Electronic Supplementary Information

Double oxidation of α -(alkylideneamino)nitriles to imides by

molecular oxygen under mild basic conditions

Yu Zhang, Ling Pan,* Yunjia Zou, Xianxiu Xu, Qun Liu*

Department of Chemistry, Northeast Normal University, Changchun 130024, China

E-mail: pan1948@nenu.edu.cn and liuqun@nenu.edu.cn

Contents

Table of contents	S 1
I. General Information	S2
II. Typical Procedure and Analytical Data	·S2
III. Isotope Labeled O ₂ Experiments	S15
IV. Crystal data and OPTEP drawing of 10aa	S16
V. Copies of ¹ H NMR and ¹³ C NMR spectra	S18

I. General Information

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by column chromatography on flash silica gel (300–400 mesh). Melting points were uncorrected. The ¹H NMR and ¹³C NMR spectra were determined on a Varian 500 MHz and 125 MHz, respectively, with TMS as the internal standard. All shifts are given in ppm. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI).

II. Typical Procedures and Analytical Data

10aa, 4-chloro-N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.

To a solution of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol) in DMSO (5.0 mL) was added triethylamine (0.08 mL, 0.6 mmol) and stirred at room temperature for 1.0 h. Then, 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) was added and further stirred at room temperature for about 4.0 h. After **2a** was consumed as indicated by TLC, K_2CO_3 (34.5 mg, 0.25 mmol) was added in one portion under oxygen atmosphere following with the dropwise addition of DMSO solution (2.0 mL) of enone **5a** (121 mg, 0.5 mmol). The reaction mixture was stirred at room temperature and was monitored by TLC. After enone **5a** was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether (20 mL × 2). The aqueous layer was treated with 10% NaClO solution (5 mL) and collected. The combined organic layers were dried over anhydrous Na₂SO₄, evaporated *in vacuo*, and the residue was purified by column chromatography (EtOAc/PE (petroleum ether) = 1/10, V/V) to give **10aa** (191 mg, 90% calculated from **5a**). Reaction time 12.0 h.

Colorless crystals, m.p. 215–217 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.29 (dd, J = 18.0, 3.5 Hz, 1H), 4.08 (dd, J = 18.0, 11.0 Hz, 1H), 5.41 (dd, J = 11.0, 3.5 Hz, 1H), 7.33 (d, J = 8.5 Hz, 2H), 7.41 (m, 4H), 7.46 (t, J = 7.5 Hz, 2H), 7.58 (t, J = 7.5 Hz, 1H), 7.75 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 7.5 Hz, 2H), 8.68 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 43.9, 46.2, 128.1, 128.2, 128.7, 129.1, 129.2, 130.0, 133.5, 133.7, 135.8, 136.0, 139.7, 164.0, 174.7, 197.6. HRMS (ESI-TOF) Calcd for C₂₃H₁₈Cl₂NO₃⁺ ([M+H]⁺) 426.0658. Found 426.0657.

10ba, 4-bromo-N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-bromobenzaldehyde **2b** (111 mg, 0.6 mmol) and enone **5a** (121 mg, 0.5 mmol) gave **10ba** (183 mg, 78%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 9.0 h.

Colorless crystals, m.p. 210–212 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.29 (dd, J = 18.0, 3.5 Hz, 1H), 4.07 (dd, J = 18.0, 11.0 Hz, 1H), 5.41 (dd, J = 11.0, 3.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.54–7.60 (m, 3H), 7.67 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 8.76 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 43.8, 46.2, 128.1, 128.2, 128.7, 129.1, 129.3, 130.0, 131.6, 132.1, 133.6, 133.7, 135.8, 136.0, 164.3, 175.0, 197.6. HRMS (ESI-TOF) Calcd for C₂₃H₁₈BrClNO₃⁺ ([M+H]⁺) 470.0153. Found 470.0158.

10ca, N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), benzaldehyde **2c** (61 μ L, 0.6 mmol) and enone **5a** (121 mg, 0.5 mmol) gave **10ca** (164 mg, 84%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 26.0 h.

