf{1}}$: 3433.8, 2901.7, 1618.6, 1414.5, 1274.7, 853.4, 771.8, 697.7. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 313.1085$; found:313.1081.

The compound of $\mathbf{4 c}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a white solid in 78% yield. $\mathrm{R}_{f}=0.40$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). Mp. $166^{\circ} \mathrm{C}-168$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.24-7.05(\mathrm{~m}, 8 \mathrm{H}), 5.94(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12$ $\left.\mathrm{Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 4 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.84(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right)$:
$\delta=144.7,138.6,137.7,137.3,135.8,129.3,129.0,128.9,128.7,127.6,126.4,122.8,45.3,29.8$, 24.7, 21.2, 21.0. IR (KBr) $\mathbf{c m}^{-1}: 3477.9$, 2933.5, 1622.1, 1438.5, 1301.2, 866.7, 732.9, 645.8. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 327.1241$; found: 327.1239 .

The compound of $\mathbf{4 d}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a yellow solid in 75% yield. $\mathrm{R}_{f}=0.39$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). Mp. $131{ }^{\circ} \mathrm{C}-133$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.23-6.82(\mathrm{~m}, 6 \mathrm{H}), 5.75(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.32(\mathrm{~d}, J=15 \mathrm{~Hz}, 6 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.69(\mathrm{~m}$, 2H). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=143.7,140.4,138.5,134.7,134.7,133.2,132.3,130.8$, 130.5, 130.2, 130.1, 128.3, 128.1, 127.9, 44.8, 29.6, 29.4, 24.8, 20.8, 20.4, 19.7. IR (KBr) $\mathbf{c m}^{-1}$: 3411.3, 2867.7, 1614.9, 1409.5, 1224.1, 905.4, 765.1, 633.4. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 355.1554$; found: 355.1557 .

The compound of $\mathbf{4 e}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a yellow solid in 76% yield. $\mathrm{R}_{f}=0.37$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). $\mathrm{Mp} .10{ }^{\circ}{ }^{\circ} \mathrm{C}-104$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.24-6.87(\mathrm{~m}, 6 \mathrm{H}), 5.73(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.80(\mathrm{~m}$, 2H). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=143.4,137.4,136.8,136.3,135.8,135.7,134.8,131.3$, $130.9,129.5,129.3,127.5,125.9,125.8,44.7,29.2,24.4,20.8,20.6,19.7$. IR (KBr) $\mathbf{c m}^{-1}: 3475.1$, 2967.1, 1608.6, 1427.5, 1210.3, 857.4, 751.1, 647.1. HRMS (ESI): calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]$ +: 355.1554 ; found: 355.1556 .

The compound of $\mathbf{4 f}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=80: 1$) to afford a thick yellow oil in 76% yield. $\mathrm{R}_{f}=0.28$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=7.40-6.78(\mathrm{~m}, 9 \mathrm{H}), 5.94(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{q}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $\left.(\mathrm{d}, J=21 \mathrm{~Hz}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 2 \mathrm{H}) \cdot{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ $159.2,159.0,144.2,144.0,141.4,138.6,130.7,130.5,129.2,128.7,128.0,127.9,127.6,127.5$, 122.0, 113.4, 113.3, 55.0, 45.1, 45.2, 29.6, 24.5. IR (KBr) cm ${ }^{-1}: 3433.7,2865.8,1576.1,1488.7$, 1114.6, 1002.2, 817.1, 565.2. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 329.1034$; found: 329.1033.

The compound of $\mathbf{4 g}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=80: 1$) to afford a thick yellow oil in 74% yield. $\mathrm{R}_{f}=0.27$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.25(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{~d}, J=9 \mathrm{~Hz}, 4 \mathrm{H}), 5.86(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 2.88-2-80 (m, 4H), 2.04-1.86 (m, 2H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=159.4,159.1,144.1$, $134.2,131.2,130.7,129.0,121.8,113.6,113.4,55.2,45.6,30.0,24.7$. IR (KBr) cm${ }^{-1}: 3431.7$, $2927.8,1604.9,1510.7,1174.6,1032.7,834.1,579.5$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 359.1139$; found: 359.1134 .

