Electronic Supplementary Information
Double oxidation of α-(alkylideneamino)nitriles to imides by molecular oxygen under mild basic conditions
Yu Zhang, Ling Pan,* Yunjia Zou, Xianxiu Xu, Qun Liu*
Department of Chemistry, Northeast Normal University, Changchun 130024, China
E-mail: pan1948@nenu.edu.cn and liuqun@nenu.edu.cn

Contents
Table of contents S1
I. General Information S2
II. Typical Procedure and Analytical Data S2
III. Isotope Labeled O_{2} Experiments S15
IV. Crystal data and OPTEP drawing of 10aa S16
V. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S18

I. General Information

All reagents were purchased from commercial sources and used without further purification, unless otherwise indicated. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254). The products were purified by column chromatography on flash silica gel (300-400 mesh). Melting points were uncorrected. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were determined on a Varian 500 MHz and 125 MHz , respectively, with TMS as the internal standard. All shifts are given in ppm. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II focus spectrometer (ESI).

II. Typical Procedures and Analytical Data

1a

5

10

10aa, 4-chloro- N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.
To a solution of 2-aminoacetonitrile hydrochloride ($55.1 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMSO (5.0 mL) was added triethylamine $(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ and stirred at room temperature for 1.0 h . Then, 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added and further stirred at room temperature for about 4.0 h . After 2a was consumed as indicated by TLC, $\mathrm{K}_{2} \mathrm{CO}_{3}(34.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added in one portion under oxygen atmosphere following with the dropwise addition of DMSO solution $(2.0 \mathrm{~mL})$ of enone $\mathbf{5 a}(121 \mathrm{mg}, 0.5 \mathrm{mmol})$. The reaction mixture was stirred at room temperature and was monitored by TLC. After enone 5a was consumed, the resulting mixture was poured into ice-water $(20 \mathrm{~mL})$ and extracted with diethyl ether $(20 \mathrm{~mL} \times 2)$. The aqueous layer was treated with $10 \% \mathrm{NaClO}$ solution (5 mL) and collected. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo, and the residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{PE}$ $($ petroleum ether $)=1 / 10, \mathrm{~V} / \mathrm{V}$) to give 10aa ($191 \mathrm{mg}, 90 \%$ calculated from 5a). Reaction time 12.0 h.

Colorless crystals, m.p. $215-217{ }^{\circ}{ }^{\circ}$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.29(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}$, $4 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.9,46.2,128.1,128.2,128.7,129.1,129.2$, 130.0, 133.5, 133.7, 135.8, 136.0, 139.7, 164.0, 174.7, 197.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 426.0658$. Found 426.0657.

10ba, 4-bromo- N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride ($55.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), 4-bromobenzaldehyde $\mathbf{2 b}(111 \mathrm{mg}, 0.6 \mathrm{mmol})$ and enone $5 \mathbf{a}(121 \mathrm{mg}, 0.5$ mmol) gave 10ba ($183 \mathrm{mg}, 78 \%$) after purification by column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V})$. Reaction time 9.0 h .
Colorless crystals, m.p. $210-212{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.29(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), , $4.07(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 43.8,46.2,128.1,128.2,128.7,129.1$, 129.3, 130.0, 131.6, 132.1, 133.6, 133.7, 135.8, 136.0, 164.3, 175.0, 197.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 470.0153$. Found 470.0158 .

10ca, N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol})$, benzaldehyde $2 \mathrm{c}(61 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and enone $5 \mathbf{a}(121 \mathrm{mg}, 0.5 \mathrm{mmol})$ gave 10ca ($164 \mathrm{mg}, 84 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10$ V/V). Reaction time 26.0 h .
Colorless crystals, m.p. $190-192{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.29(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.09(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.47$ $(\mathrm{m}, 6 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 43.8,46.2,127.7,128.1,128.6,128.9,129.0,130.0,132.8,133.1,133.4$, 133.6, 136.0, 136.1, 165.0, 174.9, 197.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 392.1048. Found 392.1051.