Colorless crystals, m.p. 190–192 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 3.29 (dd, J = 18.0, 3.5 Hz, 1H), 4.09 (dd, J = 18.0, 11.0 Hz, 1H), 5.46 (dd, J = 11.0, 3.5 Hz, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.43–7.47 (m, 6H), 7.55–7.59 (m, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H), 8.65 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 43.8, 46.2, 127.7, 128.1, 128.6, 128.9, 129.0, 130.0, 132.8, 133.1, 133.4, 133.6, 136.0, 136.1, 165.0, 174.9, 197.6. **HRMS** (ESI-TOF) Calcd for C₂₃H₁₉ClNO₃⁺ ([M+H]⁺) 392.1048. Found 392.1051.

10da, N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-methylbenzaldehyde **2d** (71 μ L, 0.6 mmol) and enone **5a** (121 mg, 0.5 mmol) gave **10da** (168 mg, 83%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 27.0 h.

Colorless crystals, m.p. 223–225 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.40 (s, 3H), 3.29 (dd, J = 18.0, 3.5 Hz, 1H), 4.09 (dd, J = 18.0, 11.0 Hz, 1H), 5.48 (dd, J = 11.0, 3.5 Hz, 1H), 7.25 (d, J = 8.5 Hz, 2H), 7.33 (t, J = 8.0 Hz, 2H), 7.43–7.47 (m, 4H), 7.57 (t, J = 7.5 Hz, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 8.0 Hz, 2H), 8.57 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 21.6, 43.8, 46.1, 127.7, 128.1, 128.6, 129.0, 129.6, 129.9, 130.0, 133.4, 133.5, 136.1, 144.1, 164.8, 174.9, 197.6. HRMS (ESI-TOF) Calcd for C₂₄H₂₁CINO₃⁺ ([M+H]⁺) 406.1204. Found 406.1214.

10ea, 2-(4-chlorophenyl)-4-oxo-4-phenyl-*N*-pivaloylbutanamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), pivalaldehyde **2e** (66 μ L, 0.6 mmol) and enone **5a** (121 mg, 0.5 mmol) gave **10ea** (139 mg, 75%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 12 V/V). Reaction time 12.0 h.

Colorless crystals, m.p. 132–134 °C. ¹H NMR (500 MHz, CDCl₃): δ 1.20 (s, 9H), 3.23 (dd, J = 18.0, 3.5 Hz, 1H), 4.03 (dd, J = 18.0, 11.0 Hz, 1H), 5.32 (dd, J = 11.0, 3.5 Hz, 1H), 7.31 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.95 (d, J = 8.0 Hz, 2H), 8.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 27.0, 40.2, 43.7, 45.8, 128.0, 128.6, 128.9, 129.9, 133.4(2C), 136.0, 136.1, 175.0, 176.4, 197.5. HRMS (ESI-TOF) Calcd for C₂₁H₂₃ClNO₃⁺ ([M+H]⁺) 372.1361. Found 372.1363.

10ab, 4-chloro-N-(4-oxo-4-phenyl-2-(p-tolyl)butanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1-phenyl-3-(*p*-tolyl)prop-2-en-1-one **5b** (111 mg, 0.5 mmol) gave **10ab** (170 mg, 84%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 24.0 h.

Colorless crystals, m.p. 249– 251 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.33 (s, 3H), 3.29 (d, J = 18.5 Hz, 1H), 4.08 (dd, J = 18.5, 11.0 Hz, 1H), 5.31 (d, J =11.0 Hz, 1H), 7.16 (d, J = 7.5 Hz, 2H), 7.35 (d, J = 7.5 Hz, 4H), 7.45 (t, J = 7.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 8.0 Hz, 2H), 8.81 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 21.1, 43.9, 46.6, 128.1, 128.4, 128.6, 129.0, 129.2, 129.7, 131.4, 133.4, 134.4, 136.2, 137.5, 139.4, 164.2, 175.0, 198.0. HRMS (ESI-TOF) Calcd for C₂₄H₂₁CINO₃⁺ ([M+H]⁺) 406.1204. Found 406.1214.

