Supporting Information

A highly efficient Pd-catalyzed decarboxylative orthoarylation of amides with aryl acylperoxides

Dengke Li, ${ }^{a}$ Ning Xu, ${ }^{a}$ Yicheng Zhang, ${ }^{\text {a }}$ and Lei Wang*a,b${ }^{\text {a }}$ Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000,China Tel: +86-561-3802-069Fax: +86-561-3090-518 E-mail: leiwang@.chnu.edu.cn.${ }^{\mathrm{b}}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of OrganicChemistry, Chinese Academy of Sciences, Shanghai 200032, China
Table of Contents for Supporting Information

1. General information 2
2. Preparation of the starting materials 2
3. General procedure for the reactions 6
4. Mechanistic studies 12
5. Characterization data for the products 13
6. References 20
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products 21

1. General information

All the solvents and commercially available reagents were purchased from commercial suppliers. Solvents $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{DMF}, \mathrm{DCE}, \mathrm{DME}, \mathrm{DMSO}, 1,4\right.$-dioxane or toluene) were dried. Molecular sieves were activated before use. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz Bruker FT-NMR spectrometers (400 MHz or 100 MHz , respectively). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s , singlet; d , doublet; t , triplet; m , multiplet; q , quartet. The coupling constants, J, are reported in Hertz (Hz). The infrared spectra were obtained using a Thermo Nicolet 6700 Spectrometer. High Resolution Mass (MS) analysis was obtained using Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS system with Electrospray Ionization (ESI). Melting points were measured on a MelTemp apparatus and are uncorrected.

2. Preparation of the starting materials

Anilides 1b and 1e were purchased from Alfa Aesar. Benzoyl peroxide (2a) was purchased from Aldrich. Other starting materials used in the reaction, including 1a, 1c, $\mathbf{1 d}, \mathbf{1 f} \mathbf{-} \mathbf{1 q}, \mathbf{2 b} \mathbf{-} \mathbf{2} \mathbf{j}$, and $\mathbf{5 a} \mathbf{-} \mathbf{5} \mathbf{k}$ were prepared according to the reported literatureres. ${ }^{1-4}$
2.1 General procedure for the preparation of $\mathbf{1 a}, \mathbf{1 c}, 1 \mathrm{~d}, 1 \mathrm{f}$, and $\mathbf{1 h}-\mathbf{1 q}{ }^{1}$

1a, 1c, 1d, 1 f 1h-1q

A round-bottom flask was charged with acyl chloride (10 mmol) in dichloromethane ($\mathrm{DCM}, 10 \mathrm{~mL}$), and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice-bath. Then triethylamine (12 mmol) and aniline (10 mmol) were added slowly. The mixture was stirred for 12 h at room temperature (monitored by TLC). After the reaction was completed, it was quenched with a solution of HCl (aq. $1.0 \mathrm{~mol} / \mathrm{L}$). The resulting mixture was then extracted with DCM. The combined organic layers were dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum to afford the crude product, which was further purified by recrystallizing from $\mathrm{DCM} /$ hexane to give the desired product.

1a

1b

1c

1d

$1 \mathbf{1}$

1f

19

1h

$1 i$

11

10

1 j

1m

1p

$1 n$

2.2 General procedure for the preparation of $\mathbf{1 g}^{\mathbf{2}}$

In a round-bottom flask charged with a solution of dimethylamine hydrochloride $(12 \mathrm{mmol})$ in dry dichloromethane $(\mathrm{DCM}, 20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, triethylamine (12 mmol) was added and then the solution was stirred for 10 minutes. To this solution, phenyl isocyanate (10 mmol) was added and the mixture was allowed to stir at room temperature for 16 h (monitored by TLC). After the reaction was completed, the solution was washed with HCl (aq. $2.0 \mathrm{~mol} / \mathrm{L}, 3 \times 10 \mathrm{~mL}$) and extracted with DCM (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuum to afford the crude product. The resulting white solid was recrystallised from toluene to yield pure urea $1 g$.

2.3 General procedure for the preparation of aryl acylperoxides $\mathbf{2 b} \mathbf{-} \mathbf{2} \mathbf{j}^{\mathbf{3}}$

In a round-bottomed flask, the solution of acid chloride (10 mmol) in diethyl ether (5 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-bath. Then, hydrogen peroxide $(0.556 \mathrm{~g}, 35$ $\mathrm{wt} . \%$ in $\mathrm{H}_{2} \mathrm{O}, 5.73 \mathrm{mmol}$) was added dropwise over 10 minutes to the cold solution. This was followed by the dropwise addition of an aqueous solution of $\mathrm{NaOH}(0.506 \mathrm{~g}$, $12.64 \mathrm{mmol}, 4 \mathrm{~mL}$) over 20 minutes. The resulting white precipitate was collected by filtration. After washing with water $(3 \times 5 \mathrm{~mL})$ and diethyl ether $(3 \times 5 \mathrm{~mL})$, the solid was crystallized from a cold acetone/water mixture $(\mathrm{v} / \mathrm{v}=1 / 3)$ to give the pure aryl acylperoxide.