10da, N-(2-(4-chlorophenyl)-4-oxo-4-phenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol})$, 4-methylbenzaldehyde $2 \mathbf{d}(71 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and enone $5 \mathbf{a}(121 \mathrm{mg}, 0.5$ mmol) gave $10 \mathrm{da}(168 \mathrm{mg}, 83 \%)$ after purification by column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V})$. Reaction time 27.0 h .
Colorless crystals, m.p. $223-225^{\circ} \mathrm{C}^{1}{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, J=18.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), \quad 8.57(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.6,43.8,46.1,127.7$, 128.1, 128.6, 129.0, 129.6, 129.9, 130.0, 133.4, 133.5, 136.1, 144.1, 164.8, 174.9, 197.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$406.1204. Found 406.1214.

10ea, 2-(4-chlorophenyl)-4-oxo-4-phenyl- N-pivaloylbutanamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol})$, pivalaldehyde $\mathbf{2 e}(66 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and enone $5 \mathbf{a}(121 \mathrm{mg}, 0.5 \mathrm{mmol})$ gave 10ea ($139 \mathrm{mg}, 75 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1$: 12 V/V). Reaction time 12.0 h .
Colorless crystals, m.p. $132-134{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.20(\mathrm{~s}, 9 \mathrm{H}), 3.23(\mathrm{dd}, J=18.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), $8.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 27.0,40.2,43.7,45.8,128.0,128.6,128.9,129.9$, 133.4(2C), 136.0, 136.1, 175.0, 176.4, 197.5. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 372.1361. Found 372.1363.

10ab, 4-chloro- N-(4-oxo-4-phenyl-2-(p-tolyl)butanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and 1-phenyl-3-(p-tolyl)prop-2-en-1-one 5b (111 mg, 0.5 mmol) gave 10ab ($170 \mathrm{mg}, 84 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 24.0 h.

Colorless crystals, m.p. 249-251 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=18.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=18.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,43.9,46.6,128.1,128.4,128.6$, 129.0, 129.2, 129.7, 131.4, 133.4, 134.4, 136.2, 137.5, 139.4, 164.2, 175.0, 198.0. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$406.1204. Found 406.1214.

10ac, 4-chloro- N-(2-(4-methoxyphenyl)-4-oxo-4-phenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a} \quad(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 3-(4-methoxyphenyl)-1-phenylprop-2-en-1-one 5 c ($119 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ac ($172 \mathrm{mg}, 82 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 25.0 h .

Colorless crystals, m.p. $161-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.26(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (s, 3H), $4.06(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.9,46.0$, $55.2,114.3,128.0,128.6,128.8,129.2,129.4,129.6,131.3,133.4,136.0,139.2,159.0,164.5,175.9$, 198.0. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$422.1154. Found 422.1160.

10ad, N-(2-(benzo[d][1,3]dioxol-5-yl)-4-oxo-4-phenylbutanoyl)-4-chlorobenzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 3-(benzo[d][1,3]dioxol-5-yl)-1-phenylprop-2-en-1-one $5 d$ ($126 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ad (191 mg,
$88 \%)$ after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 10.0 h .
Colorless crystals, m.p. $169-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.29(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 43.9,46.4,101.1,108.6,108.8,121.9,128.0,128.6,129.1(2 \mathrm{C})$, 130.8, 131.3, 133.4, 136.1, 139.5, 147.1, 148.0, 164.1, 174.8, 197.9. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClNO}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 436.0946$. Found 436.0949.

10ae, 4-chloro- N-(2-methyl-4-oxo-4-phenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 1-phenylbut-2-en-1-one $5 \mathbf{e}$ ($73 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ae ($99 \mathrm{mg}, 60 \%$) after purification by column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1: 12 \mathrm{~V} / \mathrm{V})$. Reaction time 24.0 h .
Colorless crystals, m.p. $175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 1.37(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.13$ (dd, $J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.99(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 4 \mathrm{H})$, $7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 17.0,36.0,42.6,128.0,128.6,129.1,129.2,131.4,133.4,136.2,139.4,164.2$, 177.7, 198.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 330.0891$. Found 330.0881.

10af, 4-chloro- N-(4-oxo-4-phenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 1-phenylprop-2-en-1-one $5 \mathbf{f}$ ($66 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10af ($110 \mathrm{mg}, 70 \%$) after purification by column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1: 12 \mathrm{~V} / \mathrm{V})$. Reaction time 24.0 h .
Colorless crystals, m.p. $112-114{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.48-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.96-3.01$ $(\mathrm{m}, 1 \mathrm{H}), 3.13-3.18(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 33.4,34.4,128.0,128.6,129.1,130.1,132.9,133.3,136.4,138.1,159.9,177.8,197.9$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$316.0735. Found 316.0741.