10ac, 4-chloro-N-(2-(4-methoxyphenyl)-4-oxo-4-phenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one **5c** (119 mg, 0.5 mmol) gave **10ac** (172 mg, 82%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 25.0 h.

Colorless crystals, m.p. 161–163 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 3.26 (d, J = 18.0 Hz, 1H), 3.77 (s, 3H), 4.06 (dd, J = 18.0, 11.0 Hz, 1H), 5.32 (d, J = 11.0 Hz, 1H), 6.86 (d, J = 7.5 Hz, 2H), 7.23 (d, J = 7.5 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.0 Hz, 2H), 7.56 (t, J = 7.0 Hz, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 7.0 Hz, 2H), 9.38 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 43.9, 46.0, 55.2, 114.3, 128.0, 128.6, 128.8, 129.2, 129.4, 129.6, 131.3, 133.4, 136.0, 139.2, 159.0, 164.5, 175.9, 198.0. HRMS (ESI-TOF) Calcd for C₂₄H₂₁CINO₄⁺ ([M+H]⁺) 422.1154. Found 422.1160.

10ad, *N*-(2-(benzo[*d*][1,3]dioxol-5-yl)-4-oxo-4-phenylbutanoyl)-4-chlorobenzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 3-(benzo[*d*][1,3]dioxol-5-yl)-1-phenylprop-2-en-1-one **5d** (126 mg, 0.5 mmol) gave **10ad** (191 mg,

88%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 10.0 h.

Colorless crystals, m.p. 169–171 °C. ¹**H NMR** (CDCl₃, 500 MHz): δ 3.29 (dd, J = 18.0, 3.5 Hz, 1H), 4.06 (dd, J = 18.0, 11.0 Hz, 1H), 5.29 (dd, J = 11.0, 3.5 Hz, 1H), 5.95 (s, 2H), 6.78 (d, J = 8.0 Hz, 1H), 6.94 (dd, J = 8.0, 1.5 Hz, 1H), 6.97 (d, J = 1.5 Hz, 1H), 7.41 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.75 (d, J = 8.0 Hz, 2H), 7.96 (d, J = 7.5 Hz, 2H), 8.62 (s, 1H). ¹³**C NMR** (CDCl₃, 125 MHz): δ 43.9, 46.4, 101.1, 108.6, 108.8, 121.9, 128.0, 128.6, 129.1(2C), 130.8, 131.3, 133.4, 136.1, 139.5, 147.1, 148.0, 164.1, 174.8, 197.9. **HRMS** (ESI-TOF) Calcd for C₂₄H₁₉CINO₅⁺ ([M+H]⁺) 436.0946. Found 436.0949.

10ae, 4-chloro-N-(2-methyl-4-oxo-4-phenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1-phenylbut-2-en-1-one **5e** (73 mg, 0.5 mmol) gave **10ae** (99 mg, 60%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 12 V/V). Reaction time 24.0 h.

Colorless crystals, m.p. 175–177 °C. ¹**H NMR** (CDCl₃, 500 MHz): δ 1.37 (d, J = 6.5 Hz, 3H), 3.13 (dd, J = 18.0, 3.5 Hz, 1H), 3.67 (dd, J = 18.0, 11.0 Hz, 1H), 3.95–3.99 (m, 1H), 7.44–7.48 (m, 4H), 7.59 (t, J = 7.5 Hz, 1H), 7.85 (d, J = 8.5 Hz, 2H), 7.98 (d, J = 7.5 Hz, 2H), 8.98 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 17.0, 36.0, 42.6, 128.0, 128.6, 129.1, 129.2, 131.4, 133.4, 136.2, 139.4, 164.2, 177.7, 198.6. **HRMS** (ESI-TOF) Calcd for C₁₈H₁₇ClNO₃⁺ ([M+H]⁺) 330.0891. Found 330.0881.

10af, 4-chloro-N-(4-oxo-4-phenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1-phenylprop-2-en-1-one **5f** (66 mg, 0.5 mmol) gave **10af** (110 mg, 70%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 12 V/V). Reaction time 24.0 h.