2e

2f

2g

$2 i$

2h

2j

2.4 General procedure for the preparation of $\mathbf{5 a}-\mathbf{5 k}{ }^{4}$

In a round-bottomed flask, O-methylhydroxylamine hydrochloride (10 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mmol})$ were dissolved in water $(15 \mathrm{~mL})$ and EtOAc (30 mL). The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice-bath and then acyl chloride (10 mmol) was added. After the solution was stirred at room temperature overnight, the aqueous layer was separated and the organic layer was washed with water and brine. After it was dried by $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporation of the solvent gave the crude product. Recrystallization of crude product from petroleum ether/ethyl acetate gave the pure desired product.

5a

5d

5e

$5 f$

$5 g$

5h

5k

3. General procedure for the reactions

3.1 Optimization of the reaction conditions in decarboxylative ortho-arylation of anilides with aryl acylperoxides

Under air atmosphere, a 25 mL sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with N-phenylpivalamide (1a, 0.25 $\mathrm{mmol})$, benzoyl peroxide ($\mathbf{2 a}, 0.40 \mathrm{mmol}, 1.6$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(7.5 \mathrm{~mol} \%)$, additive ($0.50 \mathrm{mmol}, 2.0$ equiv), activated $3 \AA$ molecular sieves $(70 \mathrm{mg})$ and solvent $(2.0 \mathrm{~mL})$. Then the reaction vessel was placed in an oil bath at $80^{\circ} \mathrm{C}$ for 32 h (monitored by TLC). After the reaction was completed, it was cooled to room temperature and quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.), then extracted with ethyl acetate and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was directly filtered through a pad of silica gel using a sintered glass funnel, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=15 / 1$) to give the desired product (3a).

Table S1 Optimization of the decarboxylative ortho-arylation of N-phenylpivalamide (1a) with benzoyl peroxide (2a) ${ }^{a}$

	 1 a				
Entry	Catalyst	Additive	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/-	$\mathrm{CH}_{3} \mathrm{CN}$	80	53
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	77
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4Å MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	61
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{K}_{2} \mathrm{CO}_{3} / 3 \AA \mathrm{MS}$	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3} / 3 \AA \mathrm{MS}$	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{NEt}_{3} / 3 \AA \mathrm{MS}$	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TFA/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	HOAc/3Å MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{PivOH} / 3 \AA$ MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$p-\mathrm{TsOH} / 3 \AA$ MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	31
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H} / 3 \AA$ M	$\mathrm{CH}_{3} \mathrm{CN}$	80	35
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3Å MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	38^{c}
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	57^{d}
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	58^{e}
16	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	60	18
17	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	100	65
18	-	TfOH	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
19	-	-	$\mathrm{CH}_{3} \mathrm{CN}$	80	N.R.
20	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	61^{f}
21	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	789
22	$\mathrm{Pd}(\mathrm{TFA})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	51
23	PdCl_{2}	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	43
24	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	29
25	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	38
26	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3Å MS	toluene	80	<5
27	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	DCE	80	trace
28	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	1,4-dioxane	80	trace
29	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	DMF	80	N.R.
30	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	DMSO	80	N.R.
31	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	DME	80	10
32	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{HOAc}=1 / 1$	80	13
33	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	50^{h}
34	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3A MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	55^{i}

${ }^{a}$ Reaction conditions: 1a (0.25 mmol), 2a (1.6 equiv, 0.4 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(7.5 \mathrm{~mol} \%)$, additive (2.0 equiv, 0.5 mmol), activated $3 \AA \mathrm{MS}(70 \mathrm{mg})$, solvent $(2.0 \mathrm{~mL})$, air atmosphere, $80^{\circ} \mathrm{C}, 32 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c}$ TfOH (1.0 equiv) was used. ${ }^{d} \mathrm{TfOH}$ (4.0 equiv) was used. ${ }^{e}$ for $24 \mathrm{~h} .{ }^{f} \mathrm{Pd}(\mathrm{OAc})_{2}$ ($5.0 \mathrm{~mol} \%$) was used. ${ }^{g} \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$ was used. ${ }^{h} \mathbf{2 a}$ (1.2 equiv) was used. ${ }^{\boldsymbol{i}} \mathbf{2 a}$ (2.0 equiv) was used.