The compound of $\mathbf{4 h}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a white solid in 62% yield. $\mathrm{R}_{f}=0.38$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). Mp. $150{ }^{\circ} \mathrm{C}-152$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.01(\mathrm{q}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.07(\mathrm{~m}, 8 \mathrm{H}), 6.21(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\mathbf{C D C l}_{3}$): $\delta=145.8,142.8,139.5,138.4,130.3,129.3,129.2,128.2,128.0,127.8,126.9,124.4$, 125.9, 99.3, 44.5, 29.4, 29.3, 24.6. IR (KBr) $\mathbf{c m}^{-1}$: 3424.3, 2933.5, 1612.4, 1521.7, 1214.6, 1012.7, 842.5, 545.2. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{IS}_{2}[\mathrm{M}+\mathrm{H}]{ }^{+}$: 424.9895 ; found: 424.9897.

The compound of $\mathbf{4 i}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a thick yellow oil in 70% yield. $\mathrm{R}_{f}=0.35$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.41-7.02(\mathrm{~m}, 10 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=3 \mathrm{~Hz}, 3 \mathrm{H}), 1.91-1.69(\mathrm{~m}$, 4H), 1.27-1.17 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta=144.4,144.2,140.9,139.1,134.7$, $128.9,128.3,128.1,127.2,127.1,124.8,123.8,119.3,53.8,29.0,28.9,26.0,12.9$. IR (KBr) $\mathbf{c m}^{-1}$: 3398.1, 2857.7, 1603.6, 1455.2, 1266.7, 825.4, 731.8, 674.4. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1085 ; found: 313.1082 .

The compound of $\mathbf{4} \mathbf{j}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a thick yellow oil in 72% yield. $\mathrm{R}_{f}=0.39$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R}$
(300 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta=7.43-6.92(\mathrm{~m}, 9 \mathrm{H}), 4.07(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H})$, 1.89-1.83 (m, 4H), 1.29-1.18 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=144.4,141.8,139.7$, $138.9,134.8,134.5,128.8,128.2,127.1,119.2,118.9,53.7,53.6,29.0,26.1,21.3,21.2,12.8$. IR $(\mathbf{K B r}) \mathbf{c m}^{-1}: 3430.1,2898.3,1635.6,1437.4,1251.9,853.0,727.4,697.0$. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 327.1241 ; found: 327.1242.

The compound of $\mathbf{4 k}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a yellow oil in 77% yield. $\mathrm{R}_{f}=0.36$ (petroleum ether: EtOAc $=50: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=7.28-6.86(\mathrm{~m}, 8 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.87-$ $1.73(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=144.4,141.9,139.3,138.8$, 136.7, 134.4, 131.8, 129.0, 128.7, 127.7, 124.6, 118.9, 53.6, 29.0, 26.1, 21.3, 21.2, 12.9. IR (KBr) $\mathbf{c m}^{\mathbf{1}}: 3433.7,2951.6,1615.8,1455.0,1232.5,823.6,766.8,671.7$. HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 341.1398$; found: 341.1342.

The compound of $\mathbf{4 I}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=80: 1$) to afford a thick pale brown oil in 77% yield. $\mathrm{R}_{f}=0.20$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{1} \mathbf{H}$ NMR (300 MHz, $\mathbf{C D C l}_{3}$): $\delta=7.49-6.72(\mathrm{~m}, 9 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.99-$ $1.88(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=158.0,146.0,144.6,140.2$, $138.4,137.4,134.9,130.0,128.8,127.1,124.7,123.7,119.6,113.7,110.2,55.4,53.7,29.0,26.0$, 12.9, 12.8. IR (KBr) $\mathbf{c m}^{-1}$: 3397.2, 2874.2, 1586.9, 1500.2, 1151.5, 1042.7, 834.2, 573.3. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 343.1190; found: 343.1195.