Colorless crystals, m.p. 112–114 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 2.48–2.51 (m, 2H), 2.96–3.01 (m, 1H), 3.13–3.18 (m, 1H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 2H), 8.53 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 33.4, 34.4, 128.0, 128.6, 129.1, 130.1, 132.9, 133.3, 136.4, 138.1, 159.9, 177.8, 197.9. **HRMS** (ESI-TOF) Calcd for C₁₇H₁₅CINO₃⁺ ([M+H]⁺) 316.0735. Found 316.0741.

10ag, *N*-(4-(4-bromophenyl)-4-oxo-2-(*p*-tolyl)butanoyl)-4-chlorobenzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1-(4-bromophenyl)-3-(*p*-tolyl)prop-2-en-1-one **5g** (150 mg, 0.5 mmol) gave **10ag** (205 mg, 85%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 14.0 h.

Colorless crystals, m.p. 116–118 °C. ¹**H NMR** (CDCl₃, 500 MHz): δ 2.38 (s, 3H), 3.23 (dd, J = 18.0, 3.5 Hz, 1H), 4.05 (dd, J = 18.0, 11.0 Hz, 1H), 5.31 (dd, J = 11.0, 3.5 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 8.55 (s, 1H). ¹³C NMR (CDCl₃, 125 MHz): δ 21.2, 43.8, 46.6, 128.4, 128.6, 129.1, 129.6, 129.7, 131.3, 131.9, 134.1, 134.9, 137.7, 139.5, 164.1, 174.7, 197.0. **HRMS** (ESI-TOF) Calcd for C₂₄H₂₀BrCINO₃+ ([M+H]⁺) 484.0310. Found 484.0309.

10ah, *N*-(4-(4-bromophenyl)-2-(4-chlorophenyl)-4-oxobutanoyl)-4-chlorobenzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1-(4-bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one **5h** (160 mg, 0.5 mmol) gave **10ah** (224 mg, 89%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 8.0 h.

Colorless crystals, m.p. 195–197 °C. ¹**H NMR** (CDCl₃, 500 MHz): δ 3.23 (dd, J = 18.0, 3.5 Hz, 1H), 4.02 (dd, J = 18.0, 11.0 Hz, 1H), 5.42 (dd, J = 11.0, 3.5 Hz, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 6.5 Hz, 2H), 7.44 (d, J = 6.5 Hz, 2H), 7.60 (d, J = 9.0 Hz, 2H), 7.74 (d, J = 9.0 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), 8.75 (s, 1H). ¹³**C NMR** (CDCl₃, 125 MHz): δ 43.7, 46.1, 128.8, 129.1, 129.2(2C), 129.6, 129.9, 131.0, 132.0, 133.8, 134.7, 135.6, 139.7, 164.1, 175.0, 196.6. **HRMS** (ESI-TOF) Calcd for C₂₃H₁₇BrCl₂NO₃⁺ ([M+H]⁺) 503.9763. Found 503.9759.

10ai, N-(4-(4-bromophenyl)-2-(4-fluorophenyl)-4-oxobutanoyl)-4-chlorobenzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one **5i** (152 mg, 0.5 mmol) gave **10ai** (214 mg, 88%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 7.0 h.

Colorless crystals, m.p. 201–203 °C. ¹**H NMR** (CDCl₃, 500 MHz): δ 3.23 (dd, J = 18.0, 3.5 Hz, 1H), 4.03 (dd, J = 18.0, 11.0 Hz, 1H), 5.43 (dd, J = 11.0, 3.5 Hz, 1H), 7.04 (t, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.43 (dd, J = 8.5, 5.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.5 Hz, 2H), 8.81 (s, 1H). ¹³**C NMR** (CDCl₃, 125 MHz): δ 43.9, 45.9, 115.8, 115.9, 128.8, 129.1, 129.2, 129.5, 130.2(2C), 131.1, 132.0, 132.8, 134.7, 139.6, 164.2, 175.3, 196.7. **HRMS** (ESI-TOF) Calcd for C₂₃H₁₇BrClFNO₃⁺ ([M+H]⁺) 488.0059. Found 488.0051.