3.2 General procedure for the decarboxylative ortho-arylation reactions of anilides with aryl acylperoxides

Under air atmosphere, a 25 mL sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with anilide (0.25 mmol), aryl acylperoxide ($0.40 \mathrm{mmol}, 1.6$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(7.5 \mathrm{~mol} \%)$, TfOH $(0.50 \mathrm{mmol}$, 2.0 equiv), activated $3 \AA$ molecular sieves (70 mg) and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$. Then the reaction vessel was placed in an oil bath at $80^{\circ} \mathrm{C}$ for 32 h (monitored by TLC). After the reaction was completed, it was cooled to room temperature and quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.), then extracted with ethyl acetate and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was directly filtered through a pad of silica gel using a sintered glass funnel, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate) to give the desired product.

3.3 General procedure for the decarboxylative ortho-arylation reactions of anilides $1 \mathrm{~m}, 1 \mathrm{n}, 1 \mathrm{o}$ with benzoyl peroxide (2a)

Under air atmosphere, a 25 mL sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with $\mathbf{1 m}, \mathbf{1 n}$ or $\mathbf{1 0}(0.25 \mathrm{mmol})$, benzoyl peroxide (2a, $0.40 \mathrm{mmol}, 1.6$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(7.5 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2.0$
equiv) was added as co-oxidant, TfOH (2.0 equiv), activated $3 \AA$ molecular sieves (70 mg) and $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$, at $130^{\circ} \mathrm{C}$ for 32 h (monitored by TLC). After the reaction was completed, it was cooled to room temperature and quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.), then extracted with ethyl acetate and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was directly filtered through a pad of silica gel using a sintered glass funnel, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=15 / 1$) to give the desired product ($\mathbf{3 m}, \mathbf{3 n}$, or $\mathbf{3 o}$).

3.4 Optimization of the decarboxylative arylation and cyclization of N methoxybenzamide with benzoyl peroxide for the synthesis of phenanthridinone

Under air atmosphere, a 25 mL sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with N-methoxybenzamide (5a, 0.25 mmol), benzoyl peroxide (2a, $0.40 \mathrm{mmol}, 1.6$ equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(7.5 \mathrm{~mol} \%)$, additive ($0.50 \mathrm{mmol}, 2.0$ equiv), activated $4 \AA$ molecular sieves (70 mg) and solvent $(2.0 \mathrm{~mL})$. Then the reaction vessel placed in an oil bath at $80^{\circ} \mathrm{C}$ for 24 h (monitored by TLC). After the reaction was completed, it was cooled to room temperature and quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.), then extracted with ethyl acetate and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was directly filtered through a pad of silica gel using a sintered glass funnel, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate $=4 / 1$) to give the desired product (6a).

Table S2 Optimization of the decarboxylative arylation and cyclization of
benzamides with benzoyl peroxide for the synthesis of phenanthridinone ${ }^{a}$

		 2a	[Pd] catal. Additive Solvent, Temp $-\mathrm{CO}_{2}$	 6a	
Entry	Catalyst	Additive	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {b }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3Å MS	$\mathrm{CH}_{3} \mathrm{CN}$	80	21^{c}
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/3Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	47
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	60
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=2 / 1$	80	41
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 2$	80	52
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 3$	80	44
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/-	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	25
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	<10
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	47^{d}
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	40^{e}
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TFA/4 MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	13
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PivOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	10
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	p-TsOH/4ÅMS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	15
14	-	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	N.R.
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	62^{f}
16	$\operatorname{Pd}(\mathrm{TFA})_{2}$	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	47
17	PdCl_{2}	TfOH/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	<10
18	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4 MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	50^{8}
19	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4Å MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	80	48^{h}
20	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	60	36
21	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TfOH/4A MS	$\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}=1 / 1$	100	41

${ }^{a}$ Reaction conditions: 5a (0.25 mmol), 2a (0.4 mmol , 1.6 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(7.5 \mathrm{~mol} \%)$, additive $(2.0$ equiv, 0.5 mmol), activated MS (70 mg), solvent (2.0 mL), air atmosphere, at $80^{\circ} \mathrm{C}$ for $24 \mathrm{~h} .{ }^{b}$ Isolated yields. ${ }^{c} 32 \mathrm{~h} .{ }^{d} \mathrm{TfOH}$ (1.0 equiv) was used. ${ }^{e} \mathrm{TfOH}$ (4.0 equiv) was used. ${ }^{f} \mathrm{Pd}(\mathrm{OAc})_{2}\left(10 \mathrm{~mol} \%\right.$) was used. ${ }^{g}$ 2a (1.2 equiv) was used. ${ }^{h} \mathbf{2 a}$ (2.0 equiv) was used.