The compound of $\mathbf{5 a}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a pale yellow oil in 77% yield. $\mathrm{R}_{f}=0.34$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.44-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.40-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=$ $3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta=143.4,128.3,128.1,127.6,127.3,126.1,41.3,30.2,25.7 . \mathbf{I R}(\mathbf{K B r}) \mathbf{c m}^{-1}: 3034.2,2917.3$, 1617.6, 1512.3, 1283.1, 1167.8, 905.2, 823.5, 721.5, 521.3. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 237.0772$; found: 237.0768.

The compound of $\mathbf{5 b}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a colorless oil in 88% yield. $\mathrm{R}_{f}=0.30$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=7.33-7.02(\mathrm{~m}, 4 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=6 \mathrm{~Hz}$, 2H), 2.72-2.65 (m, 4H), 2.00-1.65 (m, 2H), $\left.1.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=143.1$, $139.1,137.3,137.2,129.0,128.9,128.8,128.6,126.2,125.9,125.7,122.7,114.9,44.9,44.7,41.3$, 30.3, 30.1, 29.9, 28.7, 25.6, 24.9, 24.5, 21.0, 20.9, 16.3. IR (KBr) $\mathbf{c m}^{-1}: 3028.0,2932.7,1620.7$, 1510.4, 1283.0, 1182.8, 895.2, 821.1, 735.1, 528.3. HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]$ +: 251.0928; found: 251.0924 .

The compound of $\mathbf{6 c}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a pale yellow oil in 82% yield. $\mathrm{R}_{f}=0.21$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($300 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=7.34(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H})$, $5.04(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.63(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=159.1,138.8,127.3,127.0,121.9,113.5,55.2,44.9,30.5,29.6,24.9,16.4$. IR (KBr) $\mathbf{c m}^{-1}: 3346.2,2871.4,1521.9,1487.2,1210.5,1041.4,834.1,563.1$ HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$267.0877; found: 267.0880.

The compound of 5d was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a yellow oil in 65% yield. $\mathrm{R}_{f}=0.28$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{3 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=7.38(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 3.91$ $(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=142.4,138.5,131.4,127.8,121.6,116.3,44.8,41.1,30.3,30.2,25.6$. IR (KBr) $\mathbf{c m}^{-1}: 3410.3,2927.1,1627.4,1487.3,1008.1,833.4,514.0$. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrS}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 314.9877$; found: 314.9876 .

The compound of $\mathbf{5 e}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a pale yellow solid in 66% yield. $\mathrm{R}_{f}=0.27$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). $\mathrm{Mp} .43{ }^{\circ} \mathrm{C}-$ $45{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) : $\delta=7.56-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=$ $6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-1.77(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\mathbf{C D C l}_{3}$): $\delta=142.2,130.5,129.8,129.3,124.8,117.0,52.0,44.7,41.1,30.1,25.6 . \mathbf{I R}(\mathbf{K B r}) \mathbf{c m}^{-1}:$ 3421.5, 2988.1, 1656.1, 1487.0, 1021.3, 834.4, 523.9. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{BrS}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}: 314.9877$; found: 314.9875 .

The compound of $\mathbf{5 f}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a yellow oil in 60% yield. $\mathrm{R}_{f}=0.25$ (petroleum ether: EtOAc $=50: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=7.46-7.23(\mathrm{~m}, 4 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J$ $\left.=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.09-1.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (7 5 ~ M H z}, \mathbf{C D C l}_{3}\right): \delta=142.3,137.9$,
133.2, 128.3, 127.4, 116.2, 44.7, 41.1, 30.1, 25.5. IR (KBr) $\mathbf{c m}^{-1}: 3447.3,2897.0,1644.2,1455.7$, 1032.1, 837.5, 514.7. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 271.0382 ; found: 271.0386.