10ag, N-(4-(4-bromophenyl)-4-oxo-2-(p-tolyl)butanoyl)-4-chlorobenzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a} \quad(84 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and 1-(4-bromophenyl)-3-(p-tolyl)prop-2-en-1-one 5 g ($150 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ag ($205 \mathrm{mg}, 85 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 14.0 h .

Colorless crystals, m.p. $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{dd}, J=18.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 21.2,43.8,46.6,128.4$, 128.6, 129.1, 129.6, 129.7, 131.3, 131.9, 134.1, 134.9, 137.7, 139.5, 164.1, 174.7, 197.0. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrClNO}_{3}+\left([\mathrm{M}+\mathrm{H}]^{+}\right)$484.0310. Found 484.0309.

10ah, N-(4-(4-bromophenyl)-2-(4-chlorophenyl)-4-oxobutanoyl)-4-chlorobenzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a} \quad(84 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and 1-(4-bromophenyl)-3-(4-chlorophenyl)prop-2-en-1-one $5 \mathbf{h}(160 \mathrm{mg}, 0.5 \mathrm{mmol})$ gave 10ah (224 mg , 89%) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 8.0 h .

Colorless crystals, m.p. $195-197{ }^{\circ} \mathrm{C}^{1}{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.23(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 43.7,46.1,128.8,129.1,129.2(2 \mathrm{C})$, 129.6, 129.9, 131.0, 132.0, 133.8, 134.7, 135.6, 139.7, 164.1, 175.0, 196.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrCl}_{2} \mathrm{NO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$503.9763. Found 503.9759.

10ai, N-(4-(4-bromophenyl)-2-(4-fluorophenyl)-4-oxobutanoyl)-4-chlorobenzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 1-(4-bromophenyl)-3-(4-fluorophenyl)prop-2-en-1-one $5 \mathbf{i}$ ($152 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ai (214 mg , 88%) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 7.0 h .
Colorless crystals, m.p. $201-203{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 3.23(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.81$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 43.9,45.9,115.8,115.9,128.8$, 129.1, 129.2, 129.5, 130.2(2C), 131.1, 132.0, 132.8, 134.7, 139.6, 164.2, 175.3, 196.7. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{BrClFNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$488.0059. Found 488.0051.

10aj, 4-chloro- N-(2-(4-chlorophenyl)-4-oxopentanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a} \quad(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and 4-(4-chlorophenyl)but-3-en-2-one $\mathbf{5 j}$ ($90 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave $\mathbf{1 0 a j}$ ($154 \mathrm{mg}, 85 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 6.0 h .
Colorless crystals, m.p. $123-125{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=18.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 29.7,46.1,48.0,129.0,129.1,129.8,130.9,131.1,133.6,135.6,139.6$, 164.1, 174.6, 206.3. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$364.0502. Found 364.0512.

10ak, 4-chloro- N -(2-methyl-4-oxopentanoyl)benzamide
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol}), 4$-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and pent-3-en-2-one $5 \mathbf{k}(42 \mathrm{mg}$, 0.5 mmol) gave 10ak ($96 \mathrm{mg}, 72 \%$) after purification by column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1: 12 \mathrm{~V} / \mathrm{V})$. Reaction time 24.0 h .
Yellowish oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.19$ (s, 3H), 2.59 (dd, $J=$ $18.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=18.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 16.7,29.8,35.8,47.2,129.1,129.2$,
131.2, 139.6, 164.1, 177.3, 207.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClNO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$268.0735. Found 268.0745.

10al, 4-chloro- N-(4-oxo-3,4-diphenylbutanoyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride ($55.1 \mathrm{mg}, 0.6 \mathrm{mmol}$), 4-chlorobenzaldehyde 2a ($84 \mathrm{mg}, 0.6 \mathrm{mmol}$) and 1,2-diphenylprop-2-en-1-one $5 \mathbf{l}(104 \mathrm{mg}, 0.5 \mathrm{mmol})$ gave 10al ($102 \mathrm{mg}, 52 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 10 \mathrm{~V} / \mathrm{V}$). Reaction time 18.0 h .
Colorless crystals, m.p. $196-198{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.30(\mathrm{dd}, J=18.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{dd}, J=18.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 6 \mathrm{H}), 7.39(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.03(\mathrm{~s}$, 1H). ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 42.5, 49.0, 127.5, 128.2, 128.5, 128.9, 129.1, 129.2 (2C), 130.8, 133.1, 136.1, 137.9, 139.7, 164.6, 174.6, 198.5. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClNO}_{3}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 392.1048$. Found 392.1059.