3.5 General procedure for the decarboxylative arylation and cyclization of N methoxyarylamides with aryl acylperoxides to phenanthridinones

Under air atmosphere, a 25 mL sealable reaction tube with a Teflon-coated screw cap equipped with a magnetic stir bar was charged with N -methoxyarylamide (0.25 mmol), aryl acylperoxide (0.40 mmol , 1.6 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($7.5 \mathrm{~mol} \%$), TfOH (0.50 mmol , 2.0 equiv), activated $4 \AA$ molecular sieves (70 mg) and $\mathrm{HOAc} / \mathrm{CH}_{3} \mathrm{CN}$ $(\mathrm{V} / \mathrm{V}=1 / 1,2.0 \mathrm{~mL})$. Then the reaction vessel was placed in an oil bath at $80^{\circ} \mathrm{C}$ for 24 h (monitored by TLC). After the reaction was completed, it was cooled to room temperature and quenched with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.), then extracted with ethyl acetate and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was directly filtered through a pad of silica gel using a sintered glass funnel, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluant: petroleum ether/ethyl acetate) to give the desired product phenanthridinone.

4. Mechanistic studies

4.1 Table $\mathbf{S 3}$ the effect of radical scavengers on the model reaction

 1a	 2a	$\xrightarrow[\substack{3 \dot{3} \mathrm{MS}, \mathrm{CH}, \mathrm{CN} \\ 80^{\circ} \mathrm{C}, 32 \mathrm{~h}}]{\substack{\mathrm{Pd}(\mathrm{OAC})_{2}(7.5 \mathrm{~mol} \%) \\ \mathrm{TfOH}(2 \text { equiv })}}$ radical scavengers?	
radical scavenger	amount (mol\%)	yield of 3a (\%)	yield of 1a (\%)
no	0	77	12
TEMPO	50	17	74
	100	trace	90
ascorbic acid	50	18	75
	100	trace	94

4.2 The control experiment

5. Characterization data for the products

$\mathbf{1 k}, \boldsymbol{N}$-(3-iso-Propylphenyl)pivalamide. White solid. mp 89 ${ }^{\circ} \mathrm{C}$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.48$ (s, 2H), 7.35-7.33 (m, 1H), 7.24-7.20 (m, 1H), 6.98-6.96 (m, 1H), 2.91-2.83 (m, $1 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=176.52,149.75,138.00,128.65,122.19$, 118.14, 117.47, 39.46, 34.05, 27.52, 23.79. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}$: 220.1701 Found: 220.1698. IR $\left(\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}\right) 3287$, 1655.

3a, N-([1,1'-Biphenyl]-2-yl)pivalamide. Yellow solid. mp $65-67^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.37$ $(\mathrm{m}, 7 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=176.14,138.03,135.07,132.11,129.57$, 129.22, 128.91, 128.35, 127.92, 123.76, 120.83, 39.65, 27.24. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}: 254.1545$ Found: 254.1544. IR $\left(\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}\right) 3263,1646$.
 3b, N-([1,1'-Biphenyl]-2-yl)acetamide. ${ }^{5}$ Yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=168.20,138.12$, 134.60, 132.30, 129.95, 129.10, 128.94, 128.27, 127.83, 124.32, 121.79, 24.36. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}: 212.1075$ Found: 212.1073.

3c, N-([1,1'-Biphenyl]-2-yl)butyramide. White solid. mp $86^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}$, $1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H})$, 0.93 (t, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=170.97$, $138.10,134.68,132.08,129.88,129.16,128.94,128.30,127.86$, 124.09, 121.49, 39.60, 18.76, 13.53. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}$: 240.1388 Found: 240.1392. IR (KBr, v / cm^{-1}) 3249, 1648.

3d, N-([1,1'-Biphenyl]-2-yl)benzamide. Yellow solid. mp 77-79 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.42-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=164.86,138.00,134.84,134.71,132.30,131.59$, $129.87,129.25,129.11,128.62,128.49,128.07,126.70,124.26$, 121.10. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}: 274.1232$ Found: 274.1228. IR $\left(\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}\right) 3264,1664$.