10aj, 4-chloro-N-(2-(4-chlorophenyl)-4-oxopentanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 4-(4-chlorophenyl)but-3-en-2-one **5j** (90 mg, 0.5 mmol) gave **10aj** (154 mg, 85%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 6.0 h.

Colorless crystals, m.p. 123–125 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.22 (s, 3H), 2.77 (dd, J = 18.0, 3.5 Hz, 1H), 3.54 (dd, J = 18.0, 11.0 Hz, 1H), 5.19 (dd, J = 11.0, 3.5 Hz, 1H), 7.33 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.5 Hz, 2H), 8.67 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 29.7, 46.1, 48.0, 129.0, 129.1, 129.8, 130.9, 131.1, 133.6, 135.6, 139.6, 164.1, 174.6, 206.3. HRMS (ESI-TOF) Calcd for C₁₈H₁₆Cl₂NO₃⁺ ([M+H]⁺) 364.0502. Found 364.0512.

10ak, 4-chloro-N-(2-methyl-4-oxopentanoyl)benzamide

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and pent-3-en-2-one **5k** (42 mg, 0.5 mmol) gave **10ak** (96 mg, 72%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 12 V/V). Reaction time 24.0 h.

Yellowish oil. ¹**H NMR** (500 MHz, CDCl₃): δ 1.24 (d, J = 7.0 Hz, 3H), 2.19 (s, 3H), 2.59 (dd, J = 18.5, 3.5 Hz, 1H), 3.11 (dd, J = 18.5, 11.0 Hz, 1H), 3.72 (m, 1H), 7.48 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 8.5 Hz, 2H), 8.81 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 16.7, 29.8, 35.8, 47.2, 129.1, 129.2,

131.2, 139.6, 164.1, 177.3, 207.6. **HRMS** (ESI-TOF) Calcd for $C_{13}H_{15}CINO_3^+$ ([M+H]⁺) 268.0735. Found 268.0745.

10al, 4-chloro-*N*-(4-oxo-3,4-diphenylbutanoyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 1,2-diphenylprop-2-en-1-one **5l** (104 mg, 0.5 mmol) gave **10al** (102 mg, 52%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10 V/V). Reaction time 18.0 h.

Colorless crystals, m.p. 196–198 °C. ¹H NMR (500 MHz, CDCl₃): δ 3.30 (dd, J = 18.5, 3.0 Hz, 1H), 4.12 (dd, J = 18.5, 11.0 Hz, 1H), 5.18 (dd, J = 11.0, 3.0 Hz, 1H), 7.23 (m, 1H), 7.31 (m, 6H), 7.39 (t, J = 7.5 Hz, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.98 (d, J = 7.5 Hz, 2H), 9.03 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): 42.5, 49.0, 127.5, 128.2, 128.5, 128.9, 129.1, 129.2 (2C), 130.8, 133.1, 136.1, 137.9, 139.7, 164.6, 174.6, 198.5. HRMS (ESI-TOF) Calcd for C₂₃H₁₉CINO₃⁺ ([M+H]⁺) 392.1048. Found 392.1059.

10am, 4-Chloro-N-(3-oxocyclohexanecarbonyl)benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and cyclohex-2-enone (49.4 μ L, 0.5 mmol) gave **10am** (116 mg, 83%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 10). Reaction time 16.0 h.

Colorless crystals, m.p. 143–145 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 1.87–1.91 (m, 2H), 2.07–2.11 (m, 1H), 2.23–2.15 (m, 1H), 2.38–2.45 (m, 2H), 2.55 (dd, *J* = 15.0, 4.5 Hz, 1H), 2.69 (dd, *J* = 15.0, 4.5 Hz, 1H), 3.96–4.01 (m, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 8.50 (s, 1H). ¹³C **NMR** (125 MHz, CDCl₃): δ 24.0, 27.3, 40.8, 42.5, 44.1, 129.3(2C), 130.7, 139.9, 164.5, 176.9, 209.9. **HRMS** (ESI-TOF) Calcd for C₁₄H₁₄CINNaO₃⁺ ([M+H]⁺) 302.0554. Found 302.0562.

