Supporting Information

Diketopyrrolopyrrole-Bitellurophene Containing Conjugated Polymer and its High Performance Thin-film Transistor Sensor for Bromine Detection

Matinder Kaur,* Dae Hee Lee,* Da Seul Yang, Hyun Ah Um, Min Ju Cho, Ju Sik Kang,

Dong Hoon Choi*

Department of Chemistry, Research Institute for Natural Sciences, Korea University, 5 Anam-dong, Sungbuk-Gu, 136-701 Seoul, Korea. Fax: +82-2-925-4284; Tel: +82-2-3290-3140; E-mail: <u>dhchoi8803@korea.ac.kr</u>

♦: equally contributed to this work

Materials and Methods

All solvents used were of analytical grade. Solvents were dried according to standard procedures. All the reactions were magnetically stirred and monitored by thin-layer chromatography (TLC) by using Spectrochem GF254 silica gel-coated plates. Chromatography was performed by using 100–200 mesh silica. ¹H NMR spectra were recorded on Varian Mercury NMR spectrometer (300 MHz) by using deuterated chloroform (CDCl₃) purchased from Cambridge Isotope Laboratories; chemical shifts are represented in ppm with tetramethylsilane (TMS) as the internal reference. Coupling constants (*J*) are given in hertz (Hz). Various types of chemical shift are abbreviated as follows: singlet, s; doublet, d; double-doublet, dd; triplet, t; multiplet, m. Atomic force microscopy (AFM, Advanced Scanning Probe Microscope, XE-100, PSIA) operating in tapping mode with a Si cantilever was used to characterize the surface morphologies of the polymer films. The film sample was fabricated by spin-coating (2000 rpm) on n-octyltrichlorosilane (OTS)-treated silicon wafer followed by drying at 50 °C under vacuum (solvent: chloroform, concentration of the solution: 0.5 mg/mL). Grazing incidence X-ray diffraction (GI-XRD) measurements were performed at the 9A (U-SAXS) beam lines (energy = 11.11 keV, pixel size = 79.6 μ m, wavelength = 1.116 Å) at the Pohang Accelerator Laboratory (PAL). The measurements were obtained in a 2 θ scanning interval between 0° and 20°; the component of the scattering vector parallel (q_{xy}) and perpendicular (q_z) to the substrate were determined as: $q = (4\pi/\lambda) \sin \theta$, where θ is half the scatterin angle and λ is the wavelength of the incident radiation.

In order to study the absorption behavior, the polymer film was fabricated on quartz substrates as follows. The solution (0.5 wt%) of PDPPBTe in CHCl₃ was filtered through an acrodisc syringe filter (Millipore 0.45 μ m, Billerica, MA, USA) and subsequently spin-cast on the quartz glass. Absorption spectra of the samples in the film and solution (solvent: CHCl₃, concentration of the solution 1×10⁻⁶ mol/L) were obtained by using a UV-Vis spectrometer (HP 8453, photodiode array type) in the wavelength range of 190–1100 nm. Density functional theory (DFT) were performed by using use Gaussian software (version G09W) with B3LYP/CEP-4G basis set.

Preparation of stock solutions for UV-Vis absorption study

The polymer stock solutions were prepared by dissolving 1 mg of the polymer in 10 mL CHCl₃ and Br₂ (conc= 10^{-4} M) was prepared in CHCl₃. In titration experiments, 3 mL (total volume) of the polymer solution was placed in a quartz cuvette (path length = 1 cm).

Synthetic Procedure:

[2,5-Bis (2-dodecylhexadecyl)-3,6-di (thiophen-2-yl) pyrrolo [3,4-c] pyrrole-1,4 (2*H*,5*H*)-dione and 2,5-bis(2-dodecylhexadecyl)-3,6-bis(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2*H*,5*H*)-dione (monomer 1) were synthesized by following the literature method.^{1a,1b} Tellurophene, bitellurophene, and 5,5'-diiodo-2,2'bitellurophene (2) were also prepared by following the literature method.²

Synthesis of PDPPBTe 3:

A mixture of monomer **1** (0.07 g, 0.052 mmol), monomer **2** (0.033 g, 0.054 mmol), $Pd_2(dba)_3/P(o-Tol)_3$ (0.033 g, 0.036 mmol/ 0.0158 g, 0.051 mmol), tripotassium phosphate (K₃PO₄, 2M) and aliquat 336 was added in 20 mL toluene. The mixture was heated at 90 °C for 52 h. After cooling to room temperature, the mixture was added to a vigorously stirred methanol (100 mL)/ 1 N HCl (10 mL) solution, following which it was filtered, and washed with methanol. The polymeric material was sequentially purified by Soxhlet extraction with acetone, hexane and CHCl₃. Chloroform was evaporated and the polymer was precipitated in methanol, following which it was filtered and dried to produce the polymer with the dodecylhexadecyl side-chains (0.043 g, 56%). ($M_n = 7473$ daltons, $M_w = 18025$ daltons, PDI = 2.41). ¹H NMR (CDCl₃, 300MHz), δ (ppm): δ 8.93 (4 H, broad), 7.61 (4 H, broad), 4.07 (4 H, broad), 2.00 (12 H, broad), 1.25 (63 H, m), 1.11 (12 H, m), 0.88 (15 H, m).

¹H NMR Spectrum

Figure S1. ¹H NMR spectrum of monomer 1 in CDCl₃.

Figure S2. ¹H NMR spectrum of tellurophene in CDCl₃.

Figure S3. ¹H NMR spectrum of bitellurophene in CDCl₃.

Figure S4. ¹H NMR spectrum of monomer 2 in CDCl₃.

Figure S5. ¹H NMR spectrum of PDPPBTe 3 in CDCl₃.

Figure S6. UV-Vis absorption spectra of PDPPBTe, 3 in (i) solution and (ii) film states.

Polymer	Solution λ^{abs}_{max}	Film λ ^{abs} max	λ _{cut-off} (nm)	E ^{opt} (eV)	E _g ^c (eV)	E _{ox} onset (V)	E _{red} ^{onset} (V)	Energy Levels (eV)	
	(nm)	(nm)						HOMO	LUMO ^a
PDPPBTe	761,	792,	957ª,	1.30ª,	1.43 ^a	0.76 ^a ,	-0.67ª,	-5.09	-3.82
	835	878	974 ^b	1.27 ^b					
PDPPBTe-	948	996	1059ª,	1.17 ^a	1.58 ^a	1.09 ^a	-0.59 ^a	-5.42	-4.28
Br ₂ adduct			1090 ^b	1.14 ^b					

Table S1. Measured and calculated data of the PDPPBTe, 3 and 3-Br $_2$ adduct.

^aSolution; ^bFilm; ^c The values were obtained from cyclic voltammograms and ^d HOMO(eV) – $E_{g}^{opt}(eV)$

Figure S7. Cyclic voltammograms of (i) **3**; PDPPBTe and (ii) **3**; PDPPBTe with Br_2 . A ferrocene redox couple (Fc/Fc⁺) was used as an internal standard.

Figure S8. Calculated energies of the frontier orbitals of **3** and **3**-Br₂ adduct. Gray C, white H, yellow S, orange Te, and red Br.

Figure S9. (a), (b): 2-D GI-XRD patterns for PDPPBTe thin films on OTS-treated SiO₂/Si substrate. (c), (d): 1-D out-of-plane and in-plane (inset) profiles. (a) and (c) pristine film. (b) and (d) thermally annealed film ($T_{annealing} = 200 \text{ °C}$).

Figure S10. (a) Stability of TFT device performance (Black : 1st measurement, Red : after 1 day, Blue : after 3 days, Green : after 5 days, Pink : after 7 days) and (b), (c) Stability of mobility, threshold voltage and on-off current ratio measured for one week. The five different devices were used for monitoring the variation of the performance parameters.

Figure S11. (a) Variation of transfer curves of TFT devices with PDPPBTe under repeated Br_2 exposure and thermal elimination experiments. (b) Variation of I_{DS} values at V_G = -5, 0, and +5 V with the number of detection and thermal elimination of Br_2 . Black (1): initial I_{DS} , Red (2): I_{DS} after Br_2 exposure. Blue (3): I_{DS} after annealing the Br_2 exposed TFT. Green (4): I_{DS} after second Br_2 exposure. Dark red (5): I_{DS} after second annealing the Br_2 exposed TFT. Dark blue (6): I_{DS} after third Br_2 exposure. Violet (7): I_{DS} after third annealing the Br_2 exposed TFT.