10am, 4-Chloro- N-(3-oxocyclohexanecarbonyl)benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ and cyclohex-2-enone $(49.4 \mu \mathrm{~L}$, 0.5 mmol) gave 10am ($116 \mathrm{mg}, 83 \%$) after purification by column chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{PE}=1: 10)$. Reaction time 16.0 h .
Colorless crystals, m.p. $143-145{ }^{\circ}{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.87-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{dd}, J=15.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-4.01(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.0,27.3,40.8,42.5,44.1,129.3(2 \mathrm{C}), 130.7,139.9,164.5,176.9$, 209.9. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNNaO}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$302.0554. Found 302.0562.

10an, 4-Chloro- N-(5-[1,3]dithiolan-2-ylidene-4,6-dioxo-2,6-diphenyl-hexanoyl)-benzamide.
Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a} \quad(84 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and 2-(1,3-dithiolan-2-ylidene)-1,5-diphenylpent-4-ene-1,3-dione 5 n ($176 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10an ($227 \mathrm{mg}, 85 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1: 9 \mathrm{~V} / \mathrm{V}$). Reaction time 19.0 h .
Colorless crystals, m.p. 221-223 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.71(\mathrm{dd}, J=18.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27-3.30 (m, 2H), 3.33-3.39 (m, 3H), $5.10(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.39(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.8,38.0,45.7,47.5,125.5,127.5$, 128.4, 128.8, 129.0(2C), 129.3, 129.5, 131.4, 133.7, 137.2, 137.3, 139.3, 164.2, 171.2, 174.4, 192.2, 194.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClNNaO}_{4} \mathrm{~S}_{2}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$558.0576. Found 558.0579.

10ao, 4-Chloro- N-[2-(4-chloro-phenyl)-5-[1,3]dithiolan-2-ylidene-4,6-dioxo-6-phenyl-hexanoyl]-b enzamide.

Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride $(55.1 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$, 4-chlorobenzaldehyde $\mathbf{2 a} \quad(84 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and 5-(4-chlorophenyl)-2-(1,3-dithiolan-2-ylidene)-1-phenylpent-4-ene-1,3-dione 50 ($193 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ao ($239 \mathrm{mg}, 84 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1$: $9 \mathrm{~V} / \mathrm{V})$. Reaction time 20.0 h .
Yellowish crystals, m.p. $196-198{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.68(\mathrm{dd}, J=18.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27-3.32(\mathrm{~m}, 3 \mathrm{H}), 3.34-3.38(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 36.9,38.0,45.7,46.7,125.4,128.8,129.0,129.1,129.3,129.5,129.8,131.3,133.4,133.7,135.7$, 137.3, 139.5, 164.1, 171.6, 174.5, 192.0, 194.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NNaO}_{4} \mathrm{~S}_{2}{ }^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$592.0187. Found 592.0189.

10ap, 4-Chloro- N-(5-[1,3]dithiolan-2-ylidene-4,6-dioxo-6-phenyl-2-p-tolyl-hexanoyl)-benzamide. Following the procedure for the synthesis of 10aa, the reaction of 2-aminoacetonitrile hydrochloride (55.1 mg, 0.6 mmol), 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, \quad 0.6 \mathrm{mmol})$ and 2-(1,3-dithiolan-2-ylidene)-1-phenyl-5-(p-tolyl)pent-4-ene-1,3-dione $5 \mathbf{p}$ ($233 \mathrm{mg}, 0.5 \mathrm{mmol}$) gave 10ap ($247 \mathrm{mg}, 90 \%$) after purification by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1$: 9 V/V). Reaction time 24.0 h .
Colorless crystals, m.p. $199-201{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{dd}, J=18.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.39(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=$ $11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.59(\mathrm{~s}$, 1H). ${ }^{13}$ C NMR (125 MHz, CDCl_{3}): $\delta 21.0,36.8,38.0,45.8,47.2,125.6,128.2,129.0(2 \mathrm{C}), 129.2$, 129.5, 129.6, 131.5, 133.7, 134.1, 137.3(2C), 139.2, 164.0, 171.1, 174.2, 192.4, 194.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClNNaO}_{4} \mathrm{~S}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$572.0733. Found 572.0740.