10an, 4-Chloro-N-(5-[1,3]dithiolan-2-ylidene-4,6-dioxo-2,6-diphenyl-hexanoyl)-benzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 2-(1,3-dithiolan-2-ylidene)-1,5-diphenylpent-4-ene-1,3-dione **5n** (176 mg, 0.5 mmol) gave **10an** (227 mg, 85%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 9 V/V). Reaction time 19.0 h.

Colorless crystals, m.p. 221–223 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.71 (dd, J = 18.0, 3.5 Hz, 1H), 2.27–3.30 (m, 2H), 3.33–3.39 (m, 3H), 5.10 (dd, J = 11.0, 3.5 Hz, 1H), 7.20–7.24 (m, 5H), 7.39 (d, J = 8.5 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 7.5 Hz, 2H), 8.76 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 36.8, 38.0, 45.7, 47.5, 125.5, 127.5, 128.4, 128.8, 129.0(2C), 129.3, 129.5, 131.4, 133.7, 137.2, 137.3, 139.3, 164.2, 171.2, 174.4, 192.2, 194.6. HRMS (ESI-TOF) Calcd for C₂₈H₂₂CINNaO₄S₂⁺ ([M+Na]⁺) 558.0576. Found 558.0579.

10ao, 4-Chloro-*N*-[2-(4-chloro-phenyl)-5-[1,3]dithiolan-2-ylidene-4,6-dioxo-6-phenyl-hexanoyl]-b enzamide.

Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) and 5-(4-chlorophenyl)-2-(1,3-dithiolan-2-ylidene)-1-phenylpent-4-ene-1,3-dione **5o** (193 mg, 0.5 mmol) gave **10ao** (239 mg, 84%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 9 V/V). Reaction time 20.0 h.

Yellowish crystals, m.p. 196–198 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.68 (dd, J = 18.0, 4.0 Hz, 1H), 2.27–3.32 (m, 3H), 3.34–3.38 (m, 2H), 5.16 (dd, J = 10.5, 4.0 Hz, 1H), 7.14 (d, J = 9.0 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.73 (d, J = 9.0 Hz, 2H), 7.84 (d, J = 7.5 Hz, 2H), 8.82 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 36.9, 38.0, 45.7, 46.7, 125.4, 128.8, 129.0, 129.1, 129.3, 129.5, 129.8, 131.3, 133.4, 133.7, 135.7, 137.3, 139.5, 164.1, 171.6, 174.5, 192.0, 194.6. HRMS (ESI-TOF) Calcd for C₂₈H₂₁Cl₂NNaO₄S₂⁺ ([M+Na]⁺) 592.0187. Found 592.0189.

10ap, 4-Chloro-*N*-(5-[1,3]dithiolan-2-ylidene-4,6-dioxo-6-phenyl-2-*p*-tolyl-hexanoyl)-benzamide. Following the procedure for the synthesis of **10aa**, the reaction of 2-aminoacetonitrile hydrochloride 0.6 4-chlorobenzaldehyde (55.1)mg, 0.6 mmol), 2a (84 mg, mmol) and 2-(1,3-dithiolan-2-ylidene)-1-phenyl-5-(p-tolyl)pent-4-ene-1,3-dione 5p (233 mg, 0.5 mmol) gave **10ap** (247 mg, 90%) after purification by column chromatography on silica gel (EtOAc/PE = 1: 9) V/V). Reaction time 24.0 h.

Colorless crystals, m.p. 199–201 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.26 (s, 3H), 2.68 (dd, J = 18.0, 3.5 Hz, 1H), 2.27–3.30 (m, 2H), 3.32 (dd, J = 18.0, 11.0 Hz, 1H), 3.36–3.39 (m, 1H), 5.03 (dd, J = 11.0, 3.5 Hz, 1H), 7.03 (d, J = 8.0 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.5 Hz, 2H), 7.47 (t, J = 8.0 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.70 (d, J = 8.5 Hz, 2H), 7.85 (d, J = 7.5 Hz, 2H), 8.59 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 21.0, 36.8, 38.0, 45.8, 47.2, 125.6, 128.2, 129.0(2C), 129.2, 129.5, 129.6, 131.5, 133.7, 134.1, 137.3(2C), 139.2, 164.0, 171.1, 174.2, 192.4, 194.6. HRMS (ESI-TOF) Calcd for C₂₉H₂₄CINNaO₄S₂⁺ ([M+Na]⁺) 572.0733. Found 572.0740.