3e, 1-([1,1'-Biphenyl]-2-yl)pyrrolidin-2-one. ${ }^{6}$ Yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=7.42-7.31(\mathrm{~m}, 9 \mathrm{H}), 3.20(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=175.51,139.55,139.03,136.25,130.73,128.45$, 128.31, 128.29, 128.25, 127.92, 127.48, 50.07, 31.09, 18.87. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}: 238.1232$ Found: 238.1230.

3h, N-(5-Methyl-[1,1'-biphenyl]-2-yl)pivalamide. Yellow solid.
 $\mathrm{mp} 91-92{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 (s, 1H), 2.36 (s, 3H), 1.11 (s, 9H); ${ }^{13} \mathbf{C}$ NMR (100 MHz , $\mathbf{C D C l}_{3}$): $\delta=176.06,138.23,133.40,132.49,132.30,130.16,129.18$, 128.82, 127.79, 121.11, 39.55, 27.27, 20.69. HRMS (ESI) [M+H] ${ }^{+}$ Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}: 268.1701$ Found: 268.1701. IR ($\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}$) 3294, 1645.

3i, N-(4-Methyl-[1,1'-biphenyl]-2-yl)pivalamide. ${ }^{6}$ Yellow solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.25(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.35(\mathrm{~m}, 6 \mathrm{H})$, 7.16-7.14 (m, 1H), 7.00-6.98 (m, 1H), $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=176.20,138.39,138.07,134.81,129.40$, 129.33, 128.88, 127.75, 124.56, 121.34, 39.67, 27.25, 21.36. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}: 268.1701$ Found: 268.1700.

3j, \boldsymbol{N}-(3-Methyl-[1,1'-biphenyl]-2-yl)pivalamide. ${ }^{7}$ Yellow solid.
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.29(\mathrm{~m}$, 2H), 7.26-7.25 (m, 2H), 7.18-7.16(m, 1H), $6.82(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 2.27(\mathrm{~s}$, 3H), 1.12 ($\mathrm{s}, \mathbf{9 H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta=176.59,139.51$, 139.44, 136.49, 132.72, 129.95, 128.87, 128.12, 127.50, 127.24, 126.87, 38.97, 27.37, 18.37. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}: 268.1701$ Found: 268.1702 .

3k, N-(4-iso-Propyl-[1,1'-biphenyl]-2-yl)pivalamide. Yellow solid. $\mathrm{mp} 99-100{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=8.34(\mathrm{~s}, 1 \mathrm{H}), 7.51-$ $7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}$, $1 \mathrm{H}), 3.04-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=176.16,149.43,138.11,134.96$, $129.57,129.48,129.33,128.89,127.75,121.82,118.89,39.70,34.11$, 27.28, 23.83. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}: 296.2014$ Found: 296.2010. IR (KBr, $\left.v / \mathrm{cm}^{-1}\right) 3286,1643$.

31, \boldsymbol{N}-(4-Methoxy-[1,1'-biphenyl]-2-yl)pivalamide. ${ }^{8}$ Yellow solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.15(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{br}, \mathrm{s}$, $1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}$, 9H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=176.29,159.62,137.83,136.09$,
130.23, 129.49, 128.95, 127.67, 124.13, 110.51, 105.05, 55.33, 39.80, 27.23. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$: 284.1651 Found: 284.1649.

3m, \boldsymbol{N}-(4-Fluoro-[1,1'-biphenyl]-2-yl)pivalamide. ${ }^{7}$ Yellow solid.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.28(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.49 (m, 3H), 7.46-7.42 (m, 1H), 7.34-7.32 (m, 2H), 7.19-7.16 (m, 1H), 6.86-6.82 (m, 1H), 1.09 (s, 9H); ${ }^{13}$ C NMR ($100 ~ M H z, ~$ $\mathbf{C D C l}_{3}$): $\delta=176.25,162.34(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 137.09(\mathrm{~d}, J=1.0 \mathrm{~Hz})$, 136.46 (d, $J=11.8 \mathrm{~Hz}), 130.47(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 129.32,129.12,128.19$, $127.48(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 110.20(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 107.70(\mathrm{~d}, J=27.7 \mathrm{~Hz}), 39.76$, 27.14. HRMS (ESI) [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{FNO}: 272.1451$ Found: 272.1451 .

3n, N-(4-Chloro-[1,1'-biphenyl]-2-yl)pivalamide. Yellow solid. mp 96-97 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.52(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53-7.43 (m, 4H), 7.35-7.33 (m, 2H), 7.18-7.12 (m, 2H), $1.10(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=176.26,136.92,136.05,134.09$, 130.39, 130.08, 129.14, 128.30, 123.68, 120.52, 39.75, 27.16. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}: 288.1155$ Found: 288.1154. IR $\left(\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}\right) 3229,1648$.