7a, 3-(4-chlorophenyl)-5-phenyl-3,4-dihydro-2H-pyrrole-2-carbonitrile. trans:cis = 1.3:1.0 ${ }^{1}$
To a solution of 2-aminoacetonitrile hydrochloride ($55.1 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMF (5.0 mL) was added triethylamine $(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ and stirred at room temperature for 1.0 h . Then, 4-chlorobenzaldehyde $\mathbf{2 a}(84 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added and further stirred at room temperature for about 4.0 h . After 2a was consumed as indicated by TLC, $\operatorname{DBU}(0.15 \mathrm{~mL}, 1.0 \mathrm{mmol})$ was added in one portion following with the enone $5 \mathbf{a}(121 \mathrm{mg}, 0.5 \mathrm{mmol})$. The reaction mixture was stirred at room temperature and was monitored by TLC. After enone 5 a was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether $(20 \mathrm{~mL} \times 2)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo, and the residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{PE}=1 / 9, \mathrm{~V} / \mathrm{V}$) to give $\mathbf{7 a}(136 \mathrm{mg}, 97 \%)$.
trans-7a, yellowish viscous oil. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.21$ (dd, $J=17.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dd, $J=17.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.6,48.2,68.8,118.9,128.1(2 \mathrm{C}), 128.7,129.3,132.0,132.4,133.6$, 138.4, 176.6. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$281.7589. Found 281.7580.
cis-7a, yellowish viscous oil. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.37$ (dd, $J=17.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (dd, $J=17.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5$

[^0]$\mathrm{Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (125
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 42.5,45.5,67.1,116.9,128.1,128.8(2 \mathrm{C}), 129.1,132.1,132.5,133.8,137.2,177.5$.
HRMS (ESI-TOF) Calcd for Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$281.7589. Found 281.7580.

HMBC of 7a

13, 4-chloro- N-propionylbenzamide.
To a solution of (E)-2-(4-chlorobenzylideneamino)acetonitrile ($107 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMSO (5.0 $\mathrm{mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(69.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added in one portion under oxygen atmosphere following with bromoethane ($37 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature and was monitored by TLC. After benzyl bromide was consumed, the resulting mixture
was poured into ice-water $(20 \mathrm{~mL})$ and extracted with diethyl ether $(20 \mathrm{~mL} \times 2)$. The aqueous layer was treated with $10 \% \mathrm{NaClO}$ solution (5 mL) and collected. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo, and the residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{PE}=1 / 9, \mathrm{~V} / \mathrm{V}$) to give $13(66 \mathrm{mg}, 63 \%)$. Reaction time 8.0 h .
Yellowish oil. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.34(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.30 \quad(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 14.2, 62.6, 129.1(2C), 131.3, 139.4, 150.9, 164.1. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClKNO}_{2}{ }^{+}$ $\left([\mathrm{M}+\mathrm{K}]^{+}\right)$250.0032. Found 250.0041 .

14, 4-chloro- N-(2-phenylacetyl)benzamide.
To a solution of (E)-2-(4-chlorobenzylideneamino)acetonitrile ($107 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMSO (5.0 $\mathrm{mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(69.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added in one portion under oxygen atmosphere following with benzyl bromide ($60 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature and was monitored by TLC. After benzyl bromide was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether $(20 \mathrm{~mL} \times 2)$. The aqueous layer was treated with $10 \% \mathrm{NaClO}$ solution $(5 \mathrm{~mL})$ and collected. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo, and the residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{PE}=1 / 10, \mathrm{~V} / \mathrm{V}$) to give $14(102 \mathrm{mg}, 75 \%)$. Reaction time 6.0 h .
Yellowish crystals, m.p. $117-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.25(\mathrm{~s}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}$, $5 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 68.1,128.7,128.8,129.1(2 \mathrm{C}), 130.5,131.1,134.7,139.5,150.7,164.0$ HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClKNO}_{2}^{+}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$312.0188. Found 312.0194