7a, 3-(4-chlorophenyl)-5-phenyl-3,4-dihydro-2*H*-pyrrole-2-carbonitrile. *trans:cis* = 1.3:1.0¹ To a solution of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol) in DMF (5.0 mL) was added triethylamine (0.08 mL, 0.6 mmol) and stirred at room temperature for 1.0 h. Then, 4-chlorobenzaldehyde **2a** (84 mg, 0.6 mmol) was added and further stirred at room temperature for about 4.0 h. After **2a** was consumed as indicated by TLC, DBU (0.15 mL, 1.0 mmol) was added in one portion following with the enone **5a** (121 mg, 0.5 mmol). The reaction mixture was stirred at room temperature and was monitored by TLC. After enone **5a** was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether (20 mL × 2). The combined organic layers were dried over anhydrous Na₂SO₄, evaporated *in vacuo*, and the residue was purified by column chromatography (EtOAc/PE = 1/9, V/V) to give **7a** (136 mg, 97%).

trans-**7a**, yellowish viscous oil. ¹**H NMR** (500 MHz, CDCl₃): δ 3.21 (dd, J = 17.5, 7.5 Hz, 1H), 3.68 (dd, J = 17.5, 9.5 Hz, 1H), 3.91 (m, 1H), 4.88 (d, J = 7.0 Hz, 1H), 7.21 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.47 (t, J = 7.5 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.89 (d, J = 7.5 Hz, 2H). ¹³C **NMR** (125 MHz, CDCl₃): δ 43.6, 48.2, 68.8, 118.9, 128.1(2C), 128.7, 129.3, 132.0, 132.4, 133.6, 138.4, 176.6. **HRMS** (ESI-TOF) Calcd for C₁₇H₁₄ClN₂ ([M+H]⁺) 281.7589. Found 281.7580. *cis*-**7a**, yellowish viscous oil. ¹**H NMR** (500 MHz, CDCl₃): δ 3.37 (dd, J = 17.5, 6.0 Hz, 1H), 3.52 (dd, J = 17.5, 9.0 Hz, 1H), 3.93 (m, 1H), 5.31 (d, J = 8.0 Hz, 1H), 7.18 (d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5

¹ Y. Zhang, L. Pan, X. Xu and Q. Liu, RSC Adv., 2012, 2, 5138.

Hz, 2H), 7.48 (t, J = 7.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.92 (d, J = 7.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 42.5, 45.5, 67.1, 116.9, 128.1, 128.8(2C), 129.1, 132.1, 132.5, 133.8, 137.2, 177.5. HRMS (ESI-TOF) Calcd for Calcd for C₁₇H₁₄ClN₂ ([M+H]⁺) 281.7589. Found 281.7580.

HMBC of 7a

13, 4-chloro-*N*-propionylbenzamide.

To a solution of (*E*)-2-(4-chlorobenzylideneamino)acetonitrile (107 mg, 0.6 mmol) in DMSO (5.0 mL) was added K₂CO₃ (69.0 mg, 0.5 mmol) was added in one portion under oxygen atmosphere following with bromoethane (37 μ L, 0.5 mmol). The reaction mixture was stirred at room temperature and was monitored by TLC. After benzyl bromide was consumed, the resulting mixture

was poured into ice-water (20 mL) and extracted with diethyl ether (20 mL \times 2). The aqueous layer was treated with 10% NaClO solution (5 mL) and collected. The combined organic layers were dried over anhydrous Na₂SO₄, evaporated *in vacuo*, and the residue was purified by column chromatography (EtOAc/PE = 1/9, V/V) to give **13** (66 mg, 63%). Reaction time 8.0 h.

Yellowish oil. ¹**H NMR** (500 MHz, CDCl₃): δ 1.34 (t, J = 7.0 Hz, 3H), 4.30 (q, J = 7.0 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 8.5 Hz, 2H), 8.21 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃): δ 14.2, 62.6, 129.1(2C), 131.3, 139.4, 150.9, 164.1. **HRMS** (ESI-TOF) Calcd for C₁₀H₁₀ClKNO₂⁺ ([M+K]⁺) 250.0032. Found 250.0041.