30, N-(4-Bromo-[1,1'-biphenyl]-2-yl)pivalamide. Yellow solid. mp
 $110{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.09$ (m, 1H), 1.09 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=176.23$, 136.92, 136.22, 130.69, 130.59, 129.14, 129.06, 128.33, 126.65, 123.37, 122.08, 39.74, 27.16. HRMS (ESI) [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrNO}$: 332.0650 Found: 332.0642. IR (KBr, v/cm ${ }^{-1}$) 3240, 1647.

3p, N-(4,5-Dimethyl-[1,1'-biphenyl]-2-yl)pivalamide. ${ }^{6}$ Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.15(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=176.13,138.16,136.70$, $132.54,132.15,130.65,129.91,129.28,128.80,127.63,122.31$, 39.57, 27.28, 19.65, 19.06. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}: 282.1858$ Found: 282.1857.

3q, \mathbf{N}-(2-Phenylnaphthalen-1-yl)pivalamide. Yellow solid. mp 171$172{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=7.90-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.57-$ $7.39(\mathrm{~m}, 8 \mathrm{H}), 7.20(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta=177.63,139.63,136.96,133.53,130.68,129.89,129.02$, $128.18,128.04,127.55,127.51,127.35,126.73,125.95,123.50,39.14$, 27.47. HRMS (ESI) [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}: 304.1701$ Found: 304.1699. IR (KBr, $\mathrm{v} / \mathrm{cm}^{-1}$) 3262, 1649.

3r, \boldsymbol{N}-(4,4'-Dimethyl-[1,1'-biphenyl]-2-yl)pivalamide. ${ }^{7}$ Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.27(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}), 7.31-$ $7.25(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.97(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 1.14 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$): $\delta=176.18$, 138.11, 137.51, 135.03, 134.91, 129.58, 129.53, 129.25, 129.18, 124.52, 121.26, 39.69, 27.31, 21.36, 21.09. HRMS (ESI) $[\mathbf{M + H}]^{+}$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}: 282.1858$ Found: 282.1856 .

3s, N-(4'-Fluoro-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide. White solid. mp 103-104 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta=8.18(\mathrm{~s}, 1 \mathrm{H})$, $7.35-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.98$ $(\mathrm{m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta=$ 176.22, 162.29 (d, $J=246.1 \mathrm{~Hz}$), 138.61, 134.78, $134.04(\mathrm{~d}, J=3.4$ $\mathrm{Hz}), 131.05(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}), 129.53,128.50,124.76,121.78,115.83(\mathrm{~d}$, $J=21.3 \mathrm{~Hz}$), 39.65, 27.27, 21.32. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{FNO}$: 286.1607 Found: 286.1606. IR (KBr, $\mathbf{v} / \mathrm{cm}^{-1}$) 3276, 1644.

3t, $\quad \boldsymbol{N}$-(4'-Chloro-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide. White solid. mp 132-133 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.16(\mathrm{~s}, 1 \mathrm{H})$, 7.47-7.45 (m, 2H), 7.33-7.29 (m, 3H), 7.11-7.09 (m, 1H), 7.00-6.98 (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=$ 176.27, 138.81, 136.58, 134.59, 133.83, 130.67, 129.47, 129.04, 128.37, 124.93, 122.02, 39.68, 27.31, 21.34. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}: 302.1312$ Found: 302.1308. IR (KBr, $\mathrm{v} / \mathrm{cm}^{-1}$) 3273, 1647.

3u, N-(3'-Chloro-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide. Yellow
 solid. mp 100-101 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.14(\mathrm{~s}, 1 \mathrm{H})$, $7.43-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.99$ (m, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=$ 176.26, 139.98, 138.95, 134.70, 134.54, 130.11, 129.46, 129.35, 128.30, 127.79, 127.46, 125.01, 122.25, 39.67, 27.28, 21.34. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}$: 302.1312 Found: 302.1306. IR ($\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}$) 3320, 1644.

3v, N-(2'-Chloro-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.13(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.53(\mathrm{~m}, 1 \mathrm{H})$, 7.39-7.37 (m, 2H), 7.33-7.29 (m, 1H), 7.13 (br, s, 1H), 7.10-7.08 (m, $1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0}$ MHz, $\mathbf{C D C l}_{3}$): $\delta=176.21,139.07,136.78,135.08,133.74,132.01$, $129.64,129.51,129.26,127.28,127.25,124.75,121.93,39.49,27.11$, 21.43. HRMS (ESI) [$\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}$: 302.1312 Found: 302.1314. IR ($\mathrm{KBr}, \mathrm{v} / \mathrm{cm}^{-1}$) 3441, 1692.