15, (E)- N-but-2-enoyl-4-chlorobenzamide
To a solution of (E)-2-(4-chlorobenzylideneamino) acetonitrile ($107 \mathrm{mg}, 0.6 \mathrm{mmol}$) in DMSO (5.0 $\mathrm{mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(34.5 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added in one portion under oxygen atmosphere following with allyl bromide ($44 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). The reaction mixture was stirred at room temperature and was monitored by TLC. After benzyl bromide was consumed, the resulting mixture was poured into ice-water (20 mL) and extracted with diethyl ether $(20 \mathrm{~mL} \times 2)$. The aqueous layer was treated with $10 \% \mathrm{NaClO}$ solution $(5 \mathrm{~mL})$ and collected. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated in vacuo, and the residue was purified by column chromatography ($\mathrm{EtOAc} / \mathrm{PE}=1 / 10, \mathrm{~V} / \mathrm{V}$) to give $15(62.4 \mathrm{mg}, 56 \%)$. Reaction time 12.0 h .
Yellowish crystals, m.p. $85-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.6,123.9,129.1,129.3,129.6,129.9(2 \mathrm{C}), 147.6,161.3$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClKNO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{K}]^{+}\right)$262.0032. Found 262.0049.
III. Isotope Labeled O_{2} Experiments

HRMS spectrum

IV. Crystal data and OPTEP drawing of compound 10aa

Single-crystal X-ray diffraction data was collected at room temperature on a Oxford Diffraction Gemini R Ultra diffractometer, the X-ray generator using Mo-K $\alpha(\lambda=0.71073 \AA$) radiation with a ω scan technique. The crystal structures were solved by direct method of SHELXS -97^{2} and refined by full-matrix least-squares techniques using the SHELXL-97 program. Non-hydrogen atoms were refined anisotropic.
(1) Crystal data and OPTEP drawing of compound 10aa (CCDC 938346)

ORTEP drawing:

Crystal data:

Empirical formula	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}$
Formula weight	426.3
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
$\mathrm{a}(\AA)$	$9.8294(19)$
$\mathrm{b}(\AA)$	$10.0500(19)$
$\mathrm{c}(\AA)$	$12.1693(23)$
$\alpha(\operatorname{deg})$	$114.273(1)$
$\beta(\operatorname{deg})$	$97.114(2)$
$\gamma(\operatorname{deg})$	$105.645(1)$
Volume $\left(\AA^{3}\right)$	$1016.86(11)$

\qquad

[^1]| Calculated density $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$ | 1.39 |
| :--- | :--- |
| Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$ | 0.344 |
| $\mathrm{~F}(000)$ | 439.9 |
| Theta range for data collection (deg) | 1.9 to 25.0 |
| Reflections collected/unique | $5172 / 3530$ |
| Goodness-of-fit on F^{2} | 1.022 |
| Final R indices $[I>2 \sigma(I)]$ | $\mathrm{R} 1=0.045, \mathrm{WR} 2=0.106$ |
| R indices (all data) | $\mathrm{R} 1=0.060, \mathrm{WR} 2=0.115$ |

V. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

No№ñ
$\stackrel{\circ}{\bullet}$

10aa

10ab

10ag

10ag

10ah

10aj

10aj

10ak

10ak

190	170	150	130	110	$\begin{array}{r} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	80	70	60	50	40	30	20	10	0	-10

$\begin{array}{cc}\stackrel{-}{\circ} \\ \underset{\sim}{\infty} \\ \dot{\sim} \\ 1 & \underset{子}{1}\end{array}$

trans-7a

on encion
ザザ

13

$\stackrel{N}{N}$
$\underset{\sim}{j}$

-5.253

$\stackrel{\otimes}{\infty}$

170	150	130	110	$\stackrel{90}{\mathrm{f} 1(\mathrm{ppm})} 8^{90}$	70	60	50	40	30	20	10	0

| 170 | 150 | 130 | 110 | 90 80 70 60 50 40 30 20 10
 $\mathrm{f} 1(\mathrm{ppm})$ | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^0]: 1 Y. Zhang, L. Pan, X. Xu and Q. Liu, RSC Adv., 2012, 2, 5138.

[^1]: 2 G. M. Sheldrick, SHELXS-97, Programs for X-ray Crystal Structure Solution; University of Göttingen, Göttingen, Germany, 1997.