The repeatability of the TFT devices was investigated as a sensor for Br_2 . Thermal elimination at 150°C could lead to use the device again for Br_2 detection. In Figure S11a, the variation of transfer curves under tree cycles of detection and thermal elimination were displayed. From these curves, the I_{DS} values at V_G = -5, 0, and +5V were plotted in Fig. S11b. The device showed no significant hysteresis behavior of I_{DS} value under the repeated cycles.

Figure S12. (a) Variation of transfer curves of TFT devices after exposing to Br_2 . Black: before Br_2 exposure, Red: just after Br_2 exposure, Blue: 1 hr after Br_2 exposure, Green: 3 hr after Br_2 exposure, Dark red: 5 hr after Br_2 exposure, Dark blue: 12 hr after Br_2 exposure. (b) Variation of I_{DS} values at V_G = -5, 0, and +5 V with the elapsed time after Br_2 exposure.

The stability of the device after exposure to Br_2 was investigated with the elapsed time after Br_2 exposure. Although small decay of I_{DS} value was observed after 1 hr, no significant decaying behavior was observed over 12 hr.

Figure S13. (a) Variation of transfer curves of TFT devices with PDPPBTe under ICl (5 ppm) exposure and annealing experiments. Black: initial I_{DS} , Blue: I_{DS} after ICl exposure, (b) Variation of transfer curves of TFT devices with PDPPBTe under a mixed atmosphere of Br₂ (5 ppm) and ICl (5 ppm). Black: initial I_{DS} . Blue: I_{DS} after exposure to the mixture of ICl and Br₂.

In order to investigate the selectivity of Br_2 sensor, the following experiments were performed; first, we exposed the TFT device with PDPPBTe to ICl. No significant increase of I_{DS} value was observed. (Figure S13a) Then, the device showed large increment of I_{DS} after exposing the TFT device to the mixed atmosphere with ICI and Br_2 . (Figure S13b) Therefore, no interference from ICl and the selective Br_2 detection were confirmed from this experiment.

Figure S14. (a) Variation of transfer curves of TFT devices with PDPPBTe under different concentration of Br₂. (conc.= 1, 3, and 5 ppm). Black: initial I_{DS}. Red: 5 ppm. Blue: 3 ppm. Green: 1 ppm. (b) Variation of I_{DS} values at V_G = -5, 0, and +5 V with the concentration of Br₂.

We selected 1, 3, and 5 ppm of Br_2 at atmosphere and measured the transfer curves. As the concentration of Br_2 increased, the value of I_{DS} increased, which was shown at three different gate voltages (V_G = -5, 0, and +5V). As we expected, the I_{DS} value at a fixed V_G increases as the concentration of Br_2 increases in an atmosphere. According to our experiments, 1 ppm is the lowest concentration of Br_2 we could detect using our TFT devices.

Figure S15. AFM images of (a) PDPPBTe. (b) PDPPBTe after exposure to $Br_{2.}$ (c) PDPPBTe film after annealing the Br_{2} exposed film at 150 °C. (d) PDPPBTe after second exposure to $Br_{2.}$ (e) PDPPBTe film after second annealing the Br_{2} exposed film at 150 °C. Ave. roughness : (a) ~0.62 nm, (b) ~3.92 nm, (c) ~0.57 nm, (d) ~5.11 nm, (e) ~0.75 nm

References:

- (a) T. W. Lee, D. H. Lee, J. Shin, M. J. Cho and D. H. Choi, *J. Polym. Sci., Part A: Polym. Chem.* 2013, **51**, 5280 (b) H. Burckstummer, A. Weissenstein, D. Bialas and F. Würthner, *J. Org. Chem.* 2011, **76**, 2426.
- 2. A. A. Jahnke, G. W. Howe and D. S. Seferos, *Angew. Chem. Int. Ed.* 2010, **49**, 10140.