3w, N-(4'-Bromo-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide. White
solid. mp $139{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.15(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H})$, 7.32 (br, s, 1H), 7.25-7.23 (m, 2H), 7.11-7.09 (m, 1H), 7.00-6.98 (m, 1H), $2.40(\mathrm{~s}$, 3H), 1.14 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$): $\delta=176.26,138.83,137.09,134.54$, 131.99, 130.97, 129.41, 128.40, 124.95, 122.10, 121.94, 39.67, 27.31, 21.33. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{BrNO}: 346.0807$ Found: 346.0809. IR (KBr, $\mathrm{v} / \mathrm{cm}^{-1}$) 3266, 1646.

3x, $\quad N$-(4'-(tert-Butyl)-4-methyl-[1,1'-biphenyl]-2-yl)pivalamide.
 White solid. mp 109-110 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.24$ (s, $1 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.99-$ $6.97(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=176.17,150.87,138.16,134.97,129.34,129.26$, $129.00,125.74,124.48,121.20,39.65,34.53,31.19,27.19,21.35$. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}: 324.2327$ Found: 324.2325 . IR (KBr , $\mathrm{v} / \mathrm{cm}^{-1}$) 3277, 1647.

4b, 1-(9H-Carbazol-9-yl)ethanone. ${ }^{5}$ White solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.51-7.47 (m, 2H), 7.42-7.38 (m, 2H), 2.89 (s, 3H); ${ }^{13}$ C NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=169.91,138.55,127.21,126.31,123.54,119.70$, 116.13, 27.56. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}$: 210.0919 Found: 210.0906.

6a, 5-Methoxyphenanthridin-6(5H)-one. ${ }^{9,10}$ White solid.

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta=8.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-$ $8.20(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}$, 2H), 7.33-7.29 (m, 1H), 4.13 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta=157.12,135.68,132.83,132.45,129.79,128.34,127.88,126.19$, $123.05,123.04,121.78,118.40,112.45,62.56$. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{2}$: 226.0868 Found: 226.0864.

6b, 5-Methoxy-9-methylphenanthridin-6(5H)-one. ${ }^{10}$ White solid.

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.42$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=157.21,143.07,135.87,132.85,129.67$, $129.35,128.40,123.95,123.02,122.90,121.85,118.41,112.48,62.55$, 22.00. HRMS (ESI) [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}: 240.1025$ Found: 240.1029 .
 6c, 5-Methoxy-8-methylphenanthridin-6(5H)-one. ${ }^{10}$ White solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.37(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H})$, 7.36-7.33 (m, 1H), $4.15(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta=157.24,138.23,135.38,133.83,130.41,129.31,128.15$,
126.11, 123.00, 122.83, 121.81, 118.60, 112.46, 62.53, 21.18. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$ Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}$: 240.1025 Found: 240.1022 .

6d, 9-Fluoro-5-methoxyphenanthridin-6(5H)-one. ${ }^{10}$ White solid.

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=8.55(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83$ (dd, $J=12.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=165.52(\mathrm{~d}, J=251.0 \mathrm{~Hz}), 156.46$, $136.12,135.45(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 130.56$, $123.28,123.14,122.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 117.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 116.17(\mathrm{~d}, J=23.0 \mathrm{~Hz})$, $112.64,107.82(\mathrm{~d}, J=24.0 \mathrm{~Hz}), 62.64$. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FNO}_{2}$: 244.0774 Found: 244.0769.

6e, 9-Chloro-5-methoxyphenanthridin-6(5H)-one. ${ }^{10}$ White solid.
 ${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.53$ (dd, $J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=156.51,139.33,136.13,134.30$, 130.57, 130.14, 128.32, 124.57, 123.26, 123.19, 121.76, 117.29, 112.65, 62.66. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClNO}_{2}: 260.0478$ Found: 260.0474.

6f, 9-Bromo-5-methoxyphenanthridin-6(5H)-one. ${ }^{10}$ Yellow solid. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.34-$ $7.30(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=$ $156.59,136.06,134.39,131.12,130.56,130.11,127.94,124.89$, $124.84,123.27,123.16,117.14,112.62,62.65$. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrNO}_{2}: 303.9973$ Found: 303.9971.
$\mathbf{6 g}$, 5-Methoxy-9-phenylphenanthridin-6(5H)-one. ${ }^{10}$ White solid.