14, 4-chloro-N-(2-phenylacetyl)benzamide.

To a solution of (*E*)-2-(4-chlorobenzylideneamino)acetonitrile (107 mg, 0.6 mmol) in DMSO (5.0 mL) was added K₂CO₃ (69.0 mg, 0.5 mmol) was added in one portion under oxygen atmosphere following with benzyl bromide (60 μ L, 0.5 mmol). The reaction mixture was stirred at room temperature and was monitored by TLC. After benzyl bromide was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether (20 mL × 2). The aqueous layer was treated with 10% NaClO solution (5 mL) and collected. The combined organic layers were dried over anhydrous Na₂SO₄, evaporated *in vacuo*, and the residue was purified by column chromatography (EtOAc/PE = 1/10, V/V) to give **14** (102 mg, 75%). Reaction time 6.0 h.

Yellowish crystals, m.p. 117–119 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 5.25 (s, 2H), 7.36–7.40 (m, 5H), 7.44 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 8.07 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 68.1, 128.7, 128.8, 129.1(2C), 130.5, 131.1, 134.7, 139.5, 150.7, 164.0. **HRMS** (ESI-TOF) Calcd for C₁₅H₁₂ClKNO₂⁺ ([M+K]⁺) 312.0188. Found 312.0194.

15, (E)-N-but-2-enoyl-4-chlorobenzamide

To a solution of (*E*)-2-(4-chlorobenzylideneamino)acetonitrile (107 mg, 0.6 mmol) in DMSO (5.0 mL) was added K₂CO₃ (34.5 mg, 0.25 mmol) was added in one portion under oxygen atmosphere following with allyl bromide (44 μ L, 0.5 mmol). The reaction mixture was stirred at room temperature and was monitored by TLC. After benzyl bromide was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether (20 mL × 2). The aqueous layer was treated with 10% NaClO solution (5 mL) and collected. The combined organic layers were dried over anhydrous Na₂SO₄, evaporated *in vacuo*, and the residue was purified by column chromatography (EtOAc/PE = 1/10, V/V) to give **15** (62.4 mg, 56%). Reaction time 12.0 h. Yellowish crystals, m.p. 85–87 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 2.00 (d, *J* = 6.5 Hz, 3H), 7.11 (d,

J = 15.5 Hz, 1H), 7.22–7.26 (m, 1H), 7.47 (d, *J* = 8.5 Hz, 2H), 7.79 (d, *J* = 8.5 Hz, 2H), 8.30 (s, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 18.6, 123.9, 129.1, 129.3, 129.6, 129.9(2C), 147.6, 161.3. HRMS (ESI-TOF) Calcd for C₁₁H₁₀ClKNO₂⁺ ([M+K]⁺) 262.0032. Found 262.0049.

III. Isotope Labeled O₂ Experiments

IV. Crystal data and OPTEP drawing of compound 10aa

Single-crystal X-ray diffraction data was collected at room temperature on a Oxford Diffraction Gemini R Ultra diffractometer, the X-ray generator using Mo-K α ($\lambda = 0.71073$ Å) radiation with a ω scan technique. The crystal structures were solved by direct method of SHELXS-97² and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined anisotropic.

(1) Crystal data and OPTEP drawing of compound **10aa** (CCDC 938346)

2 G. M. Sheldrick, SHELXS-97, Programs for X-ray Crystal Structure Solution; University of Göttingen, Göttingen, Germany, 1997.

ORTEP drawing:

Calculated density (mg/m ³)	1.39
Absorption coefficient (mm ⁻¹)	0.344
F(000)	439.9
Theta range for data collection (deg)	1.9 to 25.0
Reflections collected/unique	5172/3530
Goodness-of-fit on F ²	1.022
Final R indices $[I > 2\sigma(I)]$	R1=0.045, WR2 = 0.106
R indices (all data)	R1=0.060, WR2 =0.115