The compound of $\mathbf{5 g}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a yellow oil in 80% yield. $\mathrm{R}_{f}=0.34$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=7.23-7.13(\mathrm{~m}, 4 \mathrm{H}), 5.96(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 6 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.09-1.80(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right):$ $\delta=136.9,134.0,131.8,128.5,127.8,126.9,126.4,122.3,45.5,39.2,30.5,28.9,28.1,25.9,23.2$. IR (KBr) $\mathbf{c m}^{-1}: 3032.2,2862.7$, 1559.3, 1226.4, 725.3. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 263.0928$; found: 263.0929.

The compound of $\mathbf{5 h}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a pale yellow oil in 80% yield. $\mathrm{R}_{f}=0.32$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}$ ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.39-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.06-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=150.0,141.6,128.1,127.3,126.8,114.2,52.5,42.9,42.8,31.0,30.4,25.8$, 15.9. IR (KBr) $\mathbf{c m}^{-1}: 3122.5,2924.6,1607.1,1500.3,1262.3,1185.2,900.2,824.7,721.1,522.9$. HRMS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 251.0928$; found: 251.0926 .

The compound of $\mathbf{5 i}$ was purified by silica gel chromatography (petroleum ether: $\mathrm{EtOAc}=100: 1$) to afford a yellow solid in 88% yield. $\mathrm{R}_{f}=0.30$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). $\mathrm{Mp} .61{ }^{\circ} \mathrm{C}-63$ ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.97-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=9 \mathrm{~Hz}, 3 \mathrm{H}) \cdot{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=149.8,138.6,137.0,128.8$, 126.7, 113.6, 52.6, 42.8, 31.0, 30.3, 25.8, 21.0, 15.9. IR (KBr) $\mathbf{c m}^{-1}: 3036.1,2932.0,1621.0$, 1525.4, 1275.2, 1082.8, 896.3, 839.5, 744.1, 504.4. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]$ +: 265.1085; found: 265.1089.

The compound of $\mathbf{5 j}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=80: 1$) to afford a colorless oil in 55% yield. $\mathrm{R}_{f}=0.24$ (petroleum ether: EtOAc $=50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0 ~}$
$\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=7.24(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.00$ $(\mathrm{d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{t}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.66(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.29$ $(\mathrm{d}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H})$. $\mathbf{I R}(\mathbf{K B r}) \mathbf{c m}^{-1}: 3342.3,2874.2,1535.1,1505.2,1138.5,1072.1,841.2,560.3$. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$281.1034; found: 281.1033.

The compound of $\mathbf{6 j}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=80: 1$) to afford a colorless oil in 26% yield. $\mathrm{R}_{f}=0.22$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (3 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=7.12(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=3 \mathrm{~Hz}$, $3 \mathrm{H})$, 2.95-2.91 (m, 3H), 2.81-2.65 (m, 4H), 2.01-1.94 (m, 2H), $1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\mathbf{C D C l}_{3}$): $\delta=158.1,135.4,134.6,129.0,128.3,127.4,113.3,113.2,55.0,52.8,30.4,28.6,24.9$, 24.5, 21.3, 14.8. IR (KBr) $\mathbf{c m}^{-1}: 3345.4,2874.7,1541.2,1507.7,1138.2,1088.1,822.5,563.1$. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{OS}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 281.1034; found: 281.1030.

The compound of $\mathbf{6 k}$ was purified by silica gel chromatography (petroleum ether: EtOAc $=100: 1$) to afford a white solid in 79% yield. $\mathrm{R}_{f}=0.34$ (petroleum ether: $\mathrm{EtOAc}=50: 1$). Mp. $140^{\circ} \mathrm{C}-142$ ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.46-6.98(\mathrm{~m}, 8 \mathrm{H}), 6.59(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H})$, 2.91-2.63 (m, 8H), 2.02-1.75 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($7 \mathbf{5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=135.9,135.8,133.3$, 129.4, 128.4, 127.3, 127.0, 126.6, 126.1, 51.7, 30.5, 28.8, 28.4, 24.9, 24.2. IR (KBr) cm ${ }^{-1}$: 3033.7, 2884.0, 1623.8, 1261.3, 759.3. HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 277.1085$; found: 277.1088.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

4a