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~s}$, $1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $7.44(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$): $\delta=157.10,145.44,140.10,136.00,133.23,129.96,129.03$, 128.94, 128.27, 127.44, 127.12, 125.08, 123.11, 123.07, 120.32, 118.50, 112.61, 62.62. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{2}$: 302.1181 Found: 302.1177 .

6h, 5,9-Dimethoxyphenanthridin- $\mathbf{6 (5 H})$-one. ${ }^{10}$ White solid. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31$ $(\mathrm{m}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=163.03,157.03,136.12$, 134.80, 130.52, 129.95, 123.08, 122.79, 119.77, 118.17, 115.76,
112.54, 104.82, 62.58, 55.47. HRMS (ESI) [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}: 256.0974$ Found: 256.0970 .

6i, 5-Methoxy-9-nitrophenanthridin-6(5H)-one. ${ }^{10}$ Yellow solid.
 ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta=9.13(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.75-$ $8.72(\mathrm{~m}, 1 \mathrm{H}), 8.38-8.33(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}$, $1 \mathrm{H}), 4.18$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=155.71$, 150.42, 136.32, 134.04, 131.43, 130.49, 130.18, 123.84, 123.57, 121.60, 117.65, 117.24, 112.93, 62.82. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}$: 271.0719 Found: 271.0714 .

6j, 5-Methoxy-3-methylphenanthridin-6(5H)-one. ${ }^{9,10}$ White solid.

${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.54$ $(\mathrm{m}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}$, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=157.31,140.42$, 135.67, $133.00,132.41,128.35,127.41,125.79,124.27,122.99,121.56$, $116.05,112.55,62.54,21.73$. HRMS (ESI) $[\mathbf{M}+\mathbf{H}]^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}: 240.1025$ Found: 240.1023.

6k, 3-Chloro-5-methoxyphenanthridin-6(5H)-one. ${ }^{9}$ White solid. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-$ $8.16(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta=157.13,136.58,135.96,132.77,132.21$, $128.54,128.24,126.00,124.42,123.35,121.78,116.94,112.50$, 62.81. HRMS (ESI) [M+H] ${ }^{+}$Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClNO}_{2}: 260.0478$ Found: 260.0479 .

6, 3-Bromo-5-methoxyphenanthridin-6(5H)-one. ${ }^{10}$ White solid. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.77$ (m, 1H), 7.65-7.61 (m, 1H), 7.46 (dd, $J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta=157.04,136.64,132.76$, $132.24,128.56,128.32,126.18,126.10,124.51,123.95,121.75$, 117.34, 115.40, 62.82. HRMS (ESI) [M+H]+ Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BrNO}_{2}: 303.9973$ Found: 303.9969.

6. References

(1) X. Yang, G. Shan and Y. Rao, Org. Lett., 2013, 15, 2334.
(2) C. E. Houlden, C. D. Bailey, J. G. Ford, M. R. Gagné, G. C. Lloyd-Jones and K. I. Booker-Milburn, J. Am. Chem. Soc., 2008, 130, 10066.
(3) W.-Y. Yu, W. N. Sit, Z. Zhou and A. S.-C. Chan, Org. Lett., 2009, 11, 3174.
(4) G.-W. Wang, T.-T. Yuan and D.-D. Li, Angew. Chem. Int. Ed., 2011, 50, 1380.
(5) R. K. Chinnagolla and M. Jeganmohan, Chem. Commun., 2014, 50, 2442.
(6) C. S. Yeung, X. Zhao, N. Borduas and V. M. Dong, Chem. Sci., 2010, 1, 331.
(7) G. Brasche, J. Garcĺa-Fortanet and S. L. Buchwald, Org. Lett., 2008, 10, 2207.
(8) C.-L. Ciana, R. J. Phipps, J. R. Brandt, F.-M. Meyer and M. J. Gaunt, Angew. Chem. Int. Ed., 2011, 50, 458.
(9) J. Karthikeyan and C.-H. Cheng, Angew. Chem. Int. Ed., 2011, 50, 9880.
(10) J. Karthikeyan, R. Haridharan and C.-H. Cheng, Angew. Chem. Int. Ed., 2012, 51, 12343.

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products

$\stackrel{\text { N }}{\text { N }}$

1k

3c

$\stackrel{\text { O }}{\text { O }}$
3c
$\begin{array}{llllllllllllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

3h

$\stackrel{\bar{\sigma}}{\sim}$

(

$\stackrel{\infty}{\sim}$

$3 x$

$\infty \infty$

$$
\begin{aligned}
& \text { 完 }
\end{aligned}
$$

6 g

$\stackrel{\stackrel{N}{m}}{\stackrel{\sim}{\sim}}$